JPH0427706A - Catalyst-type exhaust gas purifying device - Google Patents

Catalyst-type exhaust gas purifying device

Info

Publication number
JPH0427706A
JPH0427706A JP2129850A JP12985090A JPH0427706A JP H0427706 A JPH0427706 A JP H0427706A JP 2129850 A JP2129850 A JP 2129850A JP 12985090 A JP12985090 A JP 12985090A JP H0427706 A JPH0427706 A JP H0427706A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
nox
super
upstream side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2129850A
Other languages
Japanese (ja)
Other versions
JP2751562B2 (en
Inventor
Shinya Hirota
信也 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2129850A priority Critical patent/JP2751562B2/en
Publication of JPH0427706A publication Critical patent/JPH0427706A/en
Application granted granted Critical
Publication of JP2751562B2 publication Critical patent/JP2751562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To suppress the complete oxidation of small molecule HC and improve the purification factor of NOx by forming an exhaust gas pufifying device of more than two kinds of catalytic material of three-dimensionally framed crystal structure respectively different in super-cage diameter, and also forming this device in such a way that the distribution of the catalytic material with small super-cage diameter becomes large on the specific side. CONSTITUTION:An exhaust gas purifying device 2 is formed of three lean NOx catalysts in the order of catalysts A, B, C from the upstream side in the exhaust gas flow direction. The lean NOx catalysts A, B, C are placed in such a way that the one with a small super-cage diameter is disposed on the upstream side in the exhaust gas flow direction and the ones with larger super-cage diameters are disposed in due order onto the downstream side. Since the lean NOx catalyst with the small super-cage diameter efficiently attracting small molecule HC is distributed largely on the upstream side in the exhaust gas flow direction, the small molecule HC is attracted to the catalyst on the upstream side and used for the purifiction of NOx. The complete oxidation of the small molecule HC is thus suppressed, and the purification factor of NOx can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の触媒式排ガス浄化装置に関して、
特に空燃比がリーン側となる酸素過剰雰囲気でも、NO
xを高率に浄化できる触媒、いゎゆるリーンNOx触媒
を用いた触媒式排ガス浄化装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a catalytic exhaust gas purification device for an internal combustion engine.
Especially in an oxygen-rich atmosphere where the air-fuel ratio is on the lean side, NO
This invention relates to a catalytic exhaust gas purification device using a so-called lean NOx catalyst, which is a catalyst capable of purifying NOx at a high rate.

〔従来の技術] 低燃費化の要求から希薄混合気を燃焼させる(リーンバ
ーン)エンジンが知られている。このようなエンジンで
は設定空燃比をリーン例の酸素過剰雰囲気とするため、
排ガス中の有害成分のうち炭化水素(HC)、−酸化炭
素(CO)の酸化除去は容易であるが、窒素酸化物(N
Ox)は十分に還元除去することが困難となる。NOX
の発生量はリーン雰囲気とすることにより減少するが、
従来の三元触媒では、リーン領域での還元能力は発揮で
きず、NOxの発生を十分に抑制することができなかっ
た。
[Prior Art] Engines that burn a lean air-fuel mixture (lean burn) are known in response to demands for lower fuel consumption. In such engines, in order to set the air-fuel ratio to a lean atmosphere with excess oxygen,
Among the harmful components in exhaust gas, it is easy to oxidize and remove hydrocarbons (HC) and -carbon oxides (CO), but nitrogen oxides (N
Ox) is difficult to sufficiently reduce and remove. NOX
Although the amount of generation is reduced by creating a lean atmosphere,
Conventional three-way catalysts were unable to exhibit reduction ability in the lean region and were unable to sufficiently suppress the generation of NOx.

このため、リーン雰囲気でNOxを十分に浄化すること
のできる、いわゆるリーンNOx触媒が研究されており
、Cu等の遷移金属、或いは、貴金属をゼオライトにイ
オン交換担持した金属−ゼオライド触媒が、リーンNO
x触媒として提案されている。
For this reason, so-called lean NOx catalysts that can sufficiently purify NOx in a lean atmosphere are being researched, and metal-zeolide catalysts, in which transition metals such as Cu or precious metals are ion-exchanged supported on zeolite, are being used to purify lean NOx.
It has been proposed as an x catalyst.

例えば、本出願人は、特開平1−130735号公報に
おいて、遷移金属でイオン交換したゼオライトからなる
触媒材料を、耐火性担体上に担持させたリーンNOx触
媒を用いた触媒式排ガス浄化装置を提案した。この遷移
金属としては、Cu、 Co、 Cr、N1% Fe、
 ’Ags Mnが好ましく、特にCuが好ましい。
For example, in Japanese Patent Application Laid-Open No. 1-130735, the applicant proposed a catalytic exhaust gas purification device using a lean NOx catalyst in which a catalyst material made of zeolite ion-exchanged with a transition metal is supported on a refractory carrier. did. The transition metals include Cu, Co, Cr, N1% Fe,
'Ags Mn is preferred, and Cu is particularly preferred.

また、ゼオライトは3次元骨格の結晶構造を形成し、細
孔(スーパーケージ)を有する。そのスーパーケージ中
にはイオン交換により導入された遷移金属の活性サイト
が存在するため排ガス中のFICはスーパーケージに選
択的に吸着される。その吸着されたl(CがNOxと反
応し、NOxを還元して除去する。
Moreover, zeolite forms a three-dimensional skeleton crystal structure and has pores (supercages). Since active sites of transition metals introduced by ion exchange exist in the supercage, FIC in the exhaust gas is selectively adsorbed to the supercage. The adsorbed 1(C) reacts with NOx, reducing and removing NOx.

本出願人は、また、特開平1−135541号公報にお
いて、遷移金属に代えて貴金属でイオン交換したゼオラ
イトからなるリーンNOx触媒を用いた触媒式排ガス浄
化装置についても提案している。
The present applicant has also proposed, in Japanese Patent Application Laid-Open No. 1-135541, a catalytic exhaust gas purification device using a lean NOx catalyst made of zeolite ion-exchanged with a noble metal instead of a transition metal.

ゼオライトには、下記第1表に示すようにスーパーケー
ジ径の異なる各種のものがある。
Zeolites include various types with different supercage diameters, as shown in Table 1 below.

ところが、エンジンから排出されるHC成分には、様々
な分子サイズが存在するため、スーパーケージ構造がも
たらすゼオライトの分子篩い効果によってHC成分が選
択的に吸着される。従って単一のスーパーケージ構造の
みからなるリーンNOx触媒では、)ICの吸着ひいて
はNOXの還元、除去は不十分なものであった。
However, since the HC components discharged from the engine have various molecular sizes, the HC components are selectively adsorbed by the molecular sieving effect of zeolite brought about by the supercage structure. Therefore, with a lean NOx catalyst consisting of only a single supercage structure, the adsorption of IC and the reduction and removal of NOx were insufficient.

そこで、本出願人は特願昭63−292662号(未公
開)に於いて、w4(Cu)でイオン交換したゼオライ
トを用いたリーンNOx触媒について、スーパーケージ
径サイズの異なる2種以上のリーンNOx触媒を使用し
てエンジンから排出される様々な分子サイズのHC成分
の吸着を可能にし、NOxの浄化率を向上させた触媒式
排ガス浄化装置を提案している。
Therefore, in Japanese Patent Application No. 63-292662 (unpublished), the present applicant has proposed a lean NOx catalyst using zeolite ion-exchanged with w4 (Cu), which has two or more types of lean NOx catalysts with different supercage diameters. We are proposing a catalytic exhaust gas purification device that uses a catalyst to adsorb HC components of various molecular sizes discharged from an engine and improves the NOx purification rate.

[発明が解決しようとする課B] しかしながら、特願昭63−292662号では、HC
がNOxと反応するに至るまでに触媒中で完全酸化を生
ずる点が考慮されていないため、特に分子の大きさが小
さなHCが、NOxの浄化に有効な状態(部分酸化して
活性種となった状態)での吸着効率が十分でなく、NO
x浄化率を低下させる場合がある。即ち、排ガス浄化用
触媒装置中においてはリーンNOx触媒の酸化作用によ
り下流側程高温になるため、分子の小さなHC程、特に
下流側の高温状態において、酸化されやすい性質があり
、完全酸化されたHCはNOxの浄化に関与せず、IC
の完全酸化はNOxの浄化率を低下させる。
[Problem B to be solved by the invention] However, in Japanese Patent Application No. 63-292662, HC
This does not take into account that HC is completely oxidized in the catalyst before it reacts with NOx, so HC, which has a particularly small molecular size, is in a state that is effective for purifying NOx (partially oxidized and becomes active species). adsorption efficiency is not sufficient under
x It may reduce the purification rate. In other words, in the exhaust gas purification catalyst device, the temperature becomes higher downstream due to the oxidizing action of the lean NOx catalyst, so HC with smaller molecules is more likely to be oxidized, especially in the high temperature state on the downstream side, and is not fully oxidized. HC does not participate in NOx purification, IC
Complete oxidation of NOx reduces the NOx purification rate.

そこで、本発明は、酸化されやすい分子の小さなHCを
、触媒中の排ガスの流れ方向の上流側で比較的低温状態
においてリーンNOx触媒に吸着させて、NOxを浄化
させる。このようにして、分子の小さな)lCの完全酸
化を抑制し、NOxの浄化率を向上させることを目的と
する。
Therefore, the present invention purifies NOx by adsorbing HC, which has small molecules that are easily oxidized, on a lean NOx catalyst at a relatively low temperature on the upstream side of the catalyst in the flow direction of exhaust gas. In this way, the purpose is to suppress the complete oxidation of 1C, which is a small molecule, and to improve the NOx purification rate.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、遷移金属、或い
は、貴金属でイオン交換した酸素過剰雰囲気での還元触
媒材料を、耐火性担体上に担持した触媒式排ガス浄化装
置において、スーパーケージ径が異なる2種以上の、3
次元骨格の結晶構造を有する触媒材料からなり、スーパ
ーケージ径が小さな触媒材料の分布が触媒装置中の排ガ
スの流れ方間の上流側で多くなるように構成する。
In order to achieve the above object, the present invention provides a catalytic exhaust gas purification device in which a reducing catalyst material in an oxygen-rich atmosphere is ion-exchanged with a transition metal or a noble metal and supported on a refractory carrier. 2 or more different types, 3
The catalytic converter is made of a catalytic material having a dimensional skeleton crystal structure, and the catalytic material has a small supercage diameter, and is configured so that the distribution of the catalytic material is increased on the upstream side of the flow direction of the exhaust gas in the catalytic device.

〔作用〕[Effect]

上記の如く構成された、触媒式排ガス浄化装置では、分
子の小さなI(Cを効率よく吸着するス−バーケージ径
の小さなリーンNOX触媒が、触媒装置中の排ガスの流
れ方向の上流側に多く分布するため、分子の小さなHC
は、上流側で触媒に吸着されてNOxの浄化に利用され
る。このため、酸化されやすい分子の小さなHCの完全
酸化が抑制され、NOXの浄化率を向上させる。
In the catalytic exhaust gas purification device configured as described above, the lean NOx catalyst with a small super cage diameter that efficiently adsorbs small I (C) molecules is distributed in large numbers on the upstream side of the exhaust gas flow direction in the catalytic device. Therefore, HC with small molecules
is adsorbed by the catalyst on the upstream side and used to purify NOx. Therefore, complete oxidation of HC, which is a small molecule that is easily oxidized, is suppressed, and the NOx purification rate is improved.

[実施例] 以下、添付図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の全体構成図であり、1はエンジン、2
は排ガス浄化装置である。排ガス浄化装置2は3つのリ
ーンNOx触媒からなり、排ガスの流れ方向の上流側か
ら触媒A、触媒B、触媒Cである。エンジン1で燃焼し
た混合気の排ガスは、エギゾーストマニホルド3、エギ
ゾーストバイブ4を経て排ガス浄化装置2に入る。排ガ
スは排ガス浄化装置2にて有害成分が浄化され、排気管
5、マフラ(図示せず)を経て大気に放出される。
FIG. 1 is an overall configuration diagram of the present invention, where 1 is an engine, 2
is an exhaust gas purification device. The exhaust gas purification device 2 consists of three lean NOx catalysts, which are catalyst A, catalyst B, and catalyst C from the upstream side in the flow direction of exhaust gas. Exhaust gas from the mixture combusted by the engine 1 enters the exhaust gas purification device 2 via an exhaust manifold 3 and an exhaust vibe 4. The exhaust gas is purified of harmful components by an exhaust gas purification device 2, and is released into the atmosphere through an exhaust pipe 5 and a muffler (not shown).

排ガス浄化装置2は、第2図の斜視図において示すよう
に、コーディエライト類の正方形断面のハニカムを有す
るモノリス担体に後述する組成の触媒材料をコーティン
グした3種類のリーンNOx触媒A、、B、Cを、位相
が一致するように結合して一体化したものである。
As shown in the perspective view of FIG. 2, the exhaust gas purification device 2 includes three types of lean NOx catalysts A, B, which are coated with a catalyst material having the composition described below on a monolith support having a honeycomb of square cross section made of cordierite. , C are combined and integrated so that their phases match.

リーンNOx触媒A、B、Cは、排ガスの流れ方向の上
流側へスーパーケージ径の小さいものを配置し、下流側
へ順番にスーパーケージ径が大きなものを配置している
。リーンNOx触媒Aは第1表に示す2種の酸素環の連
結構造からなるスーパーケージを持つフェリエライトを
配置し、その下流側のリーンNOx触媒BにはリーンN
Ox触媒Aよりもスーパーケージ径が大きな、第1表に
示すスーパーケージ構造を持つZSl’l−5を配置し
、更に下流側のリーンNOx触媒CにはリーンNOx触
媒Bよりもスーパーケージ径が大きな、第1表に示すス
ーパーケージ構造を持つモルデナイトを配置した。
Among the lean NOx catalysts A, B, and C, those with smaller super cage diameters are arranged on the upstream side in the flow direction of exhaust gas, and those with larger super cage diameters are arranged in order on the downstream side. Lean NOx catalyst A is equipped with ferrierite having a supercage consisting of a connected structure of two types of oxygen rings as shown in Table 1, and lean NOx catalyst B on the downstream side is equipped with lean NOx catalyst B.
ZSl'l-5, which has a supercage structure shown in Table 1 and has a larger supercage diameter than Ox catalyst A, is arranged, and the lean NOx catalyst C located further downstream has a supercage diameter larger than that of lean NOx catalyst B. A large piece of mordenite with the supercage structure shown in Table 1 was placed.

スーパーケージ構造は各材料によって異なるが、例えば
フェリエライトでは、第7図に示す様な連結構造をして
いる。スーパーケージは符号6で示される。
Although the supercage structure differs depending on the material, for example, ferrierite has a connected structure as shown in FIG. 7. The supercage is designated by 6.

本実施例では、3種類のリーンNOX触媒A、  BC
を一体とした排ガス浄化装置2を提案したが、第3図に
示す様に、モノリス担体にスーパーケージ径の異なるリ
ーンNOx触媒材料を各々担持させたリーンNOx触媒
a、b、cを含む3つの排ガス浄化装置21.22.2
3を持つ構造としてもよい。なお、スーパーケージ径の
大きさは、リーンNOX触媒a、b、cの順で太き(な
るように配置する。
In this example, three types of lean NOx catalysts A and BC are used.
As shown in Fig. 3, we have proposed an exhaust gas purification device 2 that integrates three lean NOx catalysts a, b, and c, each of which has a monolithic carrier supporting lean NOx catalyst materials with different supercage diameters. Exhaust gas purification device 21.22.2
It is also possible to have a structure having 3. The super cage diameters are arranged so that the lean NOX catalysts a, b, and c become thicker in this order.

本実施例では、3種類のリーンNOx触媒を用いた例を
示したが、スーパーケージ径の異なるリーンNOx触媒
を2つ、或いは、4つ以上としてもよい。
In this embodiment, an example is shown in which three types of lean NOx catalysts are used, but two, four or more lean NOx catalysts having different super cage diameters may be used.

また、本実施例ではモノリス担体の例で示したが、ベレ
ット状のものにおいても本発明は有効である。
In addition, although the monolith carrier was used as an example in this example, the present invention is also effective in a pellet-shaped carrier.

;比較例1乙 本実施例で使用した、スーパーケージ径が小さなリーン
NOx触媒Aを、3つ並べた排ガス浄化装置。
Comparative Example 1 B: An exhaust gas purification device in which three Lean NOx Catalysts A with small super cage diameters used in this example are arranged.

1比較例2゜ 本実施例で使用した、スーパーケージ径が大きなリーン
NOx触媒Cを、3つ並べた排ガス浄化装置。
1 Comparative Example 2゜Exhaust gas purification device in which three Lean NOx Catalysts C with large super cage diameters used in this example are arranged.

[性能評価試験] 本実施例と比較例1及び比較例2の排ガス浄化装置につ
いて、下記条件でHCとNOXの浄化率を測定した。な
お、空燃比(A/F )は25である。
[Performance Evaluation Test] The purification rates of HC and NOX were measured for the exhaust gas purification devices of this example, comparative examples 1 and 2 under the following conditions. Note that the air-fuel ratio (A/F) was 25.

試験条件 ・エンジン:ディーゼルエンジン(3660cc)、1
200r、p、m、  −15kgm。
Test conditions/Engine: Diesel engine (3660cc), 1
200r, p, m, -15kgm.

′AC: 5000pp儀 (炭素原子換算)を基本に
した。
'AC: Based on 5000pp (carbon atom equivalent).

・触 媒 :400セル/インチのモノリス担体に各触
媒材料をコートして、排ガ スの流れ方向の上流側より触媒A、 触媒B、触媒Cの3つのリーン NOx触媒からなる。
・Catalyst: A monolithic carrier of 400 cells/inch is coated with each catalyst material, and consists of three lean NOx catalysts: catalyst A, catalyst B, and catalyst C from the upstream side in the flow direction of exhaust gas.

・分 析 :HC・・・MEXA−1120TFI−F
・Analysis: HC...MEXA-1120TFI-F
.

NOx−MEXA−8120、 (共に、堀場製作所製の分析器)。NOx-MEXA-8120, (Both analyzers manufactured by Horiba).

試験結果を第4図、第5図、第6図に示す。The test results are shown in FIGS. 4, 5, and 6.

これらの図に示すように、HCの吸着率とl(Cの浄化
率に相関があると考えられる。
As shown in these figures, it is thought that there is a correlation between the HC adsorption rate and the l(C purification rate).

第4図は、本実施例の評価試験結果を示す。各リーンN
OX触媒A、B、Cてスーパーケージ径に合った分子サ
イズのHCが吸着され、IIcの浄化率(吸着率)は触
媒長さに対して上昇する。その結果、NOxの浄化率も
、触媒長さに対して上昇する。つまり、排ガス中の)I
Cが高効率で吸着されるため、HCの浄化率が向上し、
これにともなってNOxの浄化率も向上する。つまり、
HC、NOxともに浄化率が高い。
FIG. 4 shows the evaluation test results of this example. Each lean N
OX catalysts A, B, and C adsorb HC with a molecular size that matches the supercage diameter, and the purification rate (adsorption rate) of IIc increases with the catalyst length. As a result, the NOx purification rate also increases with respect to the catalyst length. In other words, I in the exhaust gas
Since C is adsorbed with high efficiency, the purification rate of HC is improved,
Along with this, the NOx purification rate also improves. In other words,
Both HC and NOx purification rates are high.

第5図は、比較例1の試験結果を示す。本実施例で使用
した、スーパーケージ径が小さなリーンNOx触媒Aを
3つ並べており、中央及び下流側では触媒中の温度が下
流側程高くなるため、吸着し得る分子サイズの小さなH
Cは、酸化されてNOxの浄化機能が低下し、NOxの
浄化率はあまり上昇しない。
FIG. 5 shows the test results of Comparative Example 1. Three lean NOx catalysts A with small supercage diameters used in this example are lined up, and since the temperature inside the catalyst becomes higher in the center and downstream, the smaller the molecular size that can be adsorbed,
C is oxidized and its NOx purification function decreases, and the NOx purification rate does not increase much.

第6図は、比較例2の試験結果を示す。本実施例で使用
したスーパーケージ径が大きなリーンNOx触媒Cを3
つ並べており、主に吸着され得る分子サイズの大きなH
Cは酸化されにくいため、触媒長さに対してNOxの浄
化率は、はぼ−様に上昇するが、第5図と比べると全体
としてIIC及びNOx浄化率は低い。
FIG. 6 shows the test results of Comparative Example 2. The lean NOx catalyst C used in this example with a large super cage diameter was
The large H molecules that can be mainly adsorbed are
Since C is difficult to oxidize, the NOx purification rate rises in a roughly similar manner to the length of the catalyst, but the IIC and NOx purification rates are lower as a whole compared to FIG. 5.

[発明の効果] 以上説明したように、本発明によれば、分子の小さなF
ICの完全酸化が抑えられ、NOx浄化率が向上する。
[Effects of the Invention] As explained above, according to the present invention, the small molecular F
Complete oxidation of the IC is suppressed and the NOx purification rate is improved.

また、スーパーケージ径の異なる2種以上のリーンNO
x触媒としていることにより、各種分子サイズの)IC
を効率よく吸着してリーンNOX触媒として利用でき、
NOxの浄化率の高い触媒式排ガス浄化装置を提供でき
る。
In addition, two or more types of Lean NO with different super cage diameters
By using x catalyst, IC of various molecular sizes can be produced.
can be efficiently adsorbed and used as a lean NOx catalyst.
A catalytic exhaust gas purification device with a high NOx purification rate can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による実施例の排ガス浄化装置を備え
たエンジンの全体構成図、 第2図は、本発明による実施例の排ガス浄化装置の斜視
図、 第3図は、他の実施例の排ガス浄化装置の構成図、 第4図は、本実施例のHCとNOXの浄化率性能試験結
果を表す図、 第5図は、比較例1の浄化率性能試験結果を表す図、 第6図は、比較例2の浄化率性能評価結果を表す図、 第7図は、フェリエライトの結晶構造を表す図、を示す
ものである。 符号の説明 1・・・・・・エンジン 2・・・・・・排ガス浄化装置 A・・・・・・リーンNOx触媒A B・・・・・・リーンNOx触媒B C・・・・・・リーンNOX触媒C 6・・・・・・スーパーケージ 出願人  トヨタ自動車株式会社 第2図 第3図 6スーパーブーレ′
Fig. 1 is an overall configuration diagram of an engine equipped with an exhaust gas purification device according to an embodiment of the present invention, Fig. 2 is a perspective view of an exhaust gas purification device according to an embodiment of the present invention, and Fig. 3 is another embodiment. Fig. 4 is a diagram showing the results of the HC and NOX purification efficiency test of this example; Fig. 5 is a diagram showing the results of the purification efficiency test of Comparative Example 1; The figure shows the purification rate performance evaluation results of Comparative Example 2, and FIG. 7 shows the crystal structure of ferrierite. Explanation of symbols 1... Engine 2... Exhaust gas purification device A... Lean NOx catalyst A B... Lean NOx catalyst B C... Lean NOX Catalyst C 6... Super Cage Applicant Toyota Motor Corporation Figure 2 Figure 3 6 Super Bure'

Claims (1)

【特許請求の範囲】 遷移金属、或いは、貴金属でイオン交換した酸素過剰雰
囲気での還元触媒材料を、耐火性担体上に担持した内燃
機関の触媒式排ガス浄化装置において、 前記触媒材料は、スーパーケージ径が異なる2種以上の
、3次元骨格の結晶構造を有する触媒材料からなり、 スーパーケージ径が小さな触媒材料の分布を、前記浄化
装置中の排ガスの流れ方向の上流側に、多くしたことを
特徴とする内燃機関の触媒式排ガス浄化装置。
[Scope of Claim] A catalytic exhaust gas purification device for an internal combustion engine, in which a catalyst material for reduction in an oxygen-rich atmosphere, which has been ion-exchanged with a transition metal or a noble metal, is supported on a refractory carrier, wherein the catalyst material is a super cage. The catalyst material is composed of two or more types of catalyst materials having three-dimensional skeleton crystal structures with different diameters, and the catalyst material having a small super cage diameter is distributed more on the upstream side in the flow direction of the exhaust gas in the purification device. Features: Catalytic exhaust gas purification device for internal combustion engines.
JP2129850A 1990-05-18 1990-05-18 Catalytic exhaust gas purification system for internal combustion engine Expired - Fee Related JP2751562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129850A JP2751562B2 (en) 1990-05-18 1990-05-18 Catalytic exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129850A JP2751562B2 (en) 1990-05-18 1990-05-18 Catalytic exhaust gas purification system for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0427706A true JPH0427706A (en) 1992-01-30
JP2751562B2 JP2751562B2 (en) 1998-05-18

Family

ID=15019795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129850A Expired - Fee Related JP2751562B2 (en) 1990-05-18 1990-05-18 Catalytic exhaust gas purification system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2751562B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544387A (en) * 1993-04-15 1996-08-13 Yoshida Kogyo K.K. Curtain attachment connector assembly and curtain attachment connector
JP2002190739A (en) * 2000-12-22 2002-07-05 Kawasaki Microelectronics Kk Semiconductor device
JP2011125846A (en) * 2009-11-19 2011-06-30 Ibiden Co Ltd Honeycomb structure and apparatus for cleaning exhaust gas
JPWO2013141221A1 (en) * 2012-03-19 2015-08-03 富士電機株式会社 Manufacturing method of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544387A (en) * 1993-04-15 1996-08-13 Yoshida Kogyo K.K. Curtain attachment connector assembly and curtain attachment connector
JP2002190739A (en) * 2000-12-22 2002-07-05 Kawasaki Microelectronics Kk Semiconductor device
JP4500439B2 (en) * 2000-12-22 2010-07-14 川崎マイクロエレクトロニクス株式会社 Semiconductor device
JP2011125846A (en) * 2009-11-19 2011-06-30 Ibiden Co Ltd Honeycomb structure and apparatus for cleaning exhaust gas
JPWO2013141221A1 (en) * 2012-03-19 2015-08-03 富士電機株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2751562B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
JP2887984B2 (en) Exhaust gas purification device for internal combustion engine
JP2967113B2 (en) Exhaust gas purification method
JP3311012B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP5306871B2 (en) Saddle riding
JP3282344B2 (en) Exhaust gas purification device
JP2008296090A (en) Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method
JPH0427706A (en) Catalyst-type exhaust gas purifying device
JP3591186B2 (en) Exhaust purification catalyst device for internal combustion engine
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
JP3458624B2 (en) Exhaust purification catalyst device for internal combustion engine
JP3736373B2 (en) Engine exhaust purification system
JP4501166B2 (en) Exhaust gas purification system
JP3419310B2 (en) Exhaust gas purification device for internal combustion engine
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JPH1057820A (en) Exhaust gas purifying catalyst for diesel engine
JP3596026B2 (en) Method for producing catalyst for purifying exhaust gas of engine
JP2008274807A (en) Exhaust emission control device
JPH0422707A (en) Catalyst converter
JPH0568888A (en) Waste gas cleaning catalyst
JP3414808B2 (en) Hydrocarbon adsorbent in exhaust gas
JPH07100335A (en) Nitrogen oxide removing method
JPH04267950A (en) Catalyst for purifying exhaust gas
JP4145019B2 (en) Exhaust gas purification device
JP2004322022A (en) Catalyst for cleaning exhaust gas
JP2005186002A (en) Exhaust gas decontamination apparatus for diesel engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees