JPH04267950A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPH04267950A
JPH04267950A JP3077377A JP7737791A JPH04267950A JP H04267950 A JPH04267950 A JP H04267950A JP 3077377 A JP3077377 A JP 3077377A JP 7737791 A JP7737791 A JP 7737791A JP H04267950 A JPH04267950 A JP H04267950A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
platinum
copper
honeycomb carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3077377A
Other languages
Japanese (ja)
Inventor
Takahide Uchiumi
内海 恭秀
Koichi Kasahara
笠原 光一
Kazunobu Ishibashi
一伸 石橋
Shinichi Matsumoto
伸一 松本
Senji Kasahara
泉司 笠原
Kazuhiko Sekizawa
関沢 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Tosoh Corp
Toyota Motor Corp
Original Assignee
Cataler Industrial Co Ltd
Tosoh Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd, Tosoh Corp, Toyota Motor Corp filed Critical Cataler Industrial Co Ltd
Priority to JP3077377A priority Critical patent/JPH04267950A/en
Publication of JPH04267950A publication Critical patent/JPH04267950A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To provide a catalyst for purifying exhaust gas to reduce NOx in the atmosphere of excessive oxygen at a high elimination ratio. CONSTITUTION:An H-type zeolite catalyst is positioned at the inflow side of exhaust gas, while another type of zeolite catalyst comprising at least one sort of catalyst component selected from a group consisting of copper, cobalt, platinum, palladium, rhodium, iridium, and ruthenium is placed at the outflow side of the exhaust gas.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、内燃機関等から排出さ
れる有害成分を浄化する触媒、更に詳しくは、酸素過剰
雰囲気下のNOX を高率に浄化するための排ガス浄化
用触媒に関するものである。
[Field of Industrial Application] The present invention relates to a catalyst for purifying harmful components emitted from internal combustion engines, etc., and more specifically to a catalyst for purifying exhaust gas for purifying NOx in an oxygen-rich atmosphere at a high rate. be.

【0002】0002

【従来の技術】自動車の排気ガス浄化用触媒として、一
酸化炭素(CO)及び炭化水素(HC)の酸化と、窒素
酸化物(NOX )の還元を同時に行う触媒が使用され
ている。このような触媒は、基本的にはコーディエライ
ト等の耐火性担体にγ−アルミナスラリーを塗布し、乾
燥した後、白金(Pt)、パラジウム(Pd)、ロジウ
ム(Rh)等の金属を担持したものである。
2. Description of the Related Art Catalysts that simultaneously oxidize carbon monoxide (CO) and hydrocarbons (HC) and reduce nitrogen oxides (NOX) are used as exhaust gas purifying catalysts for automobiles. Such catalysts are basically made by coating a γ-alumina slurry on a refractory support such as cordierite, drying it, and then supporting metals such as platinum (Pt), palladium (Pd), and rhodium (Rh). This is what I did.

【0003】今まで使用され又は提案されている触媒は
、エンジンの設定空燃比によって浄化性能が大きく左右
され、稀薄混合気つまり空燃比が大きいリーン側では燃
焼後も酸素(O2 )の量が多くなり、酸化作用が活発
に、還元作用が不活発になる。この逆に、空燃比が小さ
いリッチ側では酸化作用が不活発に、還元作用が活発に
なる。この酸化と還元のバランスがとれる理論空燃比(
A/F=14.6)付近で触媒は最も有効に働く。
[0003] The purification performance of the catalysts that have been used or proposed so far is greatly affected by the set air-fuel ratio of the engine, and in lean mixtures, that is, on the lean side where the air-fuel ratio is high, the amount of oxygen (O2) is large even after combustion. The oxidizing action becomes active and the reducing action becomes inactive. On the contrary, on the rich side where the air-fuel ratio is small, the oxidizing action becomes inactive and the reducing action becomes active. The stoichiometric air-fuel ratio that balances this oxidation and reduction (
The catalyst works most effectively near A/F=14.6).

【0004】従って、触媒を用いる場合排気ガス浄化装
置を取り付けた自動車では、排気系の酸素濃度を検出し
て、混合気を理論空燃比付近に保つようにフィードバッ
ク制御が行われている。
[0004] Therefore, when using a catalyst, in an automobile equipped with an exhaust gas purification device, the oxygen concentration in the exhaust system is detected and feedback control is performed to maintain the air-fuel mixture near the stoichiometric air-fuel ratio.

【0005】また、近年、酸素が過剰なリーン雰囲気下
において使用される触媒として、銅をゼオライトにイオ
ン交換担持した触媒や、白金(Pt)、パラジウム(P
d)、ロジウム(Rh)、イリジウム(Ir)、ルテニ
ウム(Ru)から選ばれる貴金属をイオン交換担持した
触媒が、特開昭60−97047号や特開平1−135
541号等に開示されている。
[0005] In addition, in recent years, catalysts in which copper is ion-exchanged supported on zeolite, platinum (Pt), and palladium (Pt) have been used as catalysts in lean atmospheres with excess oxygen.
d) A catalyst in which a noble metal selected from rhodium (Rh), iridium (Ir), and ruthenium (Ru) is ion-exchange supported is disclosed in JP-A-60-97047 and JP-A-1-135.
No. 541, etc.

【0006】[0006]

【発明が解決しようとする課題】自動車においては、酸
素が過剰なリーン雰囲気下では、排気ガス中の有害成分
のうち炭化水素(HC)、(CO)は酸化除去できても
、NOX は還元除去できないという問題があった。
[Problem to be solved by the invention] In automobiles, in a lean atmosphere with excess oxygen, among the harmful components in exhaust gas, hydrocarbons (HC) and (CO) can be removed by oxidation, but NOX is removed by reduction. The problem was that I couldn't do it.

【0007】また、前記のように、酸素が過剰なリーン
雰囲気下において使用される触媒として、銅をゼオライ
トにイオン交換担持した触媒や、白金(Pt)、パラジ
ウム(Pd)、ロジウム(Rh)、イリジウム(Ir)
、ルテニウム(Ru)からなる群から選ばれる貴金属を
イオン交換担持した触媒が、特開昭60−97047号
や特開平1−135541号等に開示されているが、N
OX 浄化性能が充分でなく、実用化には更に改良を要
求されている。
[0007] As mentioned above, as a catalyst used in a lean atmosphere with excess oxygen, there are catalysts in which copper is ion-exchanged supported on zeolite, platinum (Pt), palladium (Pd), rhodium (Rh), etc. Iridium (Ir)
A catalyst in which a noble metal selected from the group consisting of
OX purification performance is not sufficient, and further improvements are required for practical use.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであって、排気ガス流入側に
H型ゼオライト触媒、排気ガス流出側が銅(Cu)、コ
バルト(Co)、白金(Pt)、パラジウム(Pd)、
ロジウム(Rh)、イリジウム(Ir)、ルテニウム(
Ru)からなる群から少なくとも1種以上の触媒成分を
含有するゼオライト触媒であることを特徴とする排ガス
浄化用触媒である。触媒は一個のみの使用でも、複数個
の使用でも差支えない。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems. , platinum (Pt), palladium (Pd),
Rhodium (Rh), Iridium (Ir), Ruthenium (
This exhaust gas purifying catalyst is characterized in that it is a zeolite catalyst containing at least one catalyst component from the group consisting of (Ru). Only one catalyst or a plurality of catalysts may be used.

【0009】[0009]

【作用】NOX を浄化する要因については明らかでは
ないが、H型ゼオライトは高いHC吸着能を有している
ため、低温時には主にHCを吸着し、NOX が排気ガ
ス流出側の銅、コバルト、白金、ロジウム、イリジウム
、ルテニウムからなる群から少なくとも1種以上の触媒
成分を含有するゼオライト触媒で浄化され始める高温時
には、低温時に吸着されたHCが脱離して排気ガス流出
側の触媒上でNOX を還元し、NOX の浄化率を促
進すると考えられる。
[Effect] The factors that purify NOX are not clear, but since H-type zeolite has a high HC adsorption capacity, it mainly adsorbs HC at low temperatures, and NOX At high temperatures, when purification begins with a zeolite catalyst containing at least one catalyst component from the group consisting of platinum, rhodium, iridium, and ruthenium, HC adsorbed at low temperatures is desorbed and NOx is released on the catalyst on the exhaust gas outlet side. It is thought that this reduces NOx and promotes the purification rate of NOx.

【0010】0010

【実施例】以下に、本発明の実施例について説明する。 実施例1 H型ゼオライト100部と市販のシリカゾル50部と純
水とを混合したゼオライトスラリーを調整し、直径93
mm、長さ100mm、300セルのコーディエライト
質ハニカム担体の長さの1/4部分にハニカム担体1リ
ットル当たり120gのH型ゼオライトをコートした。 残りの3/4部分に、ゼオライト100部と市販のシリ
カゾル50部と純水とを混合したゼオライトスラリーを
ハニカム担体1リットル当たり120gのゼオライトを
コートした。
[Examples] Examples of the present invention will be described below. Example 1 Zeolite slurry was prepared by mixing 100 parts of H-type zeolite, 50 parts of commercially available silica sol, and pure water.
A 1/4 length portion of a cordierite honeycomb carrier having a length of 100 mm and 300 cells was coated with 120 g of H-type zeolite per liter of the honeycomb carrier. The remaining 3/4 portion was coated with 120 g of zeolite per liter of the honeycomb carrier using a zeolite slurry prepared by mixing 100 parts of zeolite, 50 parts of commercially available silica sol, and pure water.

【0011】次に、該ゼオライトをコートしたハニカム
担体の長さの3/4部分を酢酸銅溶液にアンモニア水を
添加し、pHを11に調整した溶液中に浸漬し、銅をハ
ニカム担体1リットル当たり4gになるようイオン交換
担持を行ない触媒Aを得た。
Next, 3/4 of the length of the honeycomb carrier coated with the zeolite was immersed in a copper acetate solution with ammonia water added to adjust the pH to 11, and 1 liter of copper was added to the honeycomb carrier. Catalyst A was obtained by ion-exchange loading so that the weight was 4 g.

【0012】実施例2 実施例1の酢酸銅溶液を酢酸コバルト溶液に代えた以外
は実施例1と同様の方法でコバルトをハニカム担体1リ
ットル当たり4gになるよう担持を行い触媒Bを得た。
Example 2 Catalyst B was obtained by carrying cobalt in an amount of 4 g per liter on a honeycomb carrier in the same manner as in Example 1 except that the copper acetate solution in Example 1 was replaced with a cobalt acetate solution.

【0013】実施例3 実施例1と同様にゼオライトコートしたハニカム担体の
長さの3/4部分を酢酸銅溶液にアンモニア水を添加し
pHを11に調整した溶液中に浸漬し、銅をハニカム担
体1リットル当たり4gになるようイオン交換担持を行
なった。更に、銅をイオン交換担持した部分を4価白金
アンミン溶液中に浸漬し、白金をハニカム担体1リット
ル当たり1gになるよう担持を行い触媒Cを得た。
Example 3 In the same manner as in Example 1, 3/4 of the length of the zeolite-coated honeycomb carrier was immersed in a copper acetate solution with aqueous ammonia added to adjust the pH to 11. Ion exchange loading was carried out so that the amount was 4 g per liter of carrier. Further, the part on which copper was supported by ion exchange was immersed in a tetravalent platinum ammine solution to support platinum in an amount of 1 g per liter of the honeycomb carrier, thereby obtaining catalyst C.

【0014】実施例4 実施例3の4価白金アンミン溶液を4価白金アンミン溶
液と2価パラジウムアンミン溶液の混合液にした以外は
実施例1と同様の方法で、ハニカム担体1リットル当た
り銅4g、白金1g、パラジウム1gになるよう担持を
行い触媒Dを得た。
Example 4 4 g of copper per liter of honeycomb carrier was prepared in the same manner as in Example 1 except that the tetravalent platinum ammine solution in Example 3 was changed to a mixture of a tetravalent platinum ammine solution and a divalent palladium ammine solution. , 1 g of platinum and 1 g of palladium were supported to obtain catalyst D.

【0015】実施例5 実施例1の酢酸銅溶液を4価白金アンミン溶液に代えた
以外は実施例1と同様の方法でハニカム担体1リットル
当たり白金2gになるよう担持を行い触媒Eを得た。
Example 5 Catalyst E was obtained by carrying 2 g of platinum per liter of honeycomb carrier in the same manner as in Example 1 except that the copper acetate solution in Example 1 was replaced with a tetravalent platinum ammine solution. .

【0016】実施例6 直径93mm、長さ25mm、セル数300のコージェ
ライト質ハニカム担体に、H型ゼオライトを、直径93
mm、長さ75mm、セル数300のコージェライト質
ハニカム担体に銅イオン交換ゼオライトをそれぞれコー
トした触媒を作成した。
Example 6 H-type zeolite was placed on a cordierite honeycomb carrier having a diameter of 93 mm, a length of 25 mm, and a number of cells of 300.
A catalyst was prepared by coating a cordierite honeycomb carrier with a length of 75 mm and a number of cells of 300 with copper ion-exchanged zeolite.

【0017】次に、H型ゼオライトをコートした触媒を
上流に、銅イオン交換ゼオライトをコートした触媒を下
流に配置した触媒Fを得た。
Next, a catalyst F was obtained in which a catalyst coated with H-type zeolite was disposed upstream and a catalyst coated with copper ion exchange zeolite was disposed downstream.

【0018】比較例1 ゼオライト100部と市販のシリカゾル50部と純水と
を混合したゼオライトスラリーを調整した。次に、直径
93mm、長さ100mm、300セルのコーディエラ
イト質ハニカム担体を上記スラリー中へ浸漬し、余分な
スラリーを吹き払い、乾燥後、ハニカム担体1リットル
当たり120gになるようにコーティングを行い、触媒
Gを得た。
Comparative Example 1 A zeolite slurry was prepared by mixing 100 parts of zeolite, 50 parts of commercially available silica sol, and pure water. Next, a cordierite honeycomb carrier with a diameter of 93 mm, a length of 100 mm, and 300 cells was immersed in the slurry, the excess slurry was blown off, and after drying, the honeycomb carrier was coated with a weight of 120 g per liter. , catalyst G was obtained.

【0019】比較例2 比較例1で得た該ハニカム担体全体を、酢酸銅溶液にア
ンモニア水を添加し、pHを11に調整した溶液中に浸
漬し、銅をハニカム担体1リットル当たり4gになるよ
う担持を行い触媒Hを得た。
Comparative Example 2 The entire honeycomb carrier obtained in Comparative Example 1 was immersed in a solution in which ammonia water was added to a copper acetate solution and the pH was adjusted to 11, so that the amount of copper was 4 g per liter of the honeycomb carrier. Catalyst H was obtained by supporting the catalyst in this manner.

【0020】比較例3 比較例2の酢酸銅溶液を酢酸コバルト溶液中に浸漬した
以外は、比較例2と同様にしてコバルトをハニカム担体
1リットル当たり4g担持して触媒Iを得た。
Comparative Example 3 Catalyst I was obtained by carrying 4 g of cobalt per liter of honeycomb carrier in the same manner as in Comparative Example 2, except that the copper acetate solution of Comparative Example 2 was immersed in a cobalt acetate solution.

【0021】比較例4 比較例2で得られた触媒Gを更に4価白金アンミン溶液
に浸漬して、ハニカム担体1リットル当たり銅を4g、
白金を1g担持して触媒Jを得た。
Comparative Example 4 Catalyst G obtained in Comparative Example 2 was further immersed in a tetravalent platinum ammine solution to give 4 g of copper per liter of honeycomb carrier.
Catalyst J was obtained by supporting 1 g of platinum.

【0022】比較例5 比較例2で得られた触媒Gを更に4価白金アンミン溶液
と2価パラジウムアンミン溶液の混合液中に浸漬して、
ハニカム担体1リットル当たり銅を4g、白金を1g、
パラジウムを1g担持して触媒Kを得た。
Comparative Example 5 Catalyst G obtained in Comparative Example 2 was further immersed in a mixed solution of a tetravalent platinum ammine solution and a divalent palladium ammine solution.
4g of copper, 1g of platinum per liter of honeycomb carrier,
Catalyst K was obtained by supporting 1 g of palladium.

【0023】比較例6 比較例1で得た該ハニカム担体全体を4価白金アンミン
溶液中に浸漬して、白金をハニカム担体1リットル当た
り2g担持して触媒Lを得た。実施例および比較例で得
た触媒A乃至Kを次の条件でNOX 浄化率を測定し、
結果を第1表に示す。
Comparative Example 6 The entire honeycomb carrier obtained in Comparative Example 1 was immersed in a tetravalent platinum ammine solution to support 2 g of platinum per liter of the honeycomb carrier to obtain catalyst L. The NOX purification rate of catalysts A to K obtained in Examples and Comparative Examples was measured under the following conditions.
The results are shown in Table 1.

【0024】<NOX 浄化性能評価条件>NOX :
500〜1,000ppm 空燃比(A/F):17〜20 空間速度(SV):40,000/Hr入ガス温度:2
00℃,300℃,400℃
<NOX purification performance evaluation conditions> NOX:
500-1,000ppm Air-fuel ratio (A/F): 17-20 Space velocity (SV): 40,000/Hr Inlet gas temperature: 2
00℃, 300℃, 400℃

【0025】[0025]

【表1】 第1表は、酸化作用が活発なリーン側条件でのNOX 
の浄化率を示している。本発明の実施例1〜5で形成さ
れる触媒A〜Eは、それぞれ比較例2〜6の触媒H〜L
に対して、排気ガス流入側にH型ゼオライト触媒を設け
たものである。それぞれ担持された触媒(例えば、銅、
コバルト等)ごとに両者を比較すると、ほぼ実施例の方
が高いNOX の浄化率を示している。
[Table 1] Table 1 shows NOx under lean conditions where oxidation is active.
shows the purification rate. Catalysts A to E formed in Examples 1 to 5 of the present invention are catalysts H to L of Comparative Examples 2 to 6, respectively.
In contrast, an H-type zeolite catalyst is provided on the exhaust gas inflow side. each supported catalyst (e.g. copper,
Comparing the two for each (cobalt, etc.), the example shows a higher NOX purification rate.

【0026】特に入ガス温度が300℃、400℃では
実施例の方が、NOX の浄化率がかなり高いことがわ
かる。200℃ではわずかに比較例の方が、NOX の
浄化率が高い場合があるが、これは低温時に吸着された
HCの脱離が少ないためと思われる。
It can be seen that especially when the inlet gas temperature is 300.degree. C. and 400.degree. C., the NOX purification rate is considerably higher in the example. At 200°C, the NOx purification rate may be slightly higher in the comparative example, but this is probably due to less desorption of HC adsorbed at low temperatures.

【0027】また触媒を複数個使った実施例6も高いN
OX の浄化率を示している。
[0027] Also, Example 6 using a plurality of catalysts also had a high N.
It shows the purification rate of OX.

【0028】[0028]

【発明の効果】第1表の結果から明らかなように、酸素
過剰雰囲気で本発明の触媒を使用した場合、従来触媒に
比べNOX の浄化率が高いことがわかる。
[Effects of the Invention] As is clear from the results in Table 1, when the catalyst of the present invention is used in an oxygen-rich atmosphere, the NOx purification rate is higher than that of the conventional catalyst.

【0029】また、本発明により、酸素過剰雰囲気での
NOX の除去が可能になり、自動車等の内燃機関や、
ボイラーや家庭用の石油ストーブ、調理器具の燃焼排ガ
スなど広範囲の分野でNOX の除去が可能になる。
Furthermore, according to the present invention, it is possible to remove NOX in an oxygen-rich atmosphere, and
This makes it possible to remove NOX from a wide range of fields, including combustion exhaust gas from boilers, household kerosene stoves, and cooking appliances.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  排気ガス流入側にH型ゼオライト触媒
、排気ガス流出側が銅、コバルト、白金、パラジウム、
ロジウム、イリジウム、ルテニウムからなる群から少な
くとも1種以上の触媒成分を含有するゼオライト触媒で
あることを特徴とする排ガス浄化用触媒。
[Claim 1] H-type zeolite catalyst on the exhaust gas inflow side, copper, cobalt, platinum, palladium,
An exhaust gas purifying catalyst characterized in that it is a zeolite catalyst containing at least one catalyst component from the group consisting of rhodium, iridium, and ruthenium.
JP3077377A 1991-02-21 1991-02-21 Catalyst for purifying exhaust gas Pending JPH04267950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3077377A JPH04267950A (en) 1991-02-21 1991-02-21 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3077377A JPH04267950A (en) 1991-02-21 1991-02-21 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH04267950A true JPH04267950A (en) 1992-09-24

Family

ID=13632208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3077377A Pending JPH04267950A (en) 1991-02-21 1991-02-21 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH04267950A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407880A (en) * 1992-11-09 1995-04-18 Nissan Motor Co., Ltd. Catalysts for adsorption of hydrocarbons
US5413976A (en) * 1992-09-30 1995-05-09 Mazda Motor Corporation Exhaust gas purification catalyst
US5811067A (en) * 1993-06-30 1998-09-22 Gaz De France Catalytic method for selectively reducing nitrogen oxides
WO2019145198A1 (en) * 2018-01-23 2019-08-01 Umicore Ag & Co. Kg Scr catalyst and exhaust gas cleaning system
JP2020517456A (en) * 2017-04-24 2020-06-18 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Passive NOx adsorber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413976A (en) * 1992-09-30 1995-05-09 Mazda Motor Corporation Exhaust gas purification catalyst
US5407880A (en) * 1992-11-09 1995-04-18 Nissan Motor Co., Ltd. Catalysts for adsorption of hydrocarbons
US5811067A (en) * 1993-06-30 1998-09-22 Gaz De France Catalytic method for selectively reducing nitrogen oxides
JP2020517456A (en) * 2017-04-24 2020-06-18 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Passive NOx adsorber
WO2019145198A1 (en) * 2018-01-23 2019-08-01 Umicore Ag & Co. Kg Scr catalyst and exhaust gas cleaning system
US10898889B2 (en) 2018-01-23 2021-01-26 Umicore Ag & Co. Kg SCR catalyst and exhaust gas cleaning system

Similar Documents

Publication Publication Date Title
JPH01130735A (en) Catalyst for purifying exhaust gas
JP2773428B2 (en) Exhaust gas purification method
JPH01135541A (en) Catalyst for purifying exhaust gas
JPH01139145A (en) Catalyst for controlling exhaust emission
JP3272464B2 (en) Exhaust gas purification catalyst structure
JPH04267950A (en) Catalyst for purifying exhaust gas
JPH01310742A (en) Catalyst for use in purification of exhaust gas
JP3072520B2 (en) Exhaust gas purification catalyst
JPH0810573A (en) Exhaust gas purifying device
JPH04267951A (en) Catalyst for purifying exhaust gas
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JP3347481B2 (en) Exhaust gas purification catalyst
JP2932106B2 (en) Exhaust gas purification catalyst
JPH0871424A (en) Catalyst for purification of exhaust gas
JP2000002111A (en) Catalyst for exhaust gas emission control
JPH11294150A (en) Exhaust emission control device and its use
JPH06142523A (en) Waste gas purifying material and waste gas purifying method
JPS6047449B2 (en) Exhaust gas purification method
JPH08141405A (en) Catalyst for purification of exhaust gas from internal-combustion engine
JP3291316B2 (en) Exhaust gas purification catalyst
JP3534286B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH078028Y2 (en) Exhaust gas purification catalyst
JP2000312827A (en) Exhaust gas cleaning catalyst