JPH0550338B2 - - Google Patents

Info

Publication number
JPH0550338B2
JPH0550338B2 JP60143836A JP14383685A JPH0550338B2 JP H0550338 B2 JPH0550338 B2 JP H0550338B2 JP 60143836 A JP60143836 A JP 60143836A JP 14383685 A JP14383685 A JP 14383685A JP H0550338 B2 JPH0550338 B2 JP H0550338B2
Authority
JP
Japan
Prior art keywords
catalyst
ceramic honeycomb
cordierite ceramic
honeycomb structure
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60143836A
Other languages
Japanese (ja)
Other versions
JPS624441A (en
Inventor
Shunichi Yamada
Toshuki Hamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP60143836A priority Critical patent/JPS624441A/en
Publication of JPS624441A publication Critical patent/JPS624441A/en
Publication of JPH0550338B2 publication Critical patent/JPH0550338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はコージエライト質のセラミツクハニカ
ム構造触媒体の製造法に関する。 更に詳しくは、本発明は触媒担持工程に於いて
γ−アルミナ等によるウオツシユコートを必要と
しない、低膨脹で耐熱衝撃性に優れたコージエラ
イト質セラミツクハニカム構造触媒体の製造法に
関するものである。 なお、ウオツシユコートとは触媒活性に必要な
比表面積を得るために行う担体材質表面への高比
表面積材料のコーテイングのことである。 (従来の技術) コージエライト質のセラミツクハニカム構造体
は低膨脹で耐熱衝撃特性に優れ、しかも耐熱性が
高いため自動車用触媒担体として広く使用されて
いる。 コージエライト質セラミツクハニカム構造体を
触媒担体に使用するには、特公昭56−27295号公
報で開示されているように、通常ハニカム構造を
構成する隔壁の表面をγ−アルミナ等でウオツシ
ユコートし、触媒成分の吸着表面積を5〜50m2
g程度とした後、触媒成分を含有する溶液中に浸
漬し、触媒を担持させる方法がとられている。こ
の時γ−アルミナと、触媒成分を同時に担持させ
ることもある。 γ−アルミナ等でウオツシユコートを必要とす
る理由は一般にコージエライト質等のセラミツク
ハニカム構造体の比表面積が1m2/g以下と極め
て小さく、そのままで触媒担体として使用すると
触媒活性が低く、また高温雰囲気で触媒貴金属の
焼結が速かに起り活性が極めて小さくなるためで
ある。 γ−アルミナ等でウオツシユコートされたコー
ジエライト質ハニカム構造体の欠点として、γ−
アルミナによるコーテイング量に応じて触媒担体
に必要とする比表面積は得られるものの重量が増
加すること、高熱膨脹性のγ−アルミナで表面を
コーテイングするためコージエライト質の低膨脹
性が損われ大巾な耐熱衝撃性劣化が起ること、ま
た高価なγ−アルミナ等を用いしかも浸漬担持、
焼付工程等多くの工数を必要としコストアツプに
なることがあげられる。 一方特開昭49−129704号公報及び米国特許第
3958058号公報に開示されているようにコージエ
ライト質ハニカムをHNO3、HCl及びH2SO4等の
1〜5Nの強酸水溶液に浸漬し、部分的にMgO、
Al2O3成分を溶出させることにより大巾に熱膨脹
が低下し耐熱衝撃特性が向上することが知られて
いる。この場合重量減少に対応して強度が低下す
ること及び1000℃以上で長時間熱処理することに
より酸処理前と同じレベルにまで熱膨脹係数
(CTE)が上昇すること等の欠点を有している。 (発明が解決しようとする問題点) 本発明の目的とするところは下記の点にある。 (1) コージエライト質ハニカム構造触媒体の耐熱
衝撃性の向上 (2) 高価なγ−アルミナ及び工数の多いγ−アル
ミナコーテイング工程を不要とする新しいハニ
カム触媒体製造プロセスを供給すること (3) γ−アルミナコーテイングされた触媒体と同
程度の熱安定性を有するコージエライトハニカ
ム構造触媒体を得る製法を供給すること。 (問題点を解決するための手段) 本発明は以上の問題点を解決するためになされ
たもので、コージエライト質セラミツクハニカム
構造体を酸処理し、次いで600℃〜1000℃で熱処
理した後触媒成分を担持させることを特徴とする
コージエライト質セラミツクハニカム構造触媒体
の製造法にある。 また本発明は、コージエライト質セラミツクハ
ニカム構造体を酸処理し、次いで触媒成分を担持
した後600℃〜1000℃で熱処理することを特徴と
するコージエライト質セラミツクハニカム構造触
媒体の製造法にある。 本発明はコージエライト質セラミツクハニカム
構造体を酸処理し次いで触媒成分を担持させた後
600℃〜1000℃で熱処理してもその目的が達せら
れる。 本発明の製造法で得られたコージエライト質セ
ラミツクハニカム構造触媒体はその比表面積が5
m2/g以上で、ハニカム構造触媒体の流路方向の
圧縮強度が100Kg/cm2以上でかつ40℃〜800℃での
熱膨脹係数が1.0×10-6/℃以下であることを特
徴とする。 本発明の担持触媒は自動車排気ガス浄化用の酸
化触媒又は三元触媒或いは産業用脱臭触媒を使用
するものである。 (作用) 本発明者らはコージエライト質ハニカム構造体
の酸処理により熱膨脹低下がなされる以外に大巾
に比表面積が増加することに注目した。この比表
面積増加はMgO、Al2O3の選択的溶出より残され
る高珪酸質成分に対応するものと考えられる。 触媒担持に必要とする高比表面積を得るための
酸処理条件としては、酸の種類に制限はないが
HCl、H2SO4、HNO3等の鉱酸がコストと効果の
面で好ましい。処理時間と比表面積の関係は正相
関を示し効率の面から1〜5Nの濃度、50〜100℃
程度の温度で処理することが好ましい。1Nの
HNO3、HCl、H2SO4で90℃、3時間の処理で触
媒担体として好ましい20m2/gのレベルに達す
る。 酸処理の方法は循環する高温酸性水溶液に浸漬
するのが一般的であるが効率のよい方法であれば
特に制限はない。 本発明に使用するコージエライト質ハニカムセ
ラミツクスはγ−アルミナコーテイングして用い
られる通常の低膨脹コージエライト質ハニカム構
造体が好ましい。即ち、特開昭53−82822号公報、
特開昭50−75611号公報に開示されているものと
同様な壁厚100μm〜500μm、1インチ平方あた
りのセル数30〜600セルの一体形状のハニカム構
造体で約20〜50%の気孔率、40℃から800℃の
CTE1.5×10-6/℃以下のものである。コージエ
ライト質材質はできる限りコージエライト結晶量
が多く、ガラス成分が少ない即ちコージエライト
結晶量90%以上のものが酸処理により高比表面積
となるので好ましい。 しかしながら熱膨脹係数を特に問題としない産
業用触媒体等の場合、コージエライト−ムライ
ト、コージエライト−アルミナ、コージエライト
−ジルコニア等のコージエライトを基体とした複
合系材質でも本発明を適用できる。 一方一般的にこの酸処理で得られる高比表面積
は、第1図の未熱処理品に示すように600℃以上
の加熱により急減に低下する欠点がある。第1図
は加熱温度と比表面積との関係を示す特性図であ
り、各温度に夫々1時間保持した場合を示す。 この600℃以上の加熱に対する比表面積低下及
び1000℃以上での長時間等温加熱でのCTE上昇
現象を制御するため、本発明者らは種々の熱処理
条件を検討し比表面積の安定化及びCTE安定性
を改良することに成功した。第1図の曲線C,D
は本発明により酸処理したものの比表面積を示
す。 本発明において、熱処理は600℃〜1000℃、更
に好ましくは650℃〜900℃で0.5時間ないし10時
間保持することにより達成される。昇温スケジユ
ールは10℃/時〜200℃/時と特に制限はないが
冷却スケジユールは早い方が好ましく製品に損傷
を与えない程度の急冷処理が望ましい。 熱処理を600℃以上に限定する理由は600℃未満
の熱処理では実使用中の比表面積の低下をまねき
触媒活性低下をきたすからであり、1000℃を越え
る温度では熱処理により比表面積が大巾に低下し
てしまい、比表面積の高温安定性は得られるもの
の触媒活性に問題ができるためである。 冷却スケジユールが早い方が好ましい理由とし
ては現在よく解明されていないが、高珪酸成分相
の部分的な極微細結晶化等が促進されるためと考
えられる。 熱処理に使用する炉は特に制限はなく、電気
炉、ガス炉、大型連続炉等が使用できる。 1000℃以上の温度での等温長時間エージングに
対しては600℃〜1000℃の短時間熱処理により非
晶質の高珪酸相が熱膨脹に有害なクリストバライ
ト以外の準安定結晶相に一部変化するため、若干
の熱膨脹上昇はあるものの上昇率が大巾に改善さ
れる。 さらに熱処理を実施することにより等温長時間
エージングに寸法安定性も改良される。 触媒担持工程は、例えば自動車排ガス用触媒と
してPt、Pd、Rh等の貴金属を担持する場合は、
塩化白金酸水溶液等の貴金属触媒成分、さらに
CeO2等の希土類酸化物を含むスラリーに酸処理、
熱処理を実施したコージエライト質ハニカム構造
体を浸漬し、余剰溶液をエアー等で除去し、乾燥
もしくは600℃以下の温度で焼付ける工程等が使
用できる。 本発明に使用する触媒はPt、Pd、Rh等の貴金
属を基体とした三元触媒、酸化触媒、脱臭触媒、
Mn、Fe、Cu等の卑金属触媒を同様な担持方法で
担持することができる。 また本発明では酸処理後の高比表面積状態のコ
ージエライト質ハニカム表面に触媒成分を担持
し、次いで600℃〜1000℃の熱処理工程を行うこ
とができる。但しこの場合Pt等の貴金属揮散等
担持触媒のロスがでるため比較的低温度900℃以
下の温度で熱処理することが好ましい。 本発明で得られたハニカム触媒の特性について
は、酸処理によりコージエライト質ハニカム構造
体は高比表面積、低膨脹が得られるが欠点として
機械的強度低下を起こすため、酸処理の条件とし
て自動車排ガス浄化用触媒の場合触媒容器にキヤ
ンニングする際に必要な耐圧強度100Kg/cm2(流
路方向)以上を保つため例えば1.5N、90℃、
HNO3処理で8時間以内処理に留めることが望ま
しい。 本発明のコージエライト質セラミツクハニカム
構造触媒体においては、γ−アルミナを担持しな
いため、本発明の製造方法によると極めて低膨脹
の触媒体の製造が可能である。 例えばコージエライト質ハニカム構造体の40℃
から800℃までの熱膨脹係数(CTE)が0.6×
10-6/℃レベルであつても高熱膨脹のγ−アルミ
ナ担持により担持方法を改良しても1.5×10-6
℃以下の低いCTEを得ることは困難であつたが、
本発明では酸処理による低膨脹も寄与し触媒体で
1.0×10-6/℃以下のCTEが可能となつた。 本発明においては、比表面積は担持した触媒の
活性と重大な関係があるため少なくとも5m2/g
以上好ましくは10m2/g以上になるよう酸処理、
熱処理条件を制御する必要がある。 (実施例) 実施例 1 セル壁厚150μm1平方インチあたりのセル数
400、四角形セル形状の直径4.16インチ×長さ4
インチの円筒形のコージエライト質ハニカム構造
体をそれぞれの酸処理条件で処理した時の比表面
積、圧縮強度の測定結果を第2図、第3図に示
す。 圧縮強度は直径1インチ×長さ1インチのサン
プル、比表面積はBET法(N2吸着)で測定し
た。第2図、第3図は処理時間と比表面積と圧縮
強度との関係を示す特性図である。 実施例 2 セル壁厚150μm1平方インチあたりのセル数
400、四角形セル形状の直径4.16インチ×長さ4
インチの円筒形のコージエライト質ハニカム構造
体を90℃、2N、HNO3水溶液に3時間浸漬し酸
処理を実施した後、それぞれ第1表に示す熱処理
条件で熱処理を実施した。 熱処理後の比表面積、40℃から800℃までの熱
膨脹係数(CTE)及び800℃での100時間等温エ
ージング後の比表面積、CTEを測定した。その
結果を第1表に示す。尚酸処理後の比表面積は40
m2/g、CTE0.5×10-6/℃(40℃〜800℃)であ
つた。また、未熱処理と本発明C、Dの加熱時の
比表面積の変化を第1図に示す。
(Industrial Application Field) The present invention relates to a method for producing a cordierite ceramic honeycomb structured catalyst body. More specifically, the present invention relates to a method for producing a cordierite ceramic honeycomb structured catalyst body that does not require wash coating with γ-alumina or the like in the catalyst supporting step and has low expansion and excellent thermal shock resistance. Note that wash coating refers to coating the surface of a carrier material with a high specific surface area material in order to obtain the specific surface area necessary for catalytic activity. (Prior Art) Cordierite ceramic honeycomb structures have low expansion, excellent thermal shock resistance, and high heat resistance, so they are widely used as catalyst carriers for automobiles. In order to use a cordierite ceramic honeycomb structure as a catalyst carrier, as disclosed in Japanese Patent Publication No. 56-27295, the surfaces of the partition walls constituting the honeycomb structure are usually wash-coated with γ-alumina or the like. The adsorption surface area of catalyst components should be 5 to 50 m 2 /
A method is used in which the catalyst is supported on the catalyst by immersing it in a solution containing a catalyst component. At this time, γ-alumina and catalyst components may be supported simultaneously. The reason why a wash coat is required with γ-alumina etc. is that the specific surface area of ceramic honeycomb structures such as cordierite is generally extremely small, 1 m 2 /g or less, and if used as a catalyst carrier as is, the catalytic activity is low, and the high temperature This is because sintering of the catalyst noble metal occurs quickly in the atmosphere, resulting in extremely low activity. One of the drawbacks of cordierite honeycomb structures that are wash-coated with γ-alumina etc. is that γ-
Depending on the amount of coating with alumina, the specific surface area required for the catalyst carrier can be obtained, but the weight increases, and since the surface is coated with γ-alumina, which has high thermal expansion, the low expansion properties of cordierite are impaired, resulting in a large width. Deterioration of thermal shock resistance occurs, and expensive γ-alumina etc. are used and immersion supported.
It requires a lot of man-hours such as the baking process, which increases the cost. On the other hand, JP-A-49-129704 and U.S. Patent No.
As disclosed in Publication No. 3958058, a cordierite honeycomb is immersed in a 1 to 5N strong acid aqueous solution such as HNO 3 , HCl, and H 2 SO 4 to partially dissolve MgO,
It is known that elution of the Al 2 O 3 component significantly reduces thermal expansion and improves thermal shock resistance. In this case, there are disadvantages such as a decrease in strength corresponding to a decrease in weight, and a rise in coefficient of thermal expansion (CTE) to the same level as before acid treatment due to long-term heat treatment at 1000°C or higher. (Problems to be Solved by the Invention) The objects of the present invention are as follows. (1) Improving the thermal shock resistance of cordierite honeycomb structure catalysts (2) Providing a new honeycomb catalyst manufacturing process that eliminates the need for expensive γ-alumina and the labor-intensive γ-alumina coating process (3) γ - To provide a process for obtaining a cordierite honeycomb structured catalyst body having a thermal stability comparable to that of an alumina-coated catalyst body. (Means for Solving the Problems) The present invention has been made to solve the above problems, and consists of acid-treating a cordierite ceramic honeycomb structure, then heat-treating it at 600°C to 1000°C, and then removing the catalyst components. A method for producing a cordierite ceramic honeycomb structured catalyst body characterized in that it supports a cordierite ceramic honeycomb structured catalyst body. The present invention also provides a method for producing a cordierite ceramic honeycomb structure catalyst body, which is characterized in that the cordierite ceramic honeycomb structure is treated with an acid, and then a catalyst component is supported and then heat treated at 600°C to 1000°C. In the present invention, a cordierite ceramic honeycomb structure is treated with an acid, and then a catalyst component is supported.
The purpose can also be achieved by heat treatment at 600°C to 1000°C. The cordierite ceramic honeycomb structure catalyst obtained by the production method of the present invention has a specific surface area of 5.
m 2 /g or more, the compressive strength of the honeycomb structure catalyst in the flow path direction is 100 Kg/cm 2 or more, and the thermal expansion coefficient at 40°C to 800°C is 1.0 × 10 -6 /°C or less. do. The supported catalyst of the present invention uses an oxidation catalyst, a three-way catalyst, or an industrial deodorizing catalyst for purifying automobile exhaust gas. (Function) The present inventors have noticed that the acid treatment of a cordierite honeycomb structure not only reduces thermal expansion but also significantly increases the specific surface area. This increase in specific surface area is considered to correspond to the high silicic acid components left behind by the selective elution of MgO and Al 2 O 3 . There are no restrictions on the type of acid used as acid treatment conditions to obtain the high specific surface area required for catalyst support.
Mineral acids such as HCl, H 2 SO 4 and HNO 3 are preferred in terms of cost and effectiveness. The relationship between treatment time and specific surface area is positive, and from the viewpoint of efficiency, a concentration of 1 to 5N and a temperature of 50 to 100℃
It is preferable to process at a temperature of about 100 ml. 1N
Treatment with HNO 3 , HCl, H 2 SO 4 at 90° C. for 3 hours reaches a level of 20 m 2 /g, which is preferred as a catalyst support. The acid treatment method generally involves immersion in a circulating high-temperature acidic aqueous solution, but there are no particular limitations as long as the method is efficient. The cordierite honeycomb ceramic used in the present invention is preferably a conventional low expansion cordierite honeycomb structure coated with γ-alumina. That is, Japanese Patent Application Laid-open No. 53-82822,
A monolithic honeycomb structure with a wall thickness of 100 μm to 500 μm and a cell count of 30 to 600 cells per square inch, similar to that disclosed in JP-A-50-75611, with a porosity of approximately 20 to 50%. , 40℃ to 800℃
The CTE is 1.5×10 -6 /°C or less. It is preferable that the cordierite material has as large an amount of cordierite crystals as possible and has a small glass component, that is, a cordierite crystal amount of 90% or more, because it will have a high specific surface area when treated with an acid. However, in the case of industrial catalysts for which the coefficient of thermal expansion is not a particular problem, the present invention can also be applied to composite materials based on cordierite such as cordierite-mullite, cordierite-alumina, and cordierite-zirconia. On the other hand, the high specific surface area generally obtained by this acid treatment has the disadvantage that it rapidly decreases when heated above 600° C., as shown in the unheated product in FIG. FIG. 1 is a characteristic diagram showing the relationship between heating temperature and specific surface area, and shows the case where each temperature was maintained for 1 hour. In order to control the decrease in specific surface area due to heating above 600℃ and the increase in CTE due to long-term isothermal heating above 1000℃, the present inventors investigated various heat treatment conditions and stabilized the specific surface area and stabilized CTE. succeeded in improving the sex. Curves C and D in Figure 1
represents the specific surface area of the material treated with acid according to the present invention. In the present invention, heat treatment is achieved by holding at 600°C to 1000°C, more preferably 650°C to 900°C, for 0.5 to 10 hours. The temperature increase schedule is not particularly limited, and is 10° C./hour to 200° C./hour, but the faster the cooling schedule, the more preferable it is, and the rapid cooling treatment is desirable to the extent that it does not damage the product. The reason why heat treatment is limited to 600℃ or higher is because heat treatment below 600℃ leads to a decrease in specific surface area during actual use, resulting in a decrease in catalytic activity, whereas heat treatment at temperatures above 1000℃ causes a significant decrease in specific surface area. This is because, although high-temperature stability of the specific surface area can be obtained, problems arise in the catalytic activity. The reason why a faster cooling schedule is preferable is not well understood at present, but it is thought to be because local ultrafine crystallization of the high silicic acid component phase is promoted. The furnace used for heat treatment is not particularly limited, and electric furnaces, gas furnaces, large continuous furnaces, etc. can be used. For long-term isothermal aging at temperatures above 1000°C, short-term heat treatment at 600°C to 1000°C partially transforms the amorphous high silicic acid phase into a metastable crystalline phase other than cristobalite, which is harmful to thermal expansion. Although there is a slight increase in thermal expansion, the rate of increase is greatly improved. Furthermore, by carrying out heat treatment, dimensional stability during isothermal long-term aging is also improved. For example, when supporting noble metals such as Pt, Pd, and Rh as a catalyst for automobile exhaust gas, the catalyst supporting process is
Precious metal catalyst components such as chloroplatinic acid aqueous solution, and
Acid treatment of slurry containing rare earth oxides such as CeO2 ,
A process can be used in which the heat-treated cordierite honeycomb structure is immersed, excess solution is removed with air, etc., and then dried or baked at a temperature of 600° C. or less. Catalysts used in the present invention include three-way catalysts based on noble metals such as Pt, Pd, and Rh, oxidation catalysts, deodorizing catalysts,
Base metal catalysts such as Mn, Fe, Cu, etc. can be supported using a similar supporting method. Further, in the present invention, a catalyst component can be supported on the surface of the cordierite honeycomb in a high specific surface area state after acid treatment, and then a heat treatment step at 600°C to 1000°C can be performed. However, in this case, it is preferable to carry out the heat treatment at a relatively low temperature of 900° C. or lower since there is a loss of the supported catalyst such as volatilization of precious metals such as Pt. Regarding the characteristics of the honeycomb catalyst obtained in the present invention, acid treatment provides a cordierite honeycomb structure with a high specific surface area and low expansion, but the drawback is a decrease in mechanical strength. In the case of commercial catalysts, in order to maintain the pressure resistance of 100 kg/cm 2 (flow path direction) or more required when canning the catalyst container, for example, 1.5N, 90℃,
It is desirable to limit the HNO 3 treatment to 8 hours or less. Since the cordierite ceramic honeycomb structured catalyst body of the present invention does not support γ-alumina, it is possible to produce a catalyst body with extremely low expansion according to the manufacturing method of the present invention. For example, 40℃ for cordierite honeycomb structure
Coefficient of thermal expansion (CTE) from to 800℃ is 0.6×
Even if the supporting method is improved by supporting high thermal expansion γ-alumina even at the 10 -6 /℃ level, the temperature is 1.5×10 -6 /℃.
Although it has been difficult to obtain a CTE as low as below ℃,
In the present invention, low expansion due to acid treatment also contributes to the catalyst body.
CTE of 1.0×10 -6 /℃ or less is now possible. In the present invention, the specific surface area is at least 5 m 2 /g because it has a significant relationship with the activity of the supported catalyst.
Acid treatment to preferably 10 m 2 /g or more,
It is necessary to control the heat treatment conditions. (Example) Example 1 Number of cells per square inch with cell wall thickness of 150 μm
400, square cell shape diameter 4.16 inches x length 4
FIGS. 2 and 3 show the measurement results of the specific surface area and compressive strength of inch cylindrical cordierite honeycomb structures treated under the respective acid treatment conditions. The compressive strength was measured using a sample of 1 inch in diameter x 1 inch in length, and the specific surface area was measured by the BET method (N 2 adsorption). FIGS. 2 and 3 are characteristic diagrams showing the relationship between processing time, specific surface area, and compressive strength. Example 2 Number of cells per square inch with cell wall thickness of 150 μm
400, square cell shape diameter 4.16 inches x length 4
An inch cylindrical cordierite honeycomb structure was acid-treated by immersing it in a 2N, HNO 3 aqueous solution at 90° C. for 3 hours, and then heat-treated under the heat treatment conditions shown in Table 1. The specific surface area after heat treatment, the coefficient of thermal expansion (CTE) from 40°C to 800°C, and the specific surface area and CTE after isothermal aging at 800°C for 100 hours were measured. The results are shown in Table 1. The specific surface area after acid treatment is 40
m 2 /g, CTE 0.5×10 −6 /°C (40°C to 800°C). Further, FIG. 1 shows the change in specific surface area during heating for the samples C and D according to the present invention and those for non-heat treatment.

【表】 実施例 3 実施例2の熱処理品A〜HについてPd触媒を
それぞれハニカム構造体容積に対して2g/に
なるように担持し第2表に示す条件でC3H8ガス
の転化率及び電気炉取出しによる耐熱衝撃性を測
定した。測定結果も第2表に示す。 一方及びJは実施例2の未熱処理品に同じPd
触媒を担持し、それぞれB及びCと同じ熱処理条
件を施したサンプルである。
[Table] Example 3 For the heat-treated products A to H of Example 2, Pd catalyst was supported at a rate of 2 g per honeycomb structure volume, and the conversion rate of C 3 H 8 gas was determined under the conditions shown in Table 2. And the thermal shock resistance was measured by taking it out in an electric furnace. The measurement results are also shown in Table 2. On the other hand, J is the same Pd as the unheated product of Example 2.
These samples supported a catalyst and were subjected to the same heat treatment conditions as B and C, respectively.

【表】 1 発明の効果) (1) 比表面積の増加により触媒担体の担持工程で
あるウオツシユコート(γ−アルミナ担持)工
程が不要となり、作業工程の大巾な短縮が図れ
る。 (2) 熱膨脹係数の大巾な低下、γアルミナコーテ
イングを不要とするため触媒体が軽量化し耐熱
衝撃性の大巾な向上が得られる。 (3) 酸処理コージエライトの欠点であつた熱安定
性が改善される。
[Table] 1. Effects of the invention) (1) Due to the increase in specific surface area, the wash coating (γ-alumina support) process, which is a catalyst carrier support process, becomes unnecessary, and the work process can be significantly shortened. (2) The coefficient of thermal expansion is greatly reduced, and since gamma alumina coating is not required, the weight of the catalyst body is reduced, and thermal shock resistance is greatly improved. (3) Thermal stability, which was a drawback of acid-treated cordierite, is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比表面積の熱安定性を示す図、第2図
は酸処理時間と比表面積との関係を示す図、第3
図は酸処理時間と圧縮強度との関係を示す図であ
る。
Figure 1 shows the thermal stability of specific surface area, Figure 2 shows the relationship between acid treatment time and specific surface area, and Figure 3 shows the relationship between acid treatment time and specific surface area.
The figure is a diagram showing the relationship between acid treatment time and compressive strength.

Claims (1)

【特許請求の範囲】 1 コージエライト質セラミツクハニカム構造体
を酸処理し、次いで600℃〜1000℃で熱処理した
後触媒成分を担持させることを特徴とするコージ
エライト質セラミツクハニカム構造触媒体の製造
法。 2 上記コージエライト質セラミツクハニカム構
造触媒体の比表面積が5m2/g以上で該ハニカム
構造触媒体の流路方向の圧縮強度が100Kg/cm2
上でかつ40℃〜800℃での熱膨脹係数が1.0×
10-6/℃以下である特許請求の範囲第1項記載の
コージエライト質セラミツクハニカム構造触媒体
の製造法。 3 担持触媒が自動車排気ガス浄化用の酸化触媒
又は三元触媒或いは産業用脱臭触媒である特許請
求の範囲第1項または第2項記載のコージエライ
ト質セラミツクハニカム構造触媒体の製造法。 4 コージエライト質セラミツクハニカム構造体
を酸処理し、次いで触媒成分を担持した後600℃
〜1000℃で熱処理することを特徴とするコージエ
ライト質セラミツクハニカム構造触媒体の製造
法。 5 上記コージエライト質セラミツクハニカム構
造触媒体の比表面積が5m2/g以上で該ハニカム
構造触媒体の流路方向の圧縮強度が100Kg/cm2
上でかつ40℃〜800℃での熱膨脹係数が1.0×
10-6/℃以下である特許請求の範囲第4項記載の
コージエライト質セラミツクハニカム構造触媒体
の製造法。 6 担持触媒が自動車排気ガス浄化用の酸化触媒
又は三元触媒或いは産業用脱臭触媒である特許請
求の範囲第3項または第4項記載のコージエライ
ト質セラミツクハニカム構造触媒体の製造法。
[Scope of Claims] 1. A method for producing a cordierite ceramic honeycomb structured catalyst body, which comprises treating the cordierite ceramic honeycomb structure with an acid, followed by heat treatment at 600°C to 1000°C, and then supporting a catalyst component. 2. The cordierite ceramic honeycomb structure catalyst has a specific surface area of 5 m 2 /g or more, a compressive strength in the flow path direction of the honeycomb structure catalyst of 100 Kg/cm 2 or more, and a thermal expansion coefficient of 1.0 at 40°C to 800°C. ×
10 -6 /°C or less, the method for producing a cordierite ceramic honeycomb structure catalyst according to claim 1. 3. The method for producing a cordierite ceramic honeycomb structured catalyst body according to claim 1 or 2, wherein the supported catalyst is an oxidation catalyst, a three-way catalyst, or an industrial deodorizing catalyst for purifying automobile exhaust gas. 4 The cordierite ceramic honeycomb structure was treated with acid, and then the catalyst component was supported at 600°C.
A method for producing a cordierite ceramic honeycomb structured catalyst body characterized by heat treatment at ~1000°C. 5 The cordierite ceramic honeycomb structure catalyst has a specific surface area of 5 m 2 /g or more, a compressive strength in the flow path direction of the honeycomb structure catalyst of 100 Kg/cm 2 or more, and a thermal expansion coefficient of 1.0 at 40°C to 800°C. ×
10 -6 /°C or less, the method for producing a cordierite ceramic honeycomb structured catalyst body according to claim 4. 6. The method for producing a cordierite ceramic honeycomb structured catalyst body according to claim 3 or 4, wherein the supported catalyst is an oxidation catalyst, a three-way catalyst, or an industrial deodorizing catalyst for purifying automobile exhaust gas.
JP60143836A 1985-07-02 1985-07-02 Production of cordierite ceramic honeycomb catalytic body Granted JPS624441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60143836A JPS624441A (en) 1985-07-02 1985-07-02 Production of cordierite ceramic honeycomb catalytic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60143836A JPS624441A (en) 1985-07-02 1985-07-02 Production of cordierite ceramic honeycomb catalytic body

Publications (2)

Publication Number Publication Date
JPS624441A JPS624441A (en) 1987-01-10
JPH0550338B2 true JPH0550338B2 (en) 1993-07-28

Family

ID=15348074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60143836A Granted JPS624441A (en) 1985-07-02 1985-07-02 Production of cordierite ceramic honeycomb catalytic body

Country Status (1)

Country Link
JP (1) JPS624441A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858563B2 (en) 2001-10-26 2005-02-22 Denso Corporation Catalyst for automobiles
US7223716B1 (en) 1999-04-09 2007-05-29 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4323938C2 (en) * 1992-07-23 1996-10-10 Aisin Seiki Rear view mirror device for a vehicle
US5537263A (en) * 1992-07-30 1996-07-16 Aisin Seiki Kabushiki Kaisha Under view mirror apparatus for a vehicle
JPH0672245A (en) * 1992-08-31 1994-03-15 Aisin Seiki Co Ltd Under mirror device for vehicle
JPH0672246A (en) * 1992-08-31 1994-03-15 Aisin Seiki Co Ltd Drive control device for under mirror device for vehicle
JPH09262484A (en) * 1996-03-29 1997-10-07 Ngk Insulators Ltd Ceramic honeycomb catalyst having high thermal shock resistance
JP4046925B2 (en) * 1999-04-09 2008-02-13 株式会社日本自動車部品総合研究所 Ceramic body, ceramic carrier having catalyst supporting ability, ceramic catalyst body and method for producing the same
US7067452B2 (en) * 2000-09-29 2006-06-27 Denso Corporation Ceramic catalyst body
JP4030320B2 (en) 2001-03-22 2008-01-09 株式会社デンソー Ceramic body and ceramic catalyst body
JP3997825B2 (en) * 2001-06-28 2007-10-24 株式会社デンソー Ceramic filter and ceramic filter with catalyst
JP4246075B2 (en) 2003-03-07 2009-04-02 株式会社デンソー Method for producing ceramic catalyst body
JP2007277037A (en) 2006-04-05 2007-10-25 National Institute Of Advanced Industrial & Technology Ceramic body, ceramic catalyst body and their manufacturing methods
WO2008129670A1 (en) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. Catalyst-carrying honeycomb and process for producing the same
WO2009108357A1 (en) * 2008-02-29 2009-09-03 Corning Incorporated Stabilized low-microcracked ceramic honeycombs and methods thereof
US20130095013A1 (en) 2010-06-24 2013-04-18 N.E. Chemcat Corporation Exhaust gas purification catalyst apparatus using selective reduction catalyst, exhaust gas purification method, and diesel automobile mounted with exhaust gas purification catalyst apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223716B1 (en) 1999-04-09 2007-05-29 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
US7723263B2 (en) 1999-04-09 2010-05-25 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
US6858563B2 (en) 2001-10-26 2005-02-22 Denso Corporation Catalyst for automobiles

Also Published As

Publication number Publication date
JPS624441A (en) 1987-01-10

Similar Documents

Publication Publication Date Title
JPH0550338B2 (en)
US3785998A (en) Method of catalyst manufacture by impregnating honeycomb-type support
JP2848970B2 (en) Honeycomb heater and catalytic converter
EP0790216A2 (en) Sol-gel process for obtaining pure and mixed oxide zirconia washcoats, useful as catalysts or catalyst supports
JPH0760117A (en) Exhaust gas purifying catalyst
JP2003080080A (en) Ceramic filter and ceramic filter with catalyst
JPH02135126A (en) Cleaning device for automobile exhaust gas
EP1013334A1 (en) Catalytic converter for purifying combustion engine exhaust gases and process for its preparation
JPH0368451A (en) Production of catalyst for purification of exhaust gas
EP1243329A1 (en) Ceramic body and ceramic catalyst body
KR20050065607A (en) Silicon carbide-based catalytic material and process for producing the same
JP4730947B2 (en) Method for regenerating exhaust gas purification catalyst
CN111203269A (en) Multi-metal-CHA type molecular sieve catalyst and preparation method and application thereof
JP2020062627A (en) Ammonia cleaning catalyst
JP4540785B2 (en) Exhaust gas purification catalyst molding
JPH09103687A (en) Manufacture of catalyst
JPH0244580B2 (en)
RU2275962C1 (en) Method of preparing catalyst for treating internal combustion engine exhaust gases and catalyst prepared by this method
JPH08299809A (en) Production of honeycomb catalyst
US20240238725A1 (en) Catalyst composition
JPH0650136A (en) Multistage honeycomb heater
JPS61291040A (en) Catalyst for purifying exhaust gas
JPS61271033A (en) Catalyst carrier for purifying exhaust gas
JPH01304048A (en) Catalyst for purifying exhaust gas
JP3300029B2 (en) Method for producing exhaust gas purifying catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term