JPH0350578B2 - - Google Patents

Info

Publication number
JPH0350578B2
JPH0350578B2 JP60258024A JP25802485A JPH0350578B2 JP H0350578 B2 JPH0350578 B2 JP H0350578B2 JP 60258024 A JP60258024 A JP 60258024A JP 25802485 A JP25802485 A JP 25802485A JP H0350578 B2 JPH0350578 B2 JP H0350578B2
Authority
JP
Japan
Prior art keywords
catalyst
weight
parts
rare earth
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60258024A
Other languages
Japanese (ja)
Other versions
JPS62117629A (en
Inventor
Mieko Tanabe
Kunio Ito
Isao Matsumoto
Akira Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60258024A priority Critical patent/JPS62117629A/en
Publication of JPS62117629A publication Critical patent/JPS62117629A/en
Publication of JPH0350578B2 publication Critical patent/JPH0350578B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、自動車、工場などから排出される排
ガスや、石油、ガスなどの燃焼排ガス、調理時の
油煙などの不完全燃焼ガスを浄化する多孔触媒の
製造法に関するものである。 従来の技術 従来、排ガス浄化用多孔触媒は、特開昭58−
161327号公報に記載されているように、アルミン
酸石灰、溶融シリカ、二酸化チタンと成形助剤な
どを混合し、水を加えて混練したものをハニカム
状に成型した後、硬化、乾燥して得たハニカム担
体を、白金族金属などの塩溶液に浸漬して金属触
媒を担持させた後、熱処理することによつて得ら
れるものであつた。 発明が解決しようとする問題点 しかしながら上記の従来の方法で得られたハニ
カム担体は、1000℃程度の温度で熱処理すると、
比表面積が減少し、触媒活性が低下するという問
題点を有していた。 本発明は上記従来の問題点を解決するもので、
担体の組成を改良することにより比表面積の高温
下での減少を防止するとともに高い触媒活性を有
する排ガス浄化用多孔触媒を提供することを目的
とする。 問題点を解決するための手段 この目的を達成するために本発明は、主成分で
あるアルミン酸石灰に骨材として溶融シリカ、二
酸化チタンと成型助剤等の粉末材料とともに還元
助触媒として酸化希土類粉末を混合し、水を加え
て混練し、高多孔状に成型し、硬化乾燥して得た
ハニカム状の担体に、触媒としてパラジウム、セ
リウムの金属塩水溶液を含浸させた後、熱処理す
るものである。 作 用 この手段によつて、ハニカム担体の比表面積が
15〜20m2/gと大きく、かつ1000℃の高温下での
熱処理でも変化せず、さらに金属触媒を担持させ
ることにより、高温での触媒活性が低下せず、か
つ低温でも良いNO2浄化能を得ることができる。 実施例 以下、本発明の実施例について、図面を参照し
ながら説明する。 実施例 1 担体の組成としてアルミン酸石灰40重量部、溶
融シリカ45重量部、二酸化チタン5重量部、酸化
希土類粉末として酸化セリウム10重量部に、成型
助剤としてカルボキシメチルセルロース3重量部
を加えて混合し、それに水を粉体に対して18重量
部加えて混練して得た材料をハニカムダイスを用
いて押し出し成型し、急速硬化、乾燥してハニカ
ム担体を得た。そのハニカム担体を触媒としてパ
ラジウムおよびセリウムの混合溶液中に担体表面
に触媒としての金属が適度に付着できるよう約10
秒間浸漬しパラジウム1g/、セリウムを酸化
セリウムとして10g/を担持させ、次に1000℃
で熱処理を施した。 実施例 2 担体組成としてアルミン酸石灰40重量部、溶融
シリカ40重量部、二酸化チタン5重量部、酸化希
土類粉末として酸化ランタン15重量部に成型助剤
としてカルボキシメチルセルロース3重量部を加
えて混合し、それに水を粉体に対して18重量部加
えて混練して得た材料に実施例1と同一の処理を
施した。 実施例 3 担体の組成としてアルミン酸石灰40重量部、溶
融シリカ45重量部、二酸化チタン10重量部酸化希
土類粉末として酸化ネオジウム5重量部に成型助
剤としてカルボキシメチルセルロース3重量部を
加えて混合し、それに水を粉体に対して18重量部
加えて混練して得た材料に実施例1と同一の処理
を施した。 比較例 担体の組成としてアルミン酸石灰40重量部、、
溶融シリカ45重量部、二酸化チタン15重量部に成
型助剤としてカルボキシメチルセルロース3重量
部を加えて混合し、それに水を粉体に対して18重
量部加えて混練して得た材料に実施例1と同一の
処理を施した。 上記4種の触媒を調整し、それらについて電気
炉により1000℃で熱処理を行ない、比表面積を
BET法により測定した。その結果を第1図に示
す。 また、得られた4種の触媒の二酸化窒素浄化能
について測定した結果を第2図に、二酸化窒素浄
化能測定条件を表1にそれぞれ示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a porous catalyst for purifying exhaust gases emitted from automobiles, factories, etc., combustion exhaust gases such as oil and gas, and incomplete combustion gases such as oil smoke from cooking. . Conventional technology Conventionally, porous catalysts for exhaust gas purification were developed in Japanese Patent Application Laid-Open No.
As described in Publication No. 161327, lime aluminate, fused silica, titanium dioxide, and a forming aid are mixed, water is added and kneaded, the resulting mixture is formed into a honeycomb shape, hardened and dried. The honeycomb carrier was immersed in a salt solution of platinum group metal or the like to support a metal catalyst, and then heat-treated. Problems to be Solved by the Invention However, when the honeycomb carrier obtained by the above conventional method is heat-treated at a temperature of about 1000°C,
The problem was that the specific surface area decreased and the catalyst activity decreased. The present invention solves the above conventional problems,
The object of the present invention is to provide a porous catalyst for exhaust gas purification that prevents the specific surface area from decreasing at high temperatures by improving the composition of the carrier and has high catalytic activity. Means for Solving the Problems In order to achieve this object, the present invention combines lime aluminate as a main component with fused silica as an aggregate, powder materials such as titanium dioxide and a molding aid, and rare earth oxide as a reduction co-catalyst. A honeycomb-shaped carrier obtained by mixing powders, adding water, kneading, molding into a highly porous shape, and hardening and drying is impregnated with an aqueous solution of metal salts of palladium and cerium as a catalyst, and then heat-treated. be. Effect: By this means, the specific surface area of the honeycomb carrier can be increased.
It has a large NO 2 purification capacity of 15 to 20 m 2 /g and does not change even after heat treatment at a high temperature of 1000℃, and by supporting a metal catalyst, the catalyst activity does not decrease at high temperatures and is good at low temperatures. can be obtained. Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. Example 1 The composition of the carrier was 40 parts by weight of lime aluminate, 45 parts by weight of fused silica, 5 parts by weight of titanium dioxide, 10 parts by weight of cerium oxide as rare earth oxide powder, and 3 parts by weight of carboxymethyl cellulose as a molding aid, and mixed together. Then, 18 parts by weight of water was added to the powder, and the resulting material was extruded using a honeycomb die, rapidly hardened, and dried to obtain a honeycomb carrier. The honeycomb carrier is used as a catalyst in a mixed solution of palladium and cerium.
Dip for 1 second to support 1 g of palladium and 10 g of cerium as cerium oxide, then soak at 1000°C.
Heat treatment was performed. Example 2 40 parts by weight of lime aluminate, 40 parts by weight of fused silica, 5 parts by weight of titanium dioxide as a carrier composition, 15 parts by weight of lanthanum oxide as a rare earth oxide powder, and 3 parts by weight of carboxymethyl cellulose as a molding aid were added and mixed, The same treatment as in Example 1 was performed on the material obtained by adding 18 parts by weight of water to the powder and kneading it. Example 3 The composition of the carrier is 40 parts by weight of lime aluminate, 45 parts by weight of fused silica, 10 parts by weight of titanium dioxide, 5 parts by weight of neodymium oxide as a rare earth oxide powder, and 3 parts by weight of carboxymethyl cellulose as a molding aid and mixed. The same treatment as in Example 1 was performed on the material obtained by adding 18 parts by weight of water to the powder and kneading it. Comparative example: 40 parts by weight of lime aluminate as the carrier composition.
Example 1 was prepared by mixing 45 parts by weight of fused silica and 15 parts by weight of titanium dioxide with 3 parts by weight of carboxymethyl cellulose as a molding aid, adding 18 parts by weight of water based on the powder, and kneading. The same treatment was applied. The above four types of catalysts were prepared and heat treated at 1000℃ in an electric furnace to determine the specific surface area.
Measured by BET method. The results are shown in FIG. Further, the results of measuring the nitrogen dioxide purifying ability of the four types of catalysts obtained are shown in FIG. 2, and the conditions for measuring the nitrogen dioxide purifying ability are shown in Table 1.

【表】 なお図における1は実施例1、2は実施例2、
3は実施例3、4は比較例を示す。 第1図に示すように、比較例4は、高温で長時
間熱処理していくにつれて比表面積が減少する。
これは、微粒子間の細孔の消失によつて起こるも
のだと思われる。実施例1〜3は混合の段階に還
元触媒作用のある酸化希土類粉末を加えて製造し
たハニカム触媒であり、第1図から実施例1〜3
は比較例4と比べて高温で熱処理しても比表面積
はあまり減少していない。このことは酸化希土類
粉末が高温でのハニカム担体のシンタリングを防
止していると考えられる。また実施例1〜3の中
で実施例1が最も表面積が減少していない。この
ことから実施例2は1よりも酸化希土類粉末が多
く含まれているが、酸化希土類粉末を多く混合し
てもそれだけではシンタリング防止は期待できな
いと考えられる。 また二酸化窒素浄化能について第2図に示すよ
うに、比較例4は実施例1〜3に比べて性能が低
い。これは、先に述べた比表面積の減少とともに
シンタリングを起こすために活性金属の量も減少
するためと思われる。 発明の効果 以上のように本発明は製造工程において最初の
混合の時点で還元助触媒として酸化希土類粉末を
加えることにより、高温で長時間熱処理しても比
表面積の減少が少なく、かつ触媒活性の良好な触
媒を得ることができるという効果を有するもので
ある。
[Table] In the figure, 1 is Example 1, 2 is Example 2,
3 shows Example 3, and 4 shows Comparative Example. As shown in FIG. 1, in Comparative Example 4, the specific surface area decreases as the heat treatment is carried out at high temperature for a long time.
This seems to be caused by the disappearance of pores between fine particles. Examples 1 to 3 are honeycomb catalysts manufactured by adding rare earth oxide powder having a reduction catalytic action to the mixing stage, and from FIG.
Compared to Comparative Example 4, the specific surface area did not decrease much even when heat treated at a high temperature. This is considered to be because the rare earth oxide powder prevents the honeycomb carrier from sintering at high temperatures. Further, among Examples 1 to 3, Example 1 showed the least decrease in surface area. From this, although Example 2 contains more rare earth oxide powder than Example 1, it is considered that even if a large amount of rare earth oxide powder is mixed, prevention of sintering cannot be expected by itself. Moreover, as shown in FIG. 2 regarding nitrogen dioxide purification ability, Comparative Example 4 has lower performance than Examples 1 to 3. This seems to be because the amount of active metal also decreases due to sintering as well as the aforementioned decrease in specific surface area. Effects of the Invention As described above, by adding rare earth oxide powder as a reduction co-catalyst at the time of initial mixing in the manufacturing process, the specific surface area does not decrease even when heat treated at high temperature for a long time, and the catalyst activity is reduced. This has the effect that a good catalyst can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例および比較例における
熱処理温度とBET比表面積の関係を示す特性図、
第2図は同実施例および比較例における熱処理温
度と二酸化窒素浄化能との関係を示す特性図であ
る。
FIG. 1 is a characteristic diagram showing the relationship between heat treatment temperature and BET specific surface area in Examples and Comparative Examples of the present invention;
FIG. 2 is a characteristic diagram showing the relationship between heat treatment temperature and nitrogen dioxide purification ability in the same example and comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1 高多孔性担体に触媒を担持させた構造を有す
る排ガス浄化用触媒の製造法であつて、アルミン
酸石灰粉末を主成分とし、これに骨材、成型助剤
および還元助触媒として酸化希土類粉末を添加し
た混合物に水を加えてペースト状にし、ついで成
型、硬化、乾燥を施して得られる高多孔性担体に
触媒としてパラジウムを担持させたのち、熱処理
することを特徴とする排ガス浄化用多孔触媒の製
造法。
1. A method for producing an exhaust gas purifying catalyst having a structure in which a catalyst is supported on a highly porous carrier, the main component being lime aluminate powder, and oxidized rare earth powder as an aggregate, a molding aid, and a reduction promoter. A porous catalyst for exhaust gas purification, characterized in that palladium is supported as a catalyst on a highly porous carrier obtained by adding water to a paste-like mixture, followed by molding, curing, and drying, followed by heat treatment. manufacturing method.
JP60258024A 1985-11-18 1985-11-18 Production of porous catalyst for purifying exhaust gas Granted JPS62117629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60258024A JPS62117629A (en) 1985-11-18 1985-11-18 Production of porous catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60258024A JPS62117629A (en) 1985-11-18 1985-11-18 Production of porous catalyst for purifying exhaust gas

Publications (2)

Publication Number Publication Date
JPS62117629A JPS62117629A (en) 1987-05-29
JPH0350578B2 true JPH0350578B2 (en) 1991-08-02

Family

ID=17314470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60258024A Granted JPS62117629A (en) 1985-11-18 1985-11-18 Production of porous catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS62117629A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652637B2 (en) * 1987-05-26 1997-09-10 旭光学工業株式会社 Endoscope objective lens
JP4245985B2 (en) 2003-05-30 2009-04-02 オリンパス株式会社 Endoscope objective lens

Also Published As

Publication number Publication date
JPS62117629A (en) 1987-05-29

Similar Documents

Publication Publication Date Title
EP1371415B1 (en) Catalyst for hydrogen generation and catalyst for purification of exhaust gas
JP3297432B2 (en) Continuously operating catalyst that oxidizes and purifies diesel engine exhaust gas without emitting particles and without periodic cleaning interruptions
JP2002525198A (en) Method for producing catalyst body
JP2004508189A (en) Catalysts and methods for catalytic reduction of nitrogen oxides
JP5078062B2 (en) Exhaust gas purification catalyst
JP5464669B2 (en) Nitrogen oxide purification catalyst for diesel engine exhaust gas
US4005177A (en) Catalytic treatment of automotive exhaust gas
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH0350578B2 (en)
JPH10235206A (en) Denitration catalyst, preparation thereof and denitration method
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
JP2002361092A (en) Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JP4303799B2 (en) Method for producing lean NOx purification catalyst
JPH10354A (en) Catalyst for purification of exhaust gas and its production
JPS6260937B2 (en)
JP4822374B2 (en) Method for producing exhaust gas purification catalyst
JP5641585B2 (en) Exhaust gas purification catalyst
KR102569570B1 (en) Oxidation catalyst including oxygen storage composition and manufacturing method thereof
JPH04180835A (en) Production of catalyst for purifying exhaust gas
KR0134752B1 (en) Preparation process of purifying catalyst
JPS6312346A (en) Production of catalytic carrier containing aluminium titanate as main component
JPH02280839A (en) Preparation of waste gas cleaning catalyst
JPS6297645A (en) Preparation of catalyst for purifying exhaust gas