JPS6318123A - Catalytic converter - Google Patents

Catalytic converter

Info

Publication number
JPS6318123A
JPS6318123A JP16395086A JP16395086A JPS6318123A JP S6318123 A JPS6318123 A JP S6318123A JP 16395086 A JP16395086 A JP 16395086A JP 16395086 A JP16395086 A JP 16395086A JP S6318123 A JPS6318123 A JP S6318123A
Authority
JP
Japan
Prior art keywords
catalyst
upstream
exhaust gas
downstream
monolith
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16395086A
Other languages
Japanese (ja)
Inventor
Toshiaki Oka
岡 寿昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP16395086A priority Critical patent/JPS6318123A/en
Publication of JPS6318123A publication Critical patent/JPS6318123A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To suppress a laminar flow of exhaust gas in an upstream section of a catalytic converter having a plurality of monolith catalysts arranged in series, and effectively utilize the whole of the catalysts, by making a cell size of the upstream catalyst greater then that of the downstream catalyst. CONSTITUTION:A catalytic converter 21 comprises a substantially cylindrical converter case 22 and two monolith catalysts 23 and 24 arranged in series in the case 22 with cavities defined between axial ends of the catalysts. The converter case 22 includes a turbulence generating changer 28 defined at a central portion of a cylindrical shell 25 and upstream and downsteam catalyst chambers 29 and 30 defined on the upstream and downstream sides of the turbulence generating chamber 28. The catalysts 23 and 24 have a structure such that they are partitioned like a grid to define cells 31 and 32 which form axially extending exhaust gas passages. Each cell 31 of the upstream monolith catalyst 23 has a size greater than that of each cell 32 of the downstream monolith catalyst 24. Accordingly, a laminar flow of exhaust gas in the upstream section of the catalytic converter may be suppressed to maintain a turbulent condition of the exhaust gas, thereby improving the emission control.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、車両等に用いられるエンジンの排気系に装漏
されて、排気ガス中の有害成分を浄化処理する触媒コン
バータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalytic converter that is installed in an exhaust system of an engine used in a vehicle or the like to purify harmful components in exhaust gas.

[従来の技術と発明が解決しようとする問題点]従来か
らエンジンの排気ガス中の有害成分を低減させるものと
して、触媒中を通過させることにより、排気ガス中の有
害成分であるIIc、Co。
[Prior Art and Problems to be Solved by the Invention] Conventionally, harmful components in engine exhaust gas have been reduced by passing them through a catalyst, such as IIc and Co, which are harmful components in exhaust gas.

NOx等を無害な)−120,CO2、N2等に化学変
化させる触媒コンバータがある。この触媒=]コンバー
タ用いられる触媒のうら、格子状、ハニカム状等のセル
によって排気ガスの流れの方向に沿ってガス通路が形成
されたモノリス触媒は、1ノF気ガスの通り抜けが良く
、背圧が小さいという利点を右する。
There is a catalytic converter that chemically changes NOx, etc. into harmless ()-120, CO2, N2, etc. This catalyst is a monolithic catalyst in which gas passages are formed along the direction of exhaust gas flow by grid-like, honeycomb-like, etc. cells at the back of the catalyst used in the converter. It has the advantage of low pressure.

しかしながら、前記モノリス触媒では、ガス通路の整流
作用により出口に近づくに従つ−(排気ガス流1ま乱流
から層流に変化する。そのため、前記モノリス触媒では
、触媒表面でのCo、HC,NQx等の拡散、吸も反応
が1)F気ガスの流れの方向において円滑に進行せず、
乱流が維持されている上流側では反応が活発であるが、
下流側に行くに従ってセルの中央部を流れる排気ガスは
触媒に触れることなくそのまま通り抜け、浄化効率があ
まり良くないという不具合がある。
However, in the monolithic catalyst, the exhaust gas flow 1 changes from turbulent flow to laminar flow as it approaches the outlet due to the rectification effect of the gas passage. Therefore, in the monolithic catalyst, Co, HC, Diffusion and absorption reactions of NQx, etc. 1) do not proceed smoothly in the direction of flow of F gas,
The reaction is active on the upstream side where turbulence is maintained, but
Exhaust gas flowing through the center of the cell toward the downstream side passes through without touching the catalyst, resulting in poor purification efficiency.

これに対処するに、例えば、実開昭55−83516号
公報には、コンバータケース内に複数個の触媒を、軸方
向端面に空隙を右する状態で直列に収納し、触媒間の空
隙によって、層流となった排気ガス流を再び乱流化する
技術が開示されている。この従来例の概略を第7図ない
し第9図を参照して説明づる。第7図覧、上触媒コンバ
ータの断面図、第8図はモノリス触媒のセル密度を示ず
説明図、第9図は排気ガスの流れを承り説明図である。
To deal with this, for example, Japanese Utility Model Application Publication No. 55-83516 discloses that a plurality of catalysts are housed in series in a converter case with gaps on the end faces in the axial direction, and the gaps between the catalysts allow A technique has been disclosed for making a laminar exhaust gas flow turbulent again. The outline of this conventional example will be explained with reference to FIGS. 7 to 9. Figure 7 is a sectional view of the upper catalytic converter, Figure 8 is an explanatory diagram without showing the cell density of the monolith catalyst, and Figure 9 is an explanatory diagram showing the flow of exhaust gas.

第7図において触媒コンバータ1は、略円筒状の”」ン
バータケース2と、このコンバータケース2内に軸方向
端面間に空隙を有する状態で直列に収納された上流側モ
ノリス触媒3及び下流側モノリス触媒4とから構成され
ている。前記コンバータケース2は、筒状の胴部5と、
この胴部5の上流側に前記胴部5 J:り細径に形成さ
れた入口部6と、前記胴部5の下流側に前記入口部6と
同径に形成された出口部7とを有している。前記胴部5
は、中央部が前記上流側モノリス触媒3及σ下流側モノ
リス触媒4の位置決めのために若干細径化され、この細
径化された部分の内側に乱流化室8が形成され、この乱
流化室8の上流側に上流側触媒室9が、また、下流側に
下流側触媒室10が形成されている。そして、前記上流
側触媒室9に前記上流側モノリス触媒3が収納され、前
記下流側触媒室10に前記下流側モノリス触媒4が収納
されている。第8図(a)及び(b)に示スにうに、前
記下流側モノリス触媒3及び下流側モノリス触媒4には
、それぞれ例えば格子状に区画形成されたセル11及び
セル12によって、軸方向に排気ガス通路が形成されて
いる。
In FIG. 7, the catalytic converter 1 includes a substantially cylindrical inverter case 2, an upstream monolithic catalyst 3 and a downstream monolithic catalyst 3 housed in series with a gap between the axial end faces in the converter case 2. It is composed of a catalyst 4. The converter case 2 includes a cylindrical body portion 5;
An inlet portion 6 is formed on the upstream side of the body portion 5 to have a smaller diameter than the body portion 5, and an outlet portion 7 is formed on the downstream side of the body portion 5 to have the same diameter as the inlet portion 6. have. The body portion 5
The diameter of the central part is slightly reduced for positioning the upstream monolithic catalyst 3 and the downstream monolithic catalyst 4, and a turbulent flow chamber 8 is formed inside this reduced diameter part. An upstream catalyst chamber 9 is formed on the upstream side of the fluidization chamber 8, and a downstream catalyst chamber 10 is formed on the downstream side. The upstream monolithic catalyst 3 is housed in the upstream catalyst chamber 9, and the downstream monolithic catalyst 4 is housed in the downstream catalyst chamber 10. As shown in FIGS. 8(a) and 8(b), the downstream monolithic catalyst 3 and the downstream monolithic catalyst 4 are provided with cells 11 and 12, respectively, which are partitioned into a lattice shape, for example, in the axial direction. An exhaust gas passage is formed.

従来は、前記上流側モノリス触媒3と下流側モノリス触
媒4とは軸方向の長さが異なる場合があるが、そのセル
密度は同一であり、例えば現在(よ400セル/in2
が主流となっている。
Conventionally, the upstream monolithic catalyst 3 and the downstream monolithic catalyst 4 may have different lengths in the axial direction, but their cell densities are the same; for example, at present (400 cells/in2)
has become the mainstream.

ところで、近年、触媒の表面積を大きくする為セル寸法
の小さな触媒が用いられる傾向にある。
Incidentally, in recent years, there has been a tendency to use catalysts with smaller cell sizes in order to increase the surface area of the catalyst.

ところが、第6図(a)及び(b)に示すように触媒の
セル14の寸法が小さい程、整流性能が大きくなる。そ
のため、前記上流側モノリス触媒3のセル寸法を小さく
(セル密度を大きく)すると、第9図に示すように、排
気ガス13が上流側モノリス触iII!3によって高度
に整流され層流化される。
However, as shown in FIGS. 6(a) and 6(b), the smaller the size of the catalyst cells 14, the greater the rectification performance. Therefore, when the cell size of the upstream monolithic catalyst 3 is reduced (the cell density is increased), as shown in FIG. 9, the exhaust gas 13 reaches the upstream monolithic catalyst III! 3, the flow is highly rectified and laminarized.

この層流化された排気ガス13は乱流化室8にて若干乱
流化されるが、その乱流化度は小さく、従って、下流側
モノリス触媒4では未反応分子の触媒活性点への吸着が
進行しにくくなり、排気ガスの浄化性能が劣化してしま
うという問題点がある。
This laminarized exhaust gas 13 is made into a slightly turbulent flow in the turbulence chamber 8, but the degree of turbulence is small, and therefore, in the downstream monolithic catalyst 4, unreacted molecules reach catalytic active sites. There is a problem that adsorption becomes difficult to proceed and exhaust gas purification performance deteriorates.

[発IすJの目的] 本発明は上記事情に鑑みてなされたものであり、触媒全
体を有効に利用して排気ガス浄化性能を向上することの
できる触媒コンバータを提供することを目的としている
[Purpose of the present invention] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a catalytic converter that can effectively utilize the entire catalyst to improve exhaust gas purification performance. .

[問題点を解決づるための手段〕 本発明による触媒」ンバータは、複数のセルによるガス
通路が形成されたモノリス触媒を、排気ガスの流れの方
向に沿って、軸方向端面間に空隙を右する状態で直列に
複数個配設したものにおいて、上流側のモノリス触媒の
セル寸法を下流側のモノリス触媒のセル寸法よりも大き
くしたbのである。
[Means for Solving the Problems] The catalyst inverter according to the present invention is a monolithic catalyst in which gas passages are formed by a plurality of cells, and a gap is formed between the axial end faces along the flow direction of exhaust gas. In a case where a plurality of monolithic catalysts are arranged in series, the cell size of the upstream monolithic catalyst is larger than the cell size of the downstream monolithic catalyst.

[作用コ 上流側のモノリス触媒のセルj法を大ぎくすることによ
り、この上流側のモノリス触媒のセル内を通過する排気
ガスの層流化が抑えられ、この排気ガスは乱流を維持し
たまま下流側のモノリス触媒に流入してゆく。また、こ
の下流側のモノリス触媒のセル寸法は前記上流側のモノ
リス触媒のセル寸法よりも小さく、触媒の表面積が大き
い。そのため、上流側のモノリス触媒を流過した排気ガ
スは下流側のモノリス触媒でも効果的に浄化される。
[Effect: By increasing the cell j method of the upstream monolith catalyst, the laminar flow of the exhaust gas passing through the cells of the upstream monolith catalyst was suppressed, and the exhaust gas maintained a turbulent flow. It continues to flow into the monolithic catalyst on the downstream side. Further, the cell size of the monolithic catalyst on the downstream side is smaller than the cell size of the monolithic catalyst on the upstream side, and the surface area of the catalyst is larger. Therefore, the exhaust gas that has passed through the upstream monolith catalyst is also effectively purified by the downstream monolith catalyst.

[実施例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図ないし第3図は本発明の第1実施例に係り、第1
図は触媒コンバータの断面図、第2図はモノリス触媒の
セル密度を示づ説明図、第3図は排気ガスの流れを示す
説明図である。
Figures 1 to 3 relate to the first embodiment of the present invention.
The figure is a sectional view of the catalytic converter, FIG. 2 is an explanatory diagram showing the cell density of the monolith catalyst, and FIG. 3 is an explanatory diagram showing the flow of exhaust gas.

本実施例による触媒=Jンバータ21は、略円筒状のコ
ンバータケース22と、このコンバータケース22内に
軸方向端面間に空隙を右する状態で直列に収納された複
数、例えば2つのモノリス触媒、づなわら、上流側モノ
リス触媒23及び下流側モノリス触!!!24とから構
成されている。前記コンバータケース22は、筒状の)
シ(部25と、この胴部25の上流側に前記胴部25よ
り細径に形成され、図示しないエンジンの排気系に連通
ずる入口部26と、前記胴部25の下流側に例えば前記
入口部26と同径に形成された出口部27とを有してい
る。前記胴部25は、中央部が前記下流側モノリス触媒
23と下流側モノリス触媒24とを、軸方向端面23a
、24a闇に空隙を有する状態に位買決めするために若
干細径化され、あるいは中央部内周面に凸部等が形成さ
れている。この胴部25の中央部内に乱流化室28が形
成され、この乱流化室28の上流側に上流側触媒室29
が、また、下流側に下流側触媒室30が、それぞれ形成
されている。そして、前記上流側触媒室29に前記上流
側モノリス触媒23が収納され、前記下流側触媒室30
に前記下流側モノリス触媒24が収納されている。この
上流側モノリス触媒23及び下流側モノリス触媒24は
、白金(Pt)、パラジウム(Pd)、ロジウム<nh
>、または、これらの組み合せ笠が用いられ、酸化触媒
あるいは三元触媒として作用する。また、この上流側モ
ノリス触媒23及び下流側モノリス触!l!It24に
は、第2図(a)及び(b)に示すように、それぞれ、
例えば格子状に区画形成さ゛れたセル31及びセル32
によって、軸方向に排気ガス通路が形成されている。
The catalyst-J converter 21 according to this embodiment includes a substantially cylindrical converter case 22, and a plurality of, for example, two monolithic catalysts, housed in series with a gap between the axial end faces in the converter case 22. Now, the upstream monolith catalyst 23 and the downstream monolith are in contact! ! ! It consists of 24. The converter case 22 is cylindrical)
an inlet portion 26 formed on the upstream side of the body portion 25 to have a smaller diameter than the body portion 25 and communicating with an exhaust system of an engine (not shown); and an inlet portion 26 on the downstream side of the body portion 25, for example. The body part 25 has an outlet part 27 formed to have the same diameter as the part 26. The central part of the body part 25 connects the downstream monolithic catalyst 23 and the downstream monolithic catalyst 24 to the axial end surface 23a.
, 24a are made slightly smaller in diameter or have a convex portion formed on the inner circumferential surface of the central portion in order to position them with a gap in the center. A turbulence chamber 28 is formed in the center of the body 25, and an upstream catalyst chamber 29 is provided upstream of the turbulence chamber 28.
However, a downstream catalyst chamber 30 is also formed on the downstream side. The upstream monolith catalyst 23 is housed in the upstream catalyst chamber 29, and the downstream catalyst chamber 30
The downstream monolithic catalyst 24 is housed in the downstream side monolithic catalyst 24 . The upstream monolith catalyst 23 and the downstream monolith catalyst 24 are made of platinum (Pt), palladium (Pd), rhodium<nh
>, or a combination thereof is used to act as an oxidation catalyst or three-way catalyst. Also, this upstream monolith catalyst 23 and downstream monolith contact! l! In It24, as shown in FIG. 2(a) and (b), respectively,
For example, cells 31 and 32 partitioned into a grid pattern
An exhaust gas passage is formed in the axial direction.

本実施例では、前記上流側モノリス触媒23のセル31
0寸法が、前記下流側モノリス触ff24のセル32の
寸法よりも大きく(セル31の密度がセル32の密度よ
り小ざく)形成されている。
In this embodiment, the cells 31 of the upstream monolith catalyst 23
The zero dimension is larger than the size of the cells 32 of the downstream monolith contact ff24 (the density of the cells 31 is smaller than the density of the cells 32).

例えば、下流側モノリス触媒24のセル密度が400セ
ル/in2であるのに対して下流側モノリス触媒23の
セル密度が200セル/in2、あるいは、下流側モノ
リス触媒のセル密度が600レル/in2であるのに対
して上流側モノリス触媒のセル密度が3001?ル/1
n2であるようになっている。
For example, while the cell density of the downstream monolithic catalyst 24 is 400 cells/in2, the cell density of the downstream monolithic catalyst 23 is 200 cells/in2, or the cell density of the downstream monolithic catalyst is 600 cells/in2. On the other hand, the cell density of the upstream monolith catalyst is 3001? le/1
n2.

次に、以上の構成による実施例の作用について、第3図
を参照して説明する。
Next, the operation of the embodiment with the above configuration will be explained with reference to FIG. 3.

触媒コンバータ21の入[1部26から胴部25内に流
入した排気ガス33は、乱流状態でまず上流側モノリス
触媒23のセル31内を流過して、浄化される。この際
、前記上流側モノリス触媒23のセル31の寸法が大き
いので、排気ガス33は層流化が抑えられ、乱流を維持
したまま上流側モノリス触媒23から流出づる。次いで
、この排気ガス33は、乱流化室28によって乱流化度
が高められて、下流側モノリス触媒24に流入づる。
Exhaust gas 33 that has flowed into the body section 25 from the inlet section 26 of the catalytic converter 21 first flows through the cells 31 of the upstream monolith catalyst 23 in a turbulent state and is purified. At this time, since the cells 31 of the upstream monolithic catalyst 23 are large in size, the exhaust gas 33 is prevented from becoming a laminar flow, and flows out from the upstream monolithic catalyst 23 while maintaining a turbulent flow. Next, the degree of turbulence of the exhaust gas 33 is increased by the turbulence chamber 28, and the exhaust gas 33 flows into the downstream monolith catalyst 24.

この排気ガス33は、乱流状態が維持されているので、
この下流側モノリス触媒24の触媒に効率良く接触する
と共に、前記下流側モノリス触媒24のセル32の寸法
が前記上流側モノリス触媒23のセル31の寸法よりも
小さく、触媒の表面積が大きくなっているので、この下
流側モノリス触媒24にJ3いても効率良く浄化される
Since this exhaust gas 33 is maintained in a turbulent state,
In addition to efficiently contacting the catalyst of the downstream monolithic catalyst 24, the dimensions of the cells 32 of the downstream monolithic catalyst 24 are smaller than the dimensions of the cells 31 of the upstream monolithic catalyst 23, and the surface area of the catalyst is increased. Therefore, even if J3 is present in this downstream monolithic catalyst 24, it is efficiently purified.

このように、本実施例によれば、上流側モノリス触9X
23と、下流側モノリス触媒24とを有効に利用でき、
排気ガス33の浄化性能が向上される。
In this way, according to this embodiment, the upstream monolith contact 9X
23 and the downstream monolith catalyst 24 can be used effectively,
The purification performance of the exhaust gas 33 is improved.

第4図及び第5図は本発明の第2実廠例に係り、第4図
は触媒コンバータの断面図、第5図はモノリス触媒のヒ
ル密度を示す説明図である。
4 and 5 relate to a second practical example of the present invention; FIG. 4 is a sectional view of a catalytic converter, and FIG. 5 is an explanatory diagram showing the hill density of a monolithic catalyst.

本実施例による触媒コンバータ41は、コンバータケー
ス42内に、軸方向端面間に空隙を右づる状態で直列に
、上流側より順に第1のモノリス触媒43、第2のモノ
リス触媒44、及び第3のモノリス触媒45の3つのモ
ノリス触媒が収納されたものである。
The catalytic converter 41 according to the present embodiment has a first monolith catalyst 43, a second monolith catalyst 44, and a third monolith catalyst arranged in series in a converter case 42 with a gap between the end faces in the axial direction. Three monolithic catalysts, ie, monolithic catalyst 45, are housed therein.

前記3つのモノリス触媒のセル寸法は、最ら下流側の第
3のモノリス触媒45で最も小さく、この第3のモノリ
ス触媒45より上流側に行くに従って大きくなるように
(セル密度が下流側J、り上流側が小さく)形成されて
いる。例えば、第1のモノリス触媒43のセル4Gの密
度が200セル/ i n2 、第2のモノリス触媒4
4のセル47の音度が400セル/in2、第3のモノ
リス触媒45のセル48の密度が600ゼル/1n2で
あるようになっている。
The cell dimensions of the three monolithic catalysts are the smallest at the third monolithic catalyst 45 on the most downstream side, and increase as they go upstream from this third monolithic catalyst 45 (the cell density is on the downstream side J, The upstream side is smaller). For example, if the density of the cells 4G of the first monolith catalyst 43 is 200 cells/in2, and the density of the cells 4G of the first monolith catalyst 43 is 200 cells/in2,
The sound intensity of the fourth cell 47 is 400 cells/in2, and the density of the cell 48 of the third monolith catalyst 45 is 600 cells/in2.

本実施例によれば、上流側のモノリス触媒のセル寸法が
下流側のモノリス触媒のセル司法より大きいので、排気
ガスは、層流化が抑えられ乱流を1を持したまま3つの
モノリス触媒43.44.45を流過してひ化されるた
め、浄化性能が向上される。
According to this embodiment, since the cell size of the upstream monolithic catalyst is larger than that of the downstream monolithic catalyst, the exhaust gas flows through the three monolithic catalysts while suppressing laminar flow and maintaining turbulence. 43, 44, and 45 is passed through and agarized, the purification performance is improved.

その他の作用及び効果は第1実施例と同様である。Other functions and effects are similar to those of the first embodiment.

なお、本発明は前記実施例によって限定されず、例えば
、モノリス触媒のヒルは格子状のものに限らず、ハニカ
ム状や渦巻状等であっても良い。
Note that the present invention is not limited to the above embodiments, and for example, the hills of the monolithic catalyst are not limited to a lattice shape, but may be honeycomb-shaped, spiral-shaped, or the like.

[発明の効果] 以上説明したように本発明によれば、」二流側のモノリ
ス触媒のヒル寸法を下流側のヒル寸法よりも大きくする
ことによって、上流側での排気ガスの層流化が抑えられ
、排気ガスは乱流状態を維持したまま、次第に触媒の表
面積の大きい下流側へ流過してゆく1ζめ、触媒全体を
有効に利用でき、排気ガス浄化性能を向上することがで
きるという効果がある。
[Effects of the Invention] As explained above, according to the present invention, by making the hill size of the monolithic catalyst on the second-stream side larger than the hill size on the downstream side, laminarization of exhaust gas on the upstream side is suppressed. The effect is that the entire catalyst can be used effectively and the exhaust gas purification performance can be improved. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の第1実施例に係り、第1
図は触媒コンバータの断面図、第2図はモノリス触媒の
セル密度を示′g説朗図、第3図は排気ガスの流れを示
す説明図、第4図及び第5図は本発明の第2実施例に係
り、第4図は触媒コンバータの断面図、第5図はモノリ
ス触媒のセル密度を示づ説明図、第6図はセルの大きさ
と整流性能の関係を示す説明図、第7図ないし第9図は
従来例に係り、第7図は触媒コンバータの断面図、第8
図はモノリス触媒のセル密度を示iI説明図、第9図は
排気ガスの流れを示す説明図である。 21・・・触媒コンバータ 22・・・コンバータケース 23・・・上流側モノリス触媒 24・・・下流側モノリス触媒 26・・・入口部    27・・・出口部28・・・
乱流化室   31.32・・・セル33・−・排気ガ
Figures 1 to 3 relate to the first embodiment of the present invention.
Figure 2 is a cross-sectional view of the catalytic converter, Figure 2 is a diagram showing the cell density of the monolithic catalyst, Figure 3 is an explanatory diagram showing the flow of exhaust gas, Figures 4 and 5 are the second diagram of the present invention. Regarding the examples, Fig. 4 is a cross-sectional view of the catalytic converter, Fig. 5 is an explanatory drawing showing the cell density of the monolith catalyst, Fig. 6 is an explanatory drawing showing the relationship between cell size and rectification performance, and Fig. 7 is an explanatory drawing showing the relationship between cell size and rectification performance. 9 to 9 relate to the conventional example, FIG. 7 is a sectional view of the catalytic converter, and FIG. 8 is a sectional view of the catalytic converter.
The figure is an explanatory diagram showing the cell density of the monolithic catalyst, and FIG. 9 is an explanatory diagram showing the flow of exhaust gas. 21... Catalytic converter 22... Converter case 23... Upstream monolith catalyst 24... Downstream monolith catalyst 26... Inlet section 27... Outlet section 28...
Turbulence chamber 31.32...Cell 33--Exhaust gas

Claims (1)

【特許請求の範囲】[Claims] 複数のセルによるガス通路が形成されたモノリス触媒を
、排気ガスの流れの方向に沿って、軸方向端面間に空隙
を有する状態で直列に複数個配設した触媒コンバータに
おいて、上流側のモノリス触媒のセル寸法を下流側のモ
ノリス触媒のセル寸法よりも大きくしたことを特徴とす
る触媒コンバータ。
In a catalytic converter in which a plurality of monolithic catalysts each having a gas passage formed by a plurality of cells are arranged in series along the flow direction of exhaust gas with a gap between the axial end faces, the upstream monolithic catalyst A catalytic converter characterized in that the cell size of the catalyst is larger than that of a downstream monolith catalyst.
JP16395086A 1986-07-10 1986-07-10 Catalytic converter Pending JPS6318123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16395086A JPS6318123A (en) 1986-07-10 1986-07-10 Catalytic converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16395086A JPS6318123A (en) 1986-07-10 1986-07-10 Catalytic converter

Publications (1)

Publication Number Publication Date
JPS6318123A true JPS6318123A (en) 1988-01-26

Family

ID=15783903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16395086A Pending JPS6318123A (en) 1986-07-10 1986-07-10 Catalytic converter

Country Status (1)

Country Link
JP (1) JPS6318123A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2643418A1 (en) * 1989-02-17 1990-08-24 Toyoda Automatic Loom Works EXHAUST GAS PURIFIER DEVICE FOR DIESEL ENGINE
JPH06501531A (en) * 1990-08-06 1994-02-17 エミテツク ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Monolithic metal honeycomb body with varying number of channels
EP0617199A1 (en) * 1993-03-26 1994-09-28 Siemens Aktiengesellschaft Catalytic converter for reducing nitrogen oxide content in exhaust gases of an internal combustion engine
WO1997029835A1 (en) * 1996-02-12 1997-08-21 Siemens Aktiengesellschaft Arrangement for decomposition of nitrogen oxides in a gas stream and the use thereof
FR2775497A1 (en) * 1998-02-27 1999-09-03 Inst Francais Du Petrole NEW CATALYTIC ELEMENT FOR THE TREATMENT OF EXHAUST GASES FROM AN INTERNAL COMBUSTION ENGINE
EP1010462A1 (en) * 1998-12-19 2000-06-21 DaimlerChrysler AG Device for the catalytic conversion of a feedstock, particularely of a gas mixture
WO2006100003A1 (en) * 2005-03-24 2006-09-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust system with two exhaust treatment units
JP2006291812A (en) * 2005-04-08 2006-10-26 Mitsubishi Motors Corp Exhaust emission control device
WO2013187285A1 (en) * 2012-06-12 2013-12-19 日産自動車株式会社 Exhaust device for internal combustion engine
EP2871341A1 (en) * 2013-11-07 2015-05-13 Toyota Jidosha Kabushiki Kaisha Catalytic converter

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2643418A1 (en) * 1989-02-17 1990-08-24 Toyoda Automatic Loom Works EXHAUST GAS PURIFIER DEVICE FOR DIESEL ENGINE
JPH06501531A (en) * 1990-08-06 1994-02-17 エミテツク ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Monolithic metal honeycomb body with varying number of channels
US5328774A (en) * 1990-08-06 1994-07-12 Emitec Gesellschaft Fur Emissionstechnologie Mbh Monolithic metal honeycomb body with varying number of channels
EP0617199A1 (en) * 1993-03-26 1994-09-28 Siemens Aktiengesellschaft Catalytic converter for reducing nitrogen oxide content in exhaust gases of an internal combustion engine
US5833932A (en) * 1993-03-26 1998-11-10 Siemens Aktiengesellschaft Catalytic converter for nitrogen oxide reduction in the exhaust gas of an internal combustion engine
WO1997029835A1 (en) * 1996-02-12 1997-08-21 Siemens Aktiengesellschaft Arrangement for decomposition of nitrogen oxides in a gas stream and the use thereof
FR2775497A1 (en) * 1998-02-27 1999-09-03 Inst Francais Du Petrole NEW CATALYTIC ELEMENT FOR THE TREATMENT OF EXHAUST GASES FROM AN INTERNAL COMBUSTION ENGINE
EP1010462A1 (en) * 1998-12-19 2000-06-21 DaimlerChrysler AG Device for the catalytic conversion of a feedstock, particularely of a gas mixture
WO2006100003A1 (en) * 2005-03-24 2006-09-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust system with two exhaust treatment units
JP2009530521A (en) * 2005-03-24 2009-08-27 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Exhaust gas device with two exhaust gas treatment devices
US7597859B2 (en) 2005-03-24 2009-10-06 Emitec Gesellschaft Fuer Emissionstechnolgie Mbh Exhaust gas system with two exhaust gas treatment units
JP2006291812A (en) * 2005-04-08 2006-10-26 Mitsubishi Motors Corp Exhaust emission control device
JP4639919B2 (en) * 2005-04-08 2011-02-23 三菱自動車工業株式会社 Exhaust gas purification device
WO2013187285A1 (en) * 2012-06-12 2013-12-19 日産自動車株式会社 Exhaust device for internal combustion engine
EP2871341A1 (en) * 2013-11-07 2015-05-13 Toyota Jidosha Kabushiki Kaisha Catalytic converter

Similar Documents

Publication Publication Date Title
US7997071B2 (en) Exhaust flow distribution device
US3785781A (en) Apparatus for catalytically converting fluid
JP5099684B2 (en) Exhaust purification device
JP5066435B2 (en) Exhaust gas purification equipment for diesel engines
JP3643891B2 (en) Exhaust manifold for improved catalytic converter purification efficiency and life
WO2009148024A1 (en) Exhaust gas purifier and system for exhaust gas purification
JP2003074335A (en) Exhaust emission control device of internal combustion engine
US7282185B2 (en) Emission control apparatus
US8470253B2 (en) Exhaust flow distribution device
JPS6318123A (en) Catalytic converter
JP2003184546A (en) Method and device for catalytic conversion of gaseous pollutant in exhaust gas of combustion engine
JPH086582B2 (en) Engine exhaust gas purification catalytic device
JP2013509523A5 (en)
EP2370676B1 (en) Baffle for distribution of exhaust flow
JP7443822B2 (en) Exhaust purification device
JP2006257889A (en) Catalytic converter
CN213016502U (en) Catalyst for efficiently purifying tail gas
JPH08296433A (en) Exhaust emission control device for gas engine
TWM621226U (en) Improved catalyst monomer for welding and hole parts
JPH0533636A (en) Catalyst carrier structure of catalytic converter for internal combustion engine
JPH08144752A (en) Multistage catalyst converter
JPH0448934A (en) Metal honeycomb catalyst
JP2003056336A (en) Exhaust emission control device
TWM621227U (en) Improved catalyst monomer for welding and hole parts
JP2001020720A (en) Exhaust emission control device for diesel engine