JPS62171749A - Production of carrier of catalyst for purifying exhaust gas - Google Patents

Production of carrier of catalyst for purifying exhaust gas

Info

Publication number
JPS62171749A
JPS62171749A JP61011307A JP1130786A JPS62171749A JP S62171749 A JPS62171749 A JP S62171749A JP 61011307 A JP61011307 A JP 61011307A JP 1130786 A JP1130786 A JP 1130786A JP S62171749 A JPS62171749 A JP S62171749A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
weight
carrier
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61011307A
Other languages
Japanese (ja)
Inventor
Yasuhiro Takeuchi
康弘 竹内
Atsushi Nishino
敦 西野
Yukiyoshi Ono
之良 小野
Hironao Numamoto
浩直 沼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61011307A priority Critical patent/JPS62171749A/en
Publication of JPS62171749A publication Critical patent/JPS62171749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled carrier having excellent resistance to thermal shock and high surface area by using a material obtained by burning a mixture of alumina sol, an alkali titanate, molten silica, and a rare earth element substance as the carrier of a catalyst for purifying exhaust gas. CONSTITUTION:A mixture consisting of alumina sol such as a colloidal soln. of alumina hydrate in water, the titanates of lithium, sodium, etc., molten silica, and rare earth elements such as Ce, La, etc., is calcined at 1,000-1,300 deg.C to form a carrier of the catalyst for purifying exhaust gas from automobiles and industrial and public-welfare waste combustion gases. Consequently, a catalyst having large surface area, high catalytic activity, a low thermal expansion coefficient, and excellent resistance to thermal shock can be obtained at a low cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、自動車排ガスあるいは産業用、民生用の各種
燃焼排ガスの浄化用触媒に用いる触媒担体の製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a catalyst carrier for use in a catalyst for purifying automobile exhaust gas or various combustion exhaust gases for industrial and consumer use.

従来の技術 従来の排ガス浄化用触媒は、耐火性セラミック例えば、
コーディエライト、アルミナ、ムライト、スポデニメン
のハニカム状基材に、ウォッシュコートと呼ばれるT−
人9205等の被覆層を施し、比表面積を通常10〜3
0 rtt’ / gに増大させ、これに触媒活物質、
例えば、白金、ロジウム、パラジウム、ルテニウム等を
担持して調製されていも発明が解決しようとする問題点 しかし、上記方法りより調製された触媒は、比表面積を
増大させるために施した被覆層のアルミナカ高温雰囲気
(800′C〜1000′G)下で、α−人1203に
結晶変態し、極度に比表面積が減少する欠点があった。
Conventional technology Conventional exhaust gas purification catalysts are made of refractory ceramics such as
A T-washcoat is applied to the honeycomb base material of cordierite, alumina, mullite, and spodenimene.
A coating layer such as 9205 is applied, and the specific surface area is usually 10 to 3.
0 rtt'/g, to which a catalytic active material,
For example, even if the catalyst is prepared by supporting platinum, rhodium, palladium, ruthenium, etc., the problems that the invention attempts to solve. Alumina has the disadvantage that under high temperature atmosphere (800'C to 1000'G), the crystals transform to α-1203 and the specific surface area is extremely reduced.

またこれにより担持された触媒活物質も内部に埋没し、
触媒能は失活することになる。この問題点を解決するた
め、アルミナ被覆層中にセリア(CeO2)  を混合
する提案(特開昭63−85791号公報)がある。こ
れによって、先に述べた問題点は若干改善されたが、ウ
ォッシュコート層の基材からの剥離や、基材の結晶構造
の破壊など、基材の持つ耐熱性、耐熱衝撃性等の優れた
物性を失効させていた。さらには、触媒の製造工程の面
では、基材としてのセラミックを作る熱処理工程と、ウ
オッ7.r−トを施し、熱処理する工程と触媒を担持し
て熱処理活性化する工程と大変複雑であった。
In addition, the supported catalyst active material is also buried inside,
The catalytic ability will be deactivated. In order to solve this problem, there is a proposal (Japanese Unexamined Patent Publication No. 85791/1983) to mix ceria (CeO2) into the alumina coating layer. Although the above-mentioned problems were slightly improved by this, there were also problems such as peeling of the washcoat layer from the base material and destruction of the crystal structure of the base material. The physical properties had expired. Furthermore, in terms of the catalyst manufacturing process, there is a heat treatment process to create ceramic as a base material, and a 7. It was very complicated, including the steps of applying r-t and heat treatment, and supporting the catalyst and activating it by heat treatment.

本発明は、以上のような不都合を解消しようとするもの
で、ウォッシュコート無しでも充分比表面積が大きく、
高温安定性に優れ、さらには、耐熱衝撃性、機械的強度
に優れた低コストの排ガス浄化用触媒の担体を提供する
ものである。
The present invention aims to solve the above-mentioned disadvantages, and has a sufficiently large specific surface area without a wash coat.
The present invention provides a low-cost carrier for an exhaust gas purifying catalyst that has excellent high-temperature stability, thermal shock resistance, and mechanical strength.

問題点を解決するだめの手段 本発明の排ガス浄化用触媒担体は、少なくともアルミナ
ゾルとチタン酸アルカリ塩と溶融シリカおよび希土類物
質からなる混合物を収焼することによって得るものであ
る。
Means for Solving the Problems The catalyst carrier for exhaust gas purification of the present invention is obtained by burning a mixture consisting of at least alumina sol, an alkali titanate, fused silica, and a rare earth substance.

作用 本発明の方法により耐熱衝撃性に優れ、高比表面積の触
媒担体が得られる。
Function: By the method of the present invention, a catalyst carrier having excellent thermal shock resistance and a high specific surface area can be obtained.

本発明に用いるアルミナゾルとは、水を分散媒としたア
ルミナ水和物(ベーマイト系)のコロイド液であり、一
般には安定剤としてCl −、CH,GO07NOi等
が用いられている。粒子形については、羽毛状、粒状ま
たは棒状で、無定形あるいは凝ベーマイトの結晶形から
なるものを意味する。アルミナゾルは、粒子径が小で、
比表面積が犬であり、出発原料としてアルミナゾルを用
いることより得られたセラミック担体も高比表面積を有
する。しかしながら、高温安定性が悪かったり、機械的
強度を極度に減少させたり、熱膨張係数を増大させたり
で、触媒担体として好ましくない相反した性質をも有し
ている。以下に述べる3成分は、理由は定かではないが
、この矛盾を解決するに必要な成分である。
The alumina sol used in the present invention is a colloidal liquid of alumina hydrate (boehmite type) using water as a dispersion medium, and Cl -, CH, GO07NOi, etc. are generally used as stabilizers. The particle shape means feather-like, granular or rod-like, amorphous or crystalline form of precipitated boehmite. Alumina sol has a small particle size,
The ceramic carrier obtained by using alumina sol as a starting material also has a high specific surface area. However, it also has contradictory properties that are undesirable as catalyst carriers, such as poor high-temperature stability, extremely reduced mechanical strength, and increased thermal expansion coefficient. The three components described below are necessary to resolve this contradiction, although the reason is not clear.

チタン酸アルカリは、一般式M20−nTio□(式中
Mは、リチウム、ナトリウム、カリウム、ルビジウム、
センラム、バリウム、ストロンチウム、カルシウムから
選ばれるアルカリ金属原子を表わし、nは1以上の整数
である。)で示される物質である。
Alkali titanate has the general formula M20-nTio□ (where M is lithium, sodium, potassium, rubidium,
It represents an alkali metal atom selected from senlum, barium, strontium, and calcium, and n is an integer of 1 or more. ).

溶融シリカは、熱膨張係数が0.5 Xl 0−6/d
eg(常温〜1000’C)と物質中もっとも小さく、
熱膨張を低減させる材料としては一般的に知られている
。しかしながら溶融シリカはガラス形成酸化物でもあり
、他の物質との共存下で1oOo℃以上の温度で熱処理
されるとガラス化したり、クリストバライト、トリシマ
ナイト等の結晶を生成させたりして、触媒担体としては
、好ましくない材料と考えられていた。
Fused silica has a thermal expansion coefficient of 0.5 Xl 0-6/d
eg (room temperature to 1000'C), the smallest of all substances,
It is generally known as a material that reduces thermal expansion. However, fused silica is also a glass-forming oxide, and when heat treated at temperatures above 100°C in the coexistence of other substances, it becomes vitrified and forms crystals such as cristobalite and trichimanite, which can be used as a catalyst support. was considered an undesirable material.

希土類物質とは、通常、自動車用触媒にも用いられてい
るが、Oe、 La、 Pr、 Nd、 Sm等の希土
類元素の酸化物、例えば、CeO7,La2O3等およ
びこれらの塩、例えば塩化物、硝酸塩、酢酸塩、水酸化
物、硫酸塩等を意味する希土類元素の塩は、似焼させる
ことにより各々安定な酸化物を形成する。希土類元素の
酸化物は、アルミナとともに添加されることによりアル
ミナの比表面積減少を抑制するとともに、下記例で示さ
れる反応によって触媒性能を向上させると考えられる。
Rare earth substances are usually used in automobile catalysts, and include oxides of rare earth elements such as Oe, La, Pr, Nd, and Sm, such as CeO7, La2O3, etc., and salts thereof, such as chlorides, Salts of rare earth elements, such as nitrates, acetates, hydroxides, and sulfates, form stable oxides when subjected to simulated firing. It is thought that the rare earth element oxide, when added together with alumina, suppresses the decrease in the specific surface area of alumina and improves the catalytic performance through the reaction shown in the example below.

2C602+11ム120s= 20eh105+11
202このように触媒として観ると興味深い物質である
が、セラミック触媒担体となる原料に添加することは、
厳めて難しい。例えば、これら希土類物質は、アルカリ
成分であり、シリカ等と網目構造組成物(ガラス化)を
形成しやすく、比表面積の大きいもの、耐熱衝撃性に優
れたものは得難いと言うのが一般的な見解である。
2C602+11mu120s=20eh105+11
202 Although it is an interesting substance when viewed as a catalyst, adding it to the raw material that becomes the ceramic catalyst carrier is
Strict and difficult. For example, it is generally said that these rare earth materials are alkaline components and easily form network structure compositions (vitrification) with silica etc., making it difficult to obtain materials with large specific surface areas and excellent thermal shock resistance. This is my opinion.

本発明によれば、上記少なくとも4成分からなる組成物
を■焼することにより、理由は明らかでないが耐熱衝撃
性に優れ、比表面積も大きな触媒担体を得ることができ
た。
According to the present invention, by firing the composition consisting of at least the four components described above, it was possible to obtain a catalyst carrier having excellent thermal shock resistance and a large specific surface area, although the reason is not clear.

上記の必須成分の他、成形助剤、たとえば、カルボキシ
メチルセルロース、メチルセルロースまたは可塑剤、例
えばグリセリン、ワセリン等を添加することもできる。
In addition to the above-mentioned essential components, shaping aids such as carboxymethylcellulose, methylcellulose or plasticizers such as glycerin, petrolatum, etc. can also be added.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

実施例1 アルミナを20重量%含有するアルミナゾル50重量部
、チタン酸カリウム(K2O・6Ti02)5重量部、
溶融シリカ80重量部、硝酸セリウム(Go(NO3)
26120 ) 5重量部、さらに成形助剤としてメチ
ルセルロース4.0重量部および可塑剤としてグリセリ
ン2.0重量部を混合し、スクリューニーダを用いて1
5分間混練後、スクリュー形押し出し成形機に供給し、
直径100mm、長さ1oOIIII11の円柱状で、
壁厚0.3mm、−辺1.0 mmの正方形セルを有す
るハニカム状に形成した。この成形体を1oo′C/時
間の昇温速度で1000℃まで昇温し、1000℃で1
時間■焼した。このようにして得られたハニカム状セラ
ミックスを触媒担体とし、白金およびロジウムを触媒担
体11当り各々1.Ofおよび200mグ担持して触媒
を調製した。なお白金は塩化白金酸を、ロジウムは硝酸
ロジウムを使用し、両者混合溶液を含浸、乾燥後、窒素
を含む水素雰囲気下600’Cで熱処理して排ガス浄化
用触媒としだ。
Example 1 50 parts by weight of alumina sol containing 20% by weight of alumina, 5 parts by weight of potassium titanate (K2O.6Ti02),
80 parts by weight of fused silica, cerium nitrate (Go(NO3)
26120), further mixed with 4.0 parts by weight of methylcellulose as a molding aid and 2.0 parts by weight of glycerin as a plasticizer, and mixed with 1.5 parts by weight using a screw kneader.
After kneading for 5 minutes, feed it to a screw extruder,
It is cylindrical with a diameter of 100mm and a length of 1oOIII11.
It was formed into a honeycomb shape having square cells with a wall thickness of 0.3 mm and a negative side of 1.0 mm. This molded body was heated to 1000°C at a heating rate of 1oo'C/hour, and at 1000°C
Time ■ Baked. The honeycomb-shaped ceramic thus obtained was used as a catalyst carrier, and platinum and rhodium were each added in an amount of 1.0% per 11 catalyst carriers. A catalyst was prepared by supporting Of and 200 mg. Note that chloroplatinic acid was used for the platinum, and rhodium nitrate was used for the rhodium. A mixed solution of both was impregnated, dried, and then heat-treated at 600'C in a hydrogen atmosphere containing nitrogen to produce an exhaust gas purification catalyst.

また、比較のため硝酸セリウムの無添加品(比較例1)
、アルミナゾル無添加品(比較例2)、チタン酸カリウ
ム無添加品(比較例3)により、実施例と同様に排ガス
浄化触媒を調製し比較した。
Also, for comparison, a product without cerium nitrate additive (Comparative Example 1)
Exhaust gas purification catalysts were prepared and compared in the same manner as in the example using a product without the addition of alumina sol (Comparative Example 2) and a product without the addition of potassium titanate (Comparative Example 3).

なお、硝酸セリウム等を除いたものはその分だけ溶融シ
リカの量を増やした。
Note that when cerium nitrate and the like were removed, the amount of fused silica was increased accordingly.

上記4種の排ガス浄化用触媒について、下記の2つの評
価方法により評価した。
The above four types of exhaust gas purification catalysts were evaluated using the following two evaluation methods.

(1)上記排ガス浄化用触媒を用いて、触媒温度2oo
℃、空間速度40,0OOhr−’、co入口濃度5o
op (空気中)の条件下で、初期のCO浄化率と触媒
を電気炉中1000℃で100時間熱処理後のCO浄化
率を測定した。
(1) Using the above exhaust gas purification catalyst, the catalyst temperature is 2oo
°C, space velocity 40.0OOhr-', co inlet concentration 5o
The initial CO purification rate and the CO purification rate after heat treatment of the catalyst at 1000° C. for 100 hours in an electric furnace were measured under OP (in air) conditions.

(2)  2800 ccエンジン搭載自動車の排出ガ
ス経路に上記各排ガス浄化用触媒を設置し、空燃比を1
4.0〜15.6の範囲内で0.1の幅で変化させ、C
O1炭化水素(HC)、窒素酸化物(NOx)の浄化率
を初期と100時間ベンチ耐久後につき測定した。評価
は、第1図に示した基本的三元特性図におけるNOx 
曲線と00曲線の交差黒人での浄化率およびNOx 曲
線とHC曲線の交差点Bでの浄化率で評価した。
(2) Each of the above exhaust gas purification catalysts is installed in the exhaust gas path of a vehicle equipped with a 2800 cc engine, and the air-fuel ratio is set to 1.
C
The purification rate of O1 hydrocarbons (HC) and nitrogen oxides (NOx) was measured at the initial stage and after 100 hours of bench durability. The evaluation is based on NOx in the basic ternary characteristic diagram shown in Figure 1.
Evaluation was made based on the purification rate at the intersection of the curve and the 00 curve for black people and the purification rate at the intersection B between the NOx curve and the HC curve.

評価法(1)による結果を第1表に、評価法(2)の結
果を第2表に示す。
The results of evaluation method (1) are shown in Table 1, and the results of evaluation method (2) are shown in Table 2.

第1表 第2表 第1表より明らかなように、比較例の触媒は、実施例の
触媒に比べ熱劣化が極度に大きい。
As is clear from Table 1, Table 2, and Table 1, the catalysts of the comparative examples showed extremely greater thermal deterioration than the catalysts of the examples.

同様に第2表に示したベンチ耐久試験結果においても比
較例1,2の触媒は、Go、He、NOx各成分ガスに
対して初期からの劣化が太きい。なお、比較例3の10
0時間耐久試験では、触媒体の強度不足により破壊し測
定できなかった。ちなみに実施例の触媒の比表面積は2
1 rrl / 9’と犬であった。
Similarly, in the bench durability test results shown in Table 2, the catalysts of Comparative Examples 1 and 2 showed significant deterioration from the initial stage for Go, He, and NOx component gases. In addition, 10 of Comparative Example 3
In the 0-hour durability test, the catalyst was destroyed due to insufficient strength and could not be measured. By the way, the specific surface area of the catalyst in the example is 2
It was 1 rrl/9' and a dog.

実施例2 実施例1と同様組成で同一形状のハニカム成形体を得、
950℃、1000’C,1200°C11300℃、
1350’C(7)各温度に、100’C/時間の昇温
速度で昇温し、さらに1時間暇焼し試料を調製した。こ
れらについて耐圧強度、熱衝撃温度、比表面積を測定し
た結果を第3表に示す。
Example 2 A honeycomb molded body having the same composition and the same shape as in Example 1 was obtained,
950℃, 1000'C, 1200℃11300℃,
Samples were prepared by increasing the temperature to 1350'C (7) at a heating rate of 100'C/hour and baking for an additional hour. Table 3 shows the results of measuring the compressive strength, thermal shock temperature, and specific surface area of these samples.

(以下 余 白) 第3表 第3表から明らかなように、収焼温度は100゜°C〜
1300℃の範囲が優れ、この範囲以外では耐圧強度、
熱衝撃性、比表面積等の物性面で触媒担体として不適当
であった。
(Left below) Table 3 As is clear from Table 3, the combustion temperature is 100°C ~
The range of 1300℃ is excellent, and outside this range, the pressure resistance,
It was unsuitable as a catalyst carrier in terms of physical properties such as thermal shock resistance and specific surface area.

実施例3 第4表に示す固形分の組成範囲となるように4成分を混
合し、さらに実施例1と同様に成形助剤、可塑剤を添加
しハニカム状成形体を得、これを同様に収焼しハニカム
状触媒担体を製造した。これに白金、ロジウムを同様に
担持し、排ガス浄化用触媒を調製した。これら各々の触
媒について、耐久特性(実施例1の評価法(2))、耐
圧強度、熱衝撃特性の3項目で評価した。第4表からも
明らかであるが、固形分の組成はアルミナゾルに含まれ
るアルミナが5〜25重量係、チタン酸アルカリ塩1〜
9重量係、溶融シリカ66〜85重量部、希土類物質1
〜9重量%が排ガス浄化用触媒担体として良好であり、
この範囲以外では、耐久特性、耐圧強度、熱衝撃特性の
いずれかの特性が悪かった。
Example 3 Four components were mixed so that the solid content composition range shown in Table 4 was obtained, and a forming aid and a plasticizer were added in the same manner as in Example 1 to obtain a honeycomb-shaped molded body. The combustion was completed and a honeycomb-shaped catalyst carrier was manufactured. Platinum and rhodium were similarly supported on this to prepare an exhaust gas purifying catalyst. Each of these catalysts was evaluated in three items: durability characteristics (evaluation method (2) of Example 1), compressive strength, and thermal shock characteristics. As is clear from Table 4, the solid content composition is such that the alumina contained in the alumina sol is 5 to 25% by weight, and the alkali titanate is 1 to 25% by weight.
9 parts by weight, 66-85 parts by weight of fused silica, 1 part by weight of rare earth material
~9% by weight is good as a catalyst carrier for exhaust gas purification,
Outside this range, the durability, compressive strength, and thermal shock properties were poor.

(以 下 余 白) 評価 O:良好  ×:不適当 実施例4 アルミナを20重量%含有するアルミナゾル50重量部
、各種アルカリを用いたチタン酸アルカリ5重量部、溶
融シリカ80重量部、硝酸セリウム6重量部、メチルセ
ルロース4.0重量部およびグリセIJ/2.0重量部
の混合物を原料として実施例1と同様にしてハニカム状
セラミックスを製造し、白金、ロジウムを実施例1と同
様に担持させ、前記評価法(1)によりGO浄化率を測
定した。結果を第6表に示す。
(Margin below) Evaluation O: Good ×: Unsuitable Example 4 50 parts by weight of alumina sol containing 20% by weight of alumina, 5 parts by weight of alkali titanate using various alkalis, 80 parts by weight of fused silica, 6 parts by weight of cerium nitrate. A honeycomb-shaped ceramic was produced in the same manner as in Example 1 using a mixture of 4.0 parts by weight, 4.0 parts by weight of methylcellulose, and 2.0 parts by weight of Grise IJ as raw materials, and platinum and rhodium were supported in the same manner as in Example 1. The GO purification rate was measured by the evaluation method (1) above. The results are shown in Table 6.

第6表 1チタン酸        初   期  熱処理後:
 アルカリ塩 チタン酸リチウム      100%    88チ
チタン酸ナトリウム     100     89チ
タン酸カリウム      100     96チタ
ン酸ルビジウム     100    8了チタン酸
セシウム      100     88チタン酸バ
リウム      1oO9゜チタン酸ストロンチウム
   100     891チタン酸カルシウム  
   10n      QQ第6表から明らかなよう
に、アルミナゾルと各々のチタン酸アルカリ塩、溶融シ
リカおよび希土類物質からなる組成物は、熱処理による
劣化が小さく優れていた。なかでもチタン酸カリウムを
使用したものは熱劣化が極めて小であった。
Table 6 1 Titanic acid Initial After heat treatment:
Alkali salt lithium titanate 100% 88 Sodium titanate 100 89 Potassium titanate 100 96 Rubidium titanate 100 8. Cesium titanate 100 88 Barium titanate 1oO9° Strontium titanate 100 891 Calcium titanate
10n QQ As is clear from Table 6, the compositions consisting of alumina sol, each alkali titanate salt, fused silica, and rare earth material were excellent with little deterioration due to heat treatment. Among them, those using potassium titanate showed extremely little thermal deterioration.

実施例6 アルミナを20重量係含有するアルミナゾル6゜重量部
、チタン酸カリウム6重量部、溶融シリカ80重量部、
各種希土類物質5重量部(硝酸ランタン(La(No 
5) s・6H20)、硝酸セリウム(06(NO5)
 2*sH2o) l硝酸サマリウム(Sm(NOs)
s)−硝酸プラセオジウム(Pr(NO5)3・6H2
0)、硝酸ネオジウム(Nd (No s )s・6H
20)の各々6種類)、メチルセルロース4.0重量部
およびグリセリン2.0重食の混合物を用いて実施例1
と同様にしてハニカム状セラミックスを製造し、白金、
ロジウムを実施例1と同様に担持させ、評価法(1)に
よりGO浄化率を測定した。結果を第6表に示す。
Example 6 6 parts by weight of alumina sol containing 20 parts by weight of alumina, 6 parts by weight of potassium titanate, 80 parts by weight of fused silica,
5 parts by weight of various rare earth substances (lanthanum nitrate (La (No.
5) s・6H20), cerium nitrate (06 (NO5)
2*sH2o) lSamarium nitrate (Sm(NOs)
s)-praseodymium nitrate (Pr(NO5)3.6H2
0), neodymium nitrate (Nd(Nos)s・6H
Example 1 using a mixture of 6 types of each of 20), 4.0 parts by weight of methylcellulose, and 2.0 parts of glycerin.
Honeycomb-shaped ceramics are manufactured in the same manner as above, and platinum,
Rhodium was supported in the same manner as in Example 1, and the GO purification rate was measured by evaluation method (1). The results are shown in Table 6.

第6表 第6表から明らかなように、アルミナゾルとチタン酸ア
ルカリ塩、溶融シリカおよび各々の希土類物質からなる
組成物は、熱処理による浄化能劣化が小さく触媒として
優れていた。なかでも、ランタン、セリウムからなる塩
を使用したものは熱劣化が極めて小であった。実施例で
は各々硝酸塩で比較したが、水和物、塩化物等の形で用
いても良好であった。また酸化物の形で添加したものも
効果的であった。耐熱衝撃性に関しても、熱膨張係数が
1.3 X 10−’/’Cと小さく優れていた。また
機械的強度に関しても、実使用上特に問題を有さなかっ
た。
Table 6 As is clear from Table 6, the compositions consisting of alumina sol, alkali titanate, fused silica, and each rare earth substance exhibited little deterioration in purification ability due to heat treatment and were excellent as catalysts. Among them, those using salts consisting of lanthanum and cerium had extremely low thermal deterioration. In the examples, comparisons were made using nitrates, but good results were obtained when used in the form of hydrates, chlorides, etc. Additions in the form of oxides were also effective. The thermal shock resistance was also excellent, with a coefficient of thermal expansion as small as 1.3 x 10-'/'C. Also, regarding mechanical strength, there were no particular problems in practical use.

発明の効果 以上のように、本発明によれば比表面積が犬で触媒性能
に優れ、さらには熱膨張係数が小さい耐熱衝撃性に優れ
た触媒を低コストで得ることができる。
Effects of the Invention As described above, according to the present invention, a catalyst having a small specific surface area, excellent catalytic performance, and furthermore a small coefficient of thermal expansion and excellent thermal shock resistance can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の排ガス浄化用触媒の空燃比に対
する浄化率の関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名t4
.o      t4.s      tso    
 ts、s空燃比
The figure is a diagram showing the relationship between the purification rate and the air-fuel ratio of an exhaust gas purification catalyst according to an embodiment of the present invention. Name of agent: Patent attorney Toshio Nakao and 1 other person t4
.. o t4. s tso
ts, s air fuel ratio

Claims (4)

【特許請求の範囲】[Claims] (1)少なくともアルミナゾルとチタン酸アルカリ塩と
溶融シリカおよび希土類物質からなる混合物を1000
℃〜1300℃で■焼すること特徴とする排ガス浄化用
触媒担体の製造法。
(1) A mixture consisting of at least alumina sol, alkali titanate, fused silica and rare earth material
A method for producing a catalyst carrier for exhaust gas purification, characterized by baking at a temperature of 1300°C to 1300°C.
(2)前記混合物中における固形分の割合がアルミナゾ
ルに含まれるアルミナ5〜25重量%、チタン酸アルカ
リ塩1〜9重量%、溶融シリカ65〜85重量%、希土
類物質1〜9重量%である特許請求の範囲第1項記載の
排ガス浄化用触媒担体の製造法。
(2) The solid content in the mixture is 5 to 25% by weight of alumina, 1 to 9% by weight of alkali titanate, 65 to 85% by weight of fused silica, and 1 to 9% by weight of rare earth material contained in the alumina sol. A method for producing a catalyst carrier for exhaust gas purification according to claim 1.
(3)チタン酸アルカリ塩がチタン酸カリウムである特
許請求の範囲第1項または第2項記載の排ガス浄化用触
媒担体の製造法。
(3) The method for producing a catalyst carrier for exhaust gas purification according to claim 1 or 2, wherein the alkali titanate salt is potassium titanate.
(4)希土類物質がセリウムまたはランタンの酸化物も
しくは塩である特許請求の範囲第1項または第2項記載
の排ガス浄化用触媒担体の製造法。
(4) The method for producing a catalyst carrier for exhaust gas purification according to claim 1 or 2, wherein the rare earth substance is an oxide or salt of cerium or lanthanum.
JP61011307A 1986-01-22 1986-01-22 Production of carrier of catalyst for purifying exhaust gas Pending JPS62171749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61011307A JPS62171749A (en) 1986-01-22 1986-01-22 Production of carrier of catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61011307A JPS62171749A (en) 1986-01-22 1986-01-22 Production of carrier of catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS62171749A true JPS62171749A (en) 1987-07-28

Family

ID=11774347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61011307A Pending JPS62171749A (en) 1986-01-22 1986-01-22 Production of carrier of catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS62171749A (en)

Similar Documents

Publication Publication Date Title
JPS62256757A (en) Manufacture of thermal shock resistant ceramics
WO1990006177A1 (en) High surface area cordierite catalyst support structures
JPS61283348A (en) Oxidizing catalyst
US4769356A (en) Catalyst for purifying exhaust gas
JPS62261803A (en) Contact burning method
JPS62171749A (en) Production of carrier of catalyst for purifying exhaust gas
JPH0513102B2 (en)
JPS61291040A (en) Catalyst for purifying exhaust gas
JPH06165939A (en) Cordierite honeycomb structure
JPH02119939A (en) Exhaust gas purification catalyst
JP3340268B2 (en) Method for producing exhaust gas purifying catalyst
JPS61181538A (en) Catalyst for purifying exhaust gas
JPS61146314A (en) Purifying filter for collecting fine particle
JPS61291039A (en) Catalyst for purifying exhaust gas
JPS6154238A (en) Catalytic body for purifying waste gas
JPH0644997B2 (en) Method for manufacturing exhaust gas purifying catalyst carrier
JPH06165943A (en) Cordierite honeycomb structure
JPS6186945A (en) Catalyst for purifying catalyst
JPH02198632A (en) Catalyst
JPH01307449A (en) Waste gas purification catalyst
JPS60235643A (en) Manufacture of catalytic body for waste gas purification
JPH01304046A (en) Catalyst for purifying exhaust gas
JPS60232251A (en) Catalyst body for purifying exhaust gas
JPH05115778A (en) Oxidation catalyst
JPH01307450A (en) Waste gas purification catalyst