JPS6128809B2 - - Google Patents

Info

Publication number
JPS6128809B2
JPS6128809B2 JP12704477A JP12704477A JPS6128809B2 JP S6128809 B2 JPS6128809 B2 JP S6128809B2 JP 12704477 A JP12704477 A JP 12704477A JP 12704477 A JP12704477 A JP 12704477A JP S6128809 B2 JPS6128809 B2 JP S6128809B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst bed
catalyst
exhaust
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12704477A
Other languages
Japanese (ja)
Other versions
JPS5460615A (en
Inventor
Hiroyoshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP12704477A priority Critical patent/JPS5460615A/en
Publication of JPS5460615A publication Critical patent/JPS5460615A/en
Publication of JPS6128809B2 publication Critical patent/JPS6128809B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、触媒装置による排気ガス浄化装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exhaust gas purification device using a catalyst device.

〔従来の技術〕[Conventional technology]

触媒により排気ガス有害成分を反応させ浄化す
る場合、一酸化炭素,炭化水素の酸化には酸素が
必要であるが、窒素酸化物の還元には酸素がある
と還元反応が進行しない。しかし、この排気ガス
中の有害三成分である炭化水素,一酸化炭素,窒
素酸化物を同時に低減できる三元触媒が既に提案
されている。この触媒の有害成分の浄化率は、第
3図に示すように空燃比がおよそ14.7前後の時、
害三成分を同時に、最も効率良く浄化し、空燃比
が14.7よりリツチになると窒素酸化物の浄化率が
良くなり、リーンになると炭化水素,一酸化炭素
の浄化率が良くなる。
When a catalyst is used to react and purify harmful exhaust gas components, oxygen is necessary for the oxidation of carbon monoxide and hydrocarbons, but for the reduction of nitrogen oxides, the reduction reaction does not proceed if oxygen is present. However, a three-way catalyst has already been proposed that can simultaneously reduce the three harmful components of exhaust gas: hydrocarbons, carbon monoxide, and nitrogen oxides. The purification rate of harmful components of this catalyst is as shown in Figure 3 when the air-fuel ratio is around 14.7.
It simultaneously purifies the three harmful components most efficiently, and when the air-fuel ratio becomes richer than 14.7, the purification rate of nitrogen oxides improves, and when it becomes lean, the purification rate of hydrocarbons and carbon monoxide improves.

ところで、これら有害成分の浄化率の変化は、
排気ガス中の酸素の割合が密接に関係してくる。
すなわち酸素が排気ガス中に、ある値を越えて含
有していると酸化反応は進行するが還元反応が進
行しにくくなり、酸素が少なくなると還元反応に
は有利だが、酸化反応は進まなくなる。この4者
割合が最も適正となり有害三成分を最も効果的に
浄化できるのは、空燃比がおよそ14.7のところで
ある。
By the way, changes in the purification rate of these harmful components are
The proportion of oxygen in the exhaust gas is closely related.
That is, if oxygen is contained in the exhaust gas in excess of a certain value, the oxidation reaction will proceed, but the reduction reaction will be difficult to proceed, and if the amount of oxygen is low, the reduction reaction will be advantageous, but the oxidation reaction will not proceed. The ratio of these four components is most appropriate and the three harmful components can be purified most effectively at an air-fuel ratio of approximately 14.7.

しかし、排気ガス中の有害成分の発生は、運転
状態によつても異なり、例えば低負荷時には窒素
酸化物濃度は低く、炭化水素,一酸化炭素濃度は
高く、反対に高負荷時には窒素酸化物濃度が高
く、炭化水素,一酸化炭素濃度が低くなるという
ように変化している。
However, the generation of harmful components in exhaust gas also differs depending on the operating conditions. For example, when the load is low, the concentration of nitrogen oxides is low, and the concentration of hydrocarbons and carbon monoxide is high; on the other hand, when the load is high, the concentration of nitrogen oxides is high. The concentration of hydrocarbons and carbon monoxide is decreasing.

従つて、運転状態の変化に伴つて変化する排気
ガス中の酸素,炭化水素,一酸化炭素,窒素酸化
物の割合に応じて、上述の三元触媒の特徴を活用
する構成としなければならない。
Therefore, it is necessary to adopt a configuration that utilizes the characteristics of the three-way catalyst described above in accordance with the proportions of oxygen, hydrocarbons, carbon monoxide, and nitrogen oxides in the exhaust gas, which change with changes in operating conditions.

ところで、また酸素の排気ガスの浄化に対する
役割を考慮した排気ガス浄化装置の先行技術例と
しての特開昭50―42220号公報には、密閉状の外
部ハウジング内の中心部に内側面と間隙をおいて
一端より導入される排気ガスの窒素酸化物の還元
触媒床を設けると共に、その外周の上記間隙に空
気層またはケーシングを介して一酸化炭素,炭化
水素の酸化触媒床を形成してこれらを、還元触媒
床の他端で連通し、この連通部から反転して上記
酸化触媒床へと逆方向に流れる排気ガス中に、上
記連通部と対向する遮板に衝突して分散される2
次空気を導入するようにした排気ガス浄化装置が
開示されている。
By the way, Japanese Patent Application Laid-open No. 1983-42220, which is an example of prior art for an exhaust gas purification device that takes into consideration the role of oxygen in purifying exhaust gas, discloses a method in which a gap is formed between the inner surface and the center of the sealed outer housing. A catalyst bed for reducing nitrogen oxides from the exhaust gas introduced from one end is provided at the same time, and a catalyst bed for oxidizing carbon monoxide and hydrocarbons is formed in the above-mentioned gap on the outer periphery via an air layer or a casing. , communicated at the other end of the reduction catalyst bed, and into the exhaust gas that reverses from this communication part and flows in the opposite direction to the above-mentioned oxidation catalyst bed, 2 is dispersed by colliding with a shielding plate facing the above-mentioned communication part.
An exhaust gas purification device is disclosed in which secondary air is introduced.

なお、先行技術例である特開昭52―114379号公
報には、排気管の塗中に三元触媒よりなる第1触
媒床と第2触媒床とを直線上に位置するように設
けた排気ガス浄化装置が記載されている。
In addition, Japanese Patent Application Laid-open No. 114379/1983, which is an example of prior art, discloses an exhaust system in which a first catalyst bed and a second catalyst bed made of a three-way catalyst are arranged in a straight line while coating an exhaust pipe. A gas purification device is described.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、前記の排気浄化装置では、前記酸化
触媒床への2次空気の導入は、ポンプにより行わ
れるようになるためその導入量は、機関の運転状
態の変化に伴い前記したように変化する排気ガス
中の一酸化炭素,炭化水素の発生割合に対応させ
ることが困難であるうえ、ポンプを、使用すると
構造が複雑で不経剤であり、かつ排気ガスは浄化
されている間に外部ハウジング内で反転して逆方
向に流れるようになつているため、大きな抵抗を
受けるなどの問題がある。
By the way, in the above-described exhaust gas purification device, the introduction of secondary air into the oxidation catalyst bed is performed by a pump, so the amount of the introduced air changes as described above with changes in the operating state of the engine. It is difficult to adapt to the generation rate of carbon monoxide and hydrocarbons in the gas, and if a pump is used, the structure is complicated and it is a sterile agent, and the exhaust gas is purified inside the external housing. Since the flow is reversed and flows in the opposite direction, there are problems such as large resistance.

本発明は、このような問題点を解消した排気ガ
ス浄化装置を目的とするのである。
The object of the present invention is to provide an exhaust gas purification device that eliminates these problems.

〔問題点を解決するための手段〕[Means for solving problems]

そして、本発明は、上記の目的を達成するた
め、次のような構成を有する。すなわち、排気管
の途中に三元触媒よりなる第1触媒床と第2触媒
床とを混合部を挾んで直線上に位置するように設
け、第1触媒床への排気通路に内筒を設けて排気
通路を同心状に区分けし、外周触媒部に排気ガス
を導く外周の通路に排気管内の排気脈動により2
次空気を導入させる装置を設けて酸化雰囲気を形
成し、外周触媒部で一酸化炭素,炭化水素を酸化
させ、中心部で窒素酸化物を還元し、さらに混合
物で混合された排気ガスを、第2触媒床で酸化,
還元を行うようにしたものである。
In order to achieve the above object, the present invention has the following configuration. That is, a first catalyst bed and a second catalyst bed made of a three-way catalyst are provided in the middle of the exhaust pipe so as to be positioned in a straight line with a mixing section in between, and an inner cylinder is provided in the exhaust passage to the first catalyst bed. The exhaust passage is concentrically divided, and the outer passage that guides the exhaust gas to the outer catalyst part is divided into two parts by the exhaust pulsation in the exhaust pipe.
A device for introducing secondary air is installed to form an oxidizing atmosphere, carbon monoxide and hydrocarbons are oxidized in the outer catalyst section, nitrogen oxides are reduced in the center, and the mixed exhaust gas is Oxidation with 2 catalyst beds,
It is designed to provide a return.

そして、2次空気の導入量は、第2触媒床での
酸化,還元を効率よく行うための雰囲気にするよ
うに決定される。
The amount of secondary air introduced is determined to create an atmosphere for efficiently performing oxidation and reduction in the second catalyst bed.

〔作 用〕[Effect]

本発明は、排気管の途中に三元触媒よりなる第
1触媒床と第2触媒床とを混合部を挾んで直線上
に位置するように設け、第1触媒床への排気通路
に内筒を設けて排気通路を同心状に区分けし、外
周触媒部に排気ガスを導く外周の通路に排気管内
の排気脈動により2次空気を導入する装置を設け
て酸化雰囲気を形成し、外周触媒部で一酸化炭
素,炭化水素を酸化させ、中心部で窒素酸化物を
還元するように構成されている。
The present invention provides a first catalyst bed and a second catalyst bed made of a three-way catalyst in the middle of an exhaust pipe so as to be positioned on a straight line with a mixing part sandwiched between them, and an inner cylinder is connected to an exhaust passage to the first catalyst bed. A device is installed to introduce secondary air into the outer passage that guides exhaust gas to the outer catalyst section using exhaust pulsation in the exhaust pipe to form an oxidizing atmosphere. It is configured to oxidize carbon monoxide and hydrocarbons, and reduce nitrogen oxides in the center.

したがつて、排気管内を流れる排気ガスは、三
元触媒で構成された第1触媒床の外周触媒部と中
心触媒部へそれぞれ分流する。そして低負荷時に
は、外周触媒部は排気脈動によつて2次空気が導
入され、主として酸化を行なう酸化雰囲気とな
り、一酸化炭素,炭化水素が酸化され、一方、中
心触媒部は、外周触媒部の反応熱によつて高温に
保持されると共に2次空気が導入されないので、
主として還元を行なう還元雰囲気となり、窒素酸
化物が還元される。
Therefore, the exhaust gas flowing in the exhaust pipe is divided into the outer catalytic part and the central catalytic part of the first catalyst bed, which is composed of a three-way catalyst. During low load, secondary air is introduced into the outer catalyst section by exhaust pulsation, creating an oxidizing atmosphere that mainly performs oxidation, oxidizing carbon monoxide and hydrocarbons. Since the temperature is maintained at a high temperature due to the heat of reaction and no secondary air is introduced,
The atmosphere becomes a reducing atmosphere that mainly carries out reduction, and nitrogen oxides are reduced.

第1触媒床の外周触媒部と中心触媒部とから流
出した排気ガスは混合部で混合して、三元触媒で
構成された第2触媒床に流入し、排気ガス中の酸
素量に見合つた酸化,還元がそれぞれ行なわれ、
一酸化炭素,炭化水素および窒素酸化物の三成分
が浄化される。
Exhaust gas flowing out from the outer catalyst section and the center catalyst section of the first catalyst bed is mixed in the mixing section and flows into the second catalyst bed composed of a three-way catalyst, so that the amount of oxygen in the exhaust gas is adjusted to match the amount of oxygen in the exhaust gas. Oxidation and reduction are carried out respectively,
The three components of carbon monoxide, hydrocarbons and nitrogen oxides are purified.

一方、高負荷時には、濃度の高い窒素酸化物、
濃度の低い一酸化炭素,炭化水素からなる排気ガ
スが、三形触媒で構成された第1触媒床に流入す
る。そして排気脈動効果が低くなつて2次空気の
吸入率が減少するにもかかわらず適量の2次空気
気が導入され、外周触媒部での酸化反応を減退さ
せることなく中心触媒部で高濃度の窒素酸化物を
還元する。そして混合部を介して第2触媒床に流
入した排気ガス中の三成分は、再度酸化,還元を
行なわれ浄化が達成される。
On the other hand, under high loads, high concentrations of nitrogen oxides,
Exhaust gas consisting of carbon monoxide and hydrocarbons with a low concentration flows into a first catalyst bed composed of a trimorphic catalyst. Even though the exhaust pulsation effect is lowered and the intake rate of secondary air is reduced, an appropriate amount of secondary air is introduced, and a high concentration is generated at the center catalyst without reducing the oxidation reaction at the outer catalyst. Reduces nitrogen oxides. The three components in the exhaust gas that have flowed into the second catalyst bed via the mixing section are oxidized and reduced again to achieve purification.

しかも、第1触媒床,混合部,第2触媒床が直
線上に位置するように設けられているので、排気
ガスへの抵抗が少なくエンジンの動力損失が小さ
い。
Moreover, since the first catalyst bed, the mixing section, and the second catalyst bed are arranged in a straight line, there is little resistance to the exhaust gas, and the power loss of the engine is small.

本発明によれば、排気脈動によつて2次空気の
導入が行なわれ、しかもエンジン運転状態に応じ
て2次空気の吸入率が変化するので、三元触媒に
よる三成分浄化が有効に行なわれ、従つて、窒素
酸化物が大気中の水分と化合して有害な硝酸が生
成される恐れが少ない。また2次空気導入装置に
はポンプを必要としないので構造が簡単となる。
According to the present invention, secondary air is introduced by exhaust pulsation, and the suction rate of secondary air changes depending on the engine operating condition, so three-component purification by the three-way catalyst is effectively performed. Therefore, there is little possibility that nitrogen oxides will combine with atmospheric moisture to produce harmful nitric acid. Further, since the secondary air introduction device does not require a pump, the structure is simplified.

〔実施例〕 以下、図面を参照して本発明の実施例を説明す
る。図において1は排気管で、その途中にテーパ
部2,3で連結された拡張部4を設け、上流側排
気管1aの端部付近より拡張部4に至る間におい
て排気管1とテーパ部2の内部に、同心で相似な
形状の内筒5を、放射状のステー6,7により支
持して設けている。拡張部4内には、三元触媒よ
りなる第1触媒床8と第2触媒床9とが直線上に
位置するように設けられ、その中間に混合部10
が形成されている。なお、第1触媒床8は、半径
方向にはガスが互いに混合しない例えばハニカム
構造のものが望ましい。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. In the figure, reference numeral 1 denotes an exhaust pipe, and an expanded part 4 connected by tapered parts 2 and 3 is provided in the middle of the exhaust pipe. An inner cylinder 5 having a concentric and similar shape is supported by radial stays 6 and 7 inside the cylinder. Inside the expansion section 4, a first catalyst bed 8 and a second catalyst bed 9 made of a three-way catalyst are provided so as to be located on a straight line, and a mixing section 10 is provided in the middle thereof.
is formed. Note that the first catalyst bed 8 preferably has, for example, a honeycomb structure in which gases do not mix with each other in the radial direction.

更に排気管1aの端部外周に環状室11が形成
され、排気管1aには多数の2次空気導入口12
が設けられ、該環状室11は管13を通り、チエ
ツクバルブ14およびエアクリーナ16を介して
大気に連通し、排気管内の排気脈動により2次空
気を排気管と内筒5の間の通路15内に導入する
ようにしている。
Further, an annular chamber 11 is formed around the outer circumference of the end of the exhaust pipe 1a, and a large number of secondary air inlets 12 are provided in the exhaust pipe 1a.
The annular chamber 11 passes through a pipe 13 and communicates with the atmosphere via a check valve 14 and an air cleaner 16, and the exhaust pulsation in the exhaust pipe directs secondary air into the passage 15 between the exhaust pipe and the inner cylinder 5. We are planning to introduce it to

そして、排気管を流れる排気ガスは、触媒コン
バータに入る前に排気管と内筒5との間の通路1
5を通るものと、内筒5内を通るものとに分かれ
る。
The exhaust gas flowing through the exhaust pipe is passed through a passage 1 between the exhaust pipe and the inner cylinder 5 before entering the catalytic converter.
There are two types: one that passes through the inner cylinder 5 and one that passes through the inner cylinder 5.

そして低負荷時には、通路15を通る排気ガス
に排気の脈動効果によりチエツクバルブ14,管
13などを介して2次空気が、脈動的に導入口1
2より導入されてよく混合した後、第1触媒床8
の外周部8aに流入し、ここで2次空気中の酸素
により排気ガス中の一酸化炭素,炭化水素が酸化
されると共に、窒素酸化物も或る程度還元され
る。そして余剰の酸素は酸化物および他の成分と
共に下流の混合部10に流入する。一方、内筒5
内を通る排気ガスは第1触媒床8の中心部8bに
流入し、2次空気の供給を受けないので、ここで
は窒素酸化物が一酸化炭素,炭化水素により還元
されると共に、一酸化炭素,炭化水素も或る程度
酸化される。そして余剰の一酸化炭素,炭化水素
は混合部10に流入する。
When the load is low, the pulsating effect of the exhaust gas passing through the passage 15 causes secondary air to pulsate through the check valve 14, pipe 13, etc.
2 and mixed well, the first catalyst bed 8
Here, carbon monoxide and hydrocarbons in the exhaust gas are oxidized by the oxygen in the secondary air, and nitrogen oxides are also reduced to some extent. The excess oxygen then flows into the downstream mixing section 10 along with oxides and other components. On the other hand, the inner cylinder 5
The exhaust gas flowing through the interior flows into the center 8b of the first catalyst bed 8 and is not supplied with secondary air, so that nitrogen oxides are reduced by carbon monoxide and hydrocarbons, and carbon monoxide is , hydrocarbons are also oxidized to some extent. The excess carbon monoxide and hydrocarbons then flow into the mixing section 10.

即ち、第1触媒床8は外周部8aが主として酸
化を行なう酸化雰囲気となり、中心部8bが主と
して還元を行なう還元雰囲気となつて、排気ガス
中の三成分を共に減少することができる。この
時、外周部8aの酸化反応熱により中心部8bを
高温に保持することができるため、中心部8bで
の触媒の反応性を高めることができる。
That is, in the first catalyst bed 8, the outer circumferential portion 8a becomes an oxidizing atmosphere that mainly performs oxidation, and the central portion 8b becomes a reducing atmosphere that mainly performs reduction, so that all three components in the exhaust gas can be reduced. At this time, the center portion 8b can be maintained at a high temperature due to the heat of oxidation reaction in the outer peripheral portion 8a, so that the reactivity of the catalyst in the center portion 8b can be increased.

そして、外周部8aと中心部8bから混合部1
0に流入した排気ガスは、混合部10で混合して
更に下流の三元触媒で構成された第2触媒床9に
流入する。ここでは、酸化と還元が行なわれる
が、酸素の存在の多少により主として酸化か、ま
たは主として還元かが行われ、それぞれ一酸化炭
素,炭化水素または窒素酸化物の三成分が浄化さ
れる。そして三元触媒で構成された第1触媒床8
と第2触媒床9とが、排気ガスが通過する際に段
階的に三成分をそれぞれ反応処理するので、充分
な浄化効果を上げることができる。
Then, from the outer peripheral part 8a and the center part 8b, the mixing part 1
The exhaust gases that have flowed into the exhaust gas are mixed in the mixing section 10 and flow further downstream into the second catalyst bed 9 that is comprised of a three-way catalyst. Here, oxidation and reduction are carried out, and depending on the amount of oxygen present, either oxidation or reduction is carried out primarily, and the three components of carbon monoxide, hydrocarbons, or nitrogen oxides are purified, respectively. And a first catalyst bed 8 composed of a three-way catalyst
Since the exhaust gas and the second catalyst bed 9 react each of the three components in stages when the exhaust gas passes through, a sufficient purification effect can be achieved.

しかして、前記したように機関の運転状態に応
じて触媒装置に流入する排気ガス中の各成分は変
化する。即ち低負荷時は、炭化水素,一酸化炭素
濃度が高く、窒素酸化物濃度は低い、ところが低
負荷時では、排気管内の排気脈動効果が大きく2
次空気の吸入率(2次空気量/吸入空気量)が増
大し、従つて、排気ガス中の高濃度に発生した炭
化水素,一酸化炭素を充分酸化処理することがで
き、更に余つた酸素が酸化されなかつた炭化水
素,一酸化炭素を混合物で混合し、三元触媒の浄
化効率のよい雰囲気で第2触媒床9でさらに酸化
させることができる。
Therefore, as described above, each component in the exhaust gas flowing into the catalyst device changes depending on the operating state of the engine. That is, at low loads, the concentrations of hydrocarbons and carbon monoxide are high, and the concentrations of nitrogen oxides are low. However, at low loads, the exhaust pulsation effect in the exhaust pipe becomes large.
The intake rate of secondary air (secondary air amount/intake air amount) increases, and therefore, it is possible to sufficiently oxidize hydrocarbons and carbon monoxide generated in high concentrations in exhaust gas, and furthermore, the excess oxygen The hydrocarbons and carbon monoxide that have not been oxidized can be mixed as a mixture and further oxidized in the second catalyst bed 9 in an atmosphere with good purification efficiency of the three-way catalyst.

一方、高負荷時では、排気ガスは窒素酸化物の
濃度が高く、炭化水素,一酸化炭素濃度の低いも
のになるが、排気脈動効果も低くなつて2次空気
の吸入率が減少し、炭化水素,一酸化炭素に見合
つたものになり、第1触媒床8の外周部8aに酸
素が及んでも、還元反応を減退させることなく高
濃度の窒素酸化物を外周部8aで充分還元するこ
とができると共に、低濃度の炭化水素,一酸化炭
素の酸化も行なわれる。また中心部8bにおいて
も還元,酸化が行なわれる。更に第1触媒床で酸
化未了の炭化水素,一酸化炭素および還元未了の
窒素酸化物は、混合部10で混合し、三元触媒の
浄化効率のよい雰囲気で第2触媒床9で再度酸化
および還元反応を行い、浄化することができる。
On the other hand, under high load, the exhaust gas has a high concentration of nitrogen oxides and a low concentration of hydrocarbons and carbon monoxide, but the exhaust pulsation effect also decreases and the intake rate of secondary air decreases, causing carbonization. Even if oxygen reaches the outer circumference 8a of the first catalyst bed 8, highly concentrated nitrogen oxides can be sufficiently reduced in the outer circumference 8a without reducing the reduction reaction. At the same time, low concentrations of hydrocarbons and carbon monoxide are oxidized. Further, reduction and oxidation are also performed in the central portion 8b. Furthermore, the hydrocarbons, carbon monoxide, and nitrogen oxides that have not been reduced yet in the first catalyst bed are mixed in the mixing section 10, and are mixed again in the second catalyst bed 9 in an atmosphere with good purification efficiency of the three-way catalyst. It can be purified by performing oxidation and reduction reactions.

〔発明の効果〕〔Effect of the invention〕

以上述べたところから明らかなように、本発明
によれば、2次空気は、機関の運転状態に応じて
上流側の三元触媒より成る第1触媒床の外周触媒
部に排気管内の排気ガス脈動効果により脈動的に
導入されるので、2次空気導入にポンプを要する
ことがなく、従つて、構造が簡単になるうえ、排
気ガスによく混合するので排気ガス中の、一酸化
炭素,炭化水素が外周部の触媒により効果的に除
かれると共に、窒素酸化物は2次空気が導入され
ない中心部で還元されるので、三成分を共に減少
することができ、しかも、中心部の前記還元反応
は、外周の酸化反応部の反応熱により一段と助長
され、また、運転状態の変化により生ずる排気ガ
ス中の炭化水素,一酸化炭素の濃度の高低および
窒素酸化物の濃度の高低に応じて2次空気供給率
も増減するので、三元触媒との対応で排気ガス中
のこれらの有害三成分を有効に浄化することがで
きる。
As is clear from the above description, according to the present invention, secondary air is transferred to the exhaust gas in the exhaust pipe to the outer catalytic portion of the first catalyst bed consisting of the three-way catalyst on the upstream side depending on the operating state of the engine. Since the air is introduced in a pulsating manner due to the pulsation effect, there is no need for a pump to introduce secondary air, which simplifies the structure and mixes well with the exhaust gas, reducing carbon monoxide and carbonization in the exhaust gas. Since hydrogen is effectively removed by the catalyst in the outer periphery, and nitrogen oxides are reduced in the center where secondary air is not introduced, all three components can be reduced together, and the reduction reaction in the center can be reduced. This is further promoted by the reaction heat of the oxidation reaction zone on the outer periphery, and secondary effects occur depending on the concentration of hydrocarbons and carbon monoxide in the exhaust gas caused by changes in operating conditions, as well as the concentration of nitrogen oxides. Since the air supply rate also increases or decreases, these three harmful components in the exhaust gas can be effectively purified in conjunction with the three-way catalyst.

しかも、第1触媒床においての余剰の炭化水
素,一酸化炭素および窒素酸化物が、それぞれ第
2触媒床で再び酸化および還元されるから、排気
ガスの浄化は一層促進され、従つて、窒素酸化物
が大気中の水分と化合して有害な硝酸が生成され
る恐れが少ない。排気ガスは、その浄化が直線上
に位置する第1触媒床,第2触媒床を逆流するよ
うな屈曲をすることなく流れる間において行われ
るので、この間において受ける抵抗ひいてはエン
ジンの動力損失が小さいなど所期の目的を達成す
ることができる。
Moreover, excess hydrocarbons, carbon monoxide, and nitrogen oxides in the first catalyst bed are oxidized and reduced again in the second catalyst bed, so purification of exhaust gas is further promoted, and nitrogen oxide There is less risk that the substance will combine with moisture in the atmosphere and produce harmful nitric acid. The exhaust gas is purified while flowing through the first catalyst bed and the second catalyst bed, which are located in a straight line, without making any bends such as flowing backwards, so the resistance experienced during this time and the power loss of the engine are small. It is possible to achieve the intended purpose.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2
図は第1図のA―A断面図、第3図は有害成分浄
化率と空燃比の関係を示すグラフである。 1…排気管、2,3…テーパ部、4…拡張部、
5…内筒、6,7…ステー、8…第1触媒床、9
…第2触媒床、10…混合部、11…還状室、1
2…2次空気導入口、13…管、14…チエツク
バルブ、15…通路、16…エアクリーナ。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and FIG.
The figure is a sectional view taken along the line AA in FIG. 1, and FIG. 3 is a graph showing the relationship between the harmful component purification rate and the air-fuel ratio. 1... Exhaust pipe, 2, 3... Tapered part, 4... Expansion part,
5... Inner cylinder, 6, 7... Stay, 8... First catalyst bed, 9
...Second catalyst bed, 10...Mixing section, 11...Recirculation chamber, 1
2... Secondary air inlet, 13... Pipe, 14... Check valve, 15... Passage, 16... Air cleaner.

Claims (1)

【特許請求の範囲】[Claims] 1 排気管の塗中に三元触媒よりなる第1触媒床
と第2触媒床とを混合部を挾んで直線上に位置す
るように設け、第1触媒床への排気通路に内筒を
設けて排気通路を同心状に区分けし、外周触媒部
に排気ガスを導く外周の通路に排気管内の排気脈
動により2次空気を導入させる装置を設けて酸化
雰囲気を形成し、外周触媒部で一酸化炭素,炭化
水素を酸化させ、中心部で窒素酸化物を還元し、
さらに混合部で混合された排気ガスを、第2触媒
床で酸化、還元を行うようにしたことを特徴とす
る内燃機関の排気ガス浄化装置。
1. During the coating of the exhaust pipe, a first catalyst bed and a second catalyst bed made of a three-way catalyst are provided so as to be located in a straight line with a mixing part sandwiched between them, and an inner cylinder is provided in the exhaust passage to the first catalyst bed. The exhaust passage is concentrically divided, and a device is installed that introduces secondary air by exhaust pulsation in the exhaust pipe into the outer passage that guides exhaust gas to the outer catalyst part to form an oxidizing atmosphere. Oxidizes carbon and hydrocarbons, reduces nitrogen oxides in the center,
Furthermore, the exhaust gas purification device for an internal combustion engine is characterized in that the exhaust gas mixed in the mixing section is oxidized and reduced in a second catalyst bed.
JP12704477A 1977-10-21 1977-10-21 Exhaust gas purifier for internal combustion engine Granted JPS5460615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12704477A JPS5460615A (en) 1977-10-21 1977-10-21 Exhaust gas purifier for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12704477A JPS5460615A (en) 1977-10-21 1977-10-21 Exhaust gas purifier for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5460615A JPS5460615A (en) 1979-05-16
JPS6128809B2 true JPS6128809B2 (en) 1986-07-02

Family

ID=14950221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12704477A Granted JPS5460615A (en) 1977-10-21 1977-10-21 Exhaust gas purifier for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5460615A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2831846A1 (en) * 1978-07-20 1980-02-07 Henkel Kgaa USE OF WATER-INSOLUBLE ALUMINUM SILICATES IN LEATHER PRODUCTION

Also Published As

Publication number Publication date
JPS5460615A (en) 1979-05-16

Similar Documents

Publication Publication Date Title
US7784273B2 (en) Exhaust emission purifying apparatus for engine
US7552583B2 (en) Exhaust purification with on-board ammonia production
US3701823A (en) Method and means for two-stage catalytic treating of engine exhaust gases
US3869858A (en) Exhaust gas purifying system for motor vehicles
JPH04243525A (en) Apparatus for purifying exhaust gas of internal combustion engine
JPH0586849A (en) Exhaust emission control device for internal combustion engine
KR20150113192A (en) Exhaust system with a reformer catalyst
US3947545A (en) Purification of exhaust gas
WO2018086189A1 (en) Automobile exhaust gas emission system
US9797287B2 (en) Ruthenium based catalysts for NOx reduction
JPS6128809B2 (en)
JP2010163988A (en) Exhaust structure of internal combustion engine
JPH0374561A (en) Exhaust gas purifying device for engine
JPS6318123A (en) Catalytic converter
JPS6128808B2 (en)
US20200003103A1 (en) Exhaust aftertreatment system for an engine
JPH08296433A (en) Exhaust emission control device for gas engine
JPS6128810B2 (en)
JPS6143937Y2 (en)
JP2001140630A (en) Exhaust emission control device for internal combustion engine
CN217602752U (en) Oxygenation removes ammonia engine exhaust treatment device
US20100037591A1 (en) Method and Device for Purifying an Exhaust Gas Flow of a Lean-Burning Internal Combustion Engine
JPS5460613A (en) Exhaust gas purifier for internal combustion engine
JPH0427706A (en) Catalyst-type exhaust gas purifying device
JPS63160928U (en)