JPH0568888A - Waste gas cleaning catalyst - Google Patents

Waste gas cleaning catalyst

Info

Publication number
JPH0568888A
JPH0568888A JP3234669A JP23466991A JPH0568888A JP H0568888 A JPH0568888 A JP H0568888A JP 3234669 A JP3234669 A JP 3234669A JP 23466991 A JP23466991 A JP 23466991A JP H0568888 A JPH0568888 A JP H0568888A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst layer
nox
catalyst
waste gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3234669A
Other languages
Japanese (ja)
Inventor
Takashi Takemoto
崇 竹本
Kazuya Komatsu
一也 小松
Masahiko Shigetsu
雅彦 重津
Akihide Takami
明秀 高見
Tomoji Ichikawa
智士 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP3234669A priority Critical patent/JPH0568888A/en
Publication of JPH0568888A publication Critical patent/JPH0568888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To improve cleaning efficiency for a waste gas in a wide range of temp. and to provide a practical cleaning method for cleaning waste gas from a motor car. CONSTITUTION:In a waste gas cleaning catalyst provided at the exhausting path for waste gas, a primary catalyst layer 3 consisting of a catalyst containing a noble metal which cleans NOx when temp. of a waste gas is low, and reacts with hydrocarbon, is formed on a carrier 2. Moreover, secondary catalyst layer 4 consisting of a zeolite which clean NOx when temp. of the waste gas is high, is formed upon the primary catalyst layer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リーン燃焼エンジン等
各種エンジンの排気ガス中のNOx(窒素酸化物)を除
去する排気ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for removing NOx (nitrogen oxide) in the exhaust gas of various engines such as lean burn engines.

【0002】[0002]

【従来の技術】近年、燃料消費率の低いリーン燃焼エン
ジンの開発が進められている。このリーン燃焼エンジン
を搭載した自動車は、従来のディーゼルエンジンと同
様、エンジン燃焼室を酸素過剰雰囲気下(リーン)に置
いて運転されている。その際、有毒ガスであるNOxが
エンジンから多量に排出されるため、このNOxを除去
し大気中への放出を防がねばならない。
2. Description of the Related Art In recent years, the development of lean-burn engines with low fuel consumption has been underway. An automobile equipped with this lean combustion engine is operated with the engine combustion chamber placed in an excess oxygen atmosphere (lean), as in the case of a conventional diesel engine. At this time, a large amount of NOx, which is a toxic gas, is discharged from the engine, so this NOx must be removed to prevent its release into the atmosphere.

【0003】従来、排気ガス中のNOxを除去する技術
としては、主に、Pt−Rh系等の三元触媒を用いる方
法、アンモニア,尿素等による選択的還元法、および各
種吸着剤でNOxを吸着するNOx吸収法がある。とこ
ろが、上記選択的還元法では、装置が大型であるという
問題があり、さらにアンモニアが大気中に排出されて2
次公害を起こすという問題があった。また、上記NOx
吸収法では、吸着剤に吸着したNOxを水洗い等で後処
理しなければならないという問題があった。しかも、上
記3つの従来方法では、酸素過剰雰囲気下においては効
果を発揮できず、NOxを充分に除去できないという問
題があった。
Conventionally, as a technique for removing NOx in exhaust gas, a method using a three-way catalyst such as Pt-Rh system, a selective reduction method with ammonia, urea, etc., and NOx with various adsorbents have been mainly used. There is a NOx absorption method of adsorbing. However, in the above-mentioned selective reduction method, there is a problem that the apparatus is large, and further, ammonia is discharged into the atmosphere and
There was a problem of causing next pollution. In addition, the above NOx
The absorption method has a problem that NOx adsorbed on the adsorbent must be post-treated by washing with water or the like. Moreover, the above-mentioned three conventional methods have a problem in that the effect cannot be exhibited in an oxygen excess atmosphere and NOx cannot be sufficiently removed.

【0004】そこで、NOxを効果的に除去できる排気
ガス浄化用触媒として、ゼオライトに銅をイオン交換担
持してなる銅イオン交換ゼオライトや、γ−アルミナが
発明され、実験室段階で90%を越えるNOx浄化率を
得ることができた。
Therefore, as an exhaust gas purifying catalyst capable of effectively removing NOx, a copper ion-exchanged zeolite in which copper is ion-exchanged and supported on a zeolite and γ-alumina have been invented, and the amount exceeds 90% in a laboratory stage. The NOx purification rate could be obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、実際に
走行する自動車、いわゆる実車においては、運転条件が
刻々と変化するとともに、搭載されるエンジンにも様々
な種類がある。そのため、上記銅イオン交換ゼオライト
およびγ−アルミナの排気ガス浄化用触媒は、実車にお
いては良い効果を示していない。その理由としては、次
の3つの点が考えられる。
However, in an actually traveling automobile, that is, a so-called actual automobile, the operating conditions change every moment, and there are various types of engines to be mounted. Therefore, the above-mentioned catalyst for purifying exhaust gas of copper ion-exchanged zeolite and γ-alumina does not show a good effect in an actual vehicle. There are three possible reasons for this.

【0006】実験室においてNOx除去が可能な温度
(活性温度)の条件が、実車の排気ガスの温度条件と異
なる。
The temperature conditions (NOx) at which NOx can be removed in the laboratory are different from the temperature conditions of the exhaust gas of the actual vehicle.

【0007】実験室のリグテストのガス組成と実車の
排気ガスの組成とが若干異なる。
The gas composition of the rig test in the laboratory and the composition of the exhaust gas of the actual vehicle are slightly different.

【0008】実験室のリグテストのガスの流速が、実
車の排気ガスの流速より遅い。
The gas flow velocity of the rig test in the laboratory is slower than the exhaust gas flow velocity of the actual vehicle.

【0009】本発明はこのような諸点に鑑みてなされた
もので、その目的とするところは、アイドルアップ時か
ら高速走行時まで排気ガスの広い温度域でNOxの浄化
率を高くし、自動車の様々なエンジンに実用化させ得る
排気ガス浄化用触媒を提供しようとするものである。
The present invention has been made in view of the above points. An object of the present invention is to increase the NOx purification rate in a wide temperature range of exhaust gas from idle up to high-speed running, and An object of the present invention is to provide an exhaust gas purifying catalyst that can be put to practical use in various engines.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1記載の発明は、排気ガスの排気路に設けら
れた排気ガス浄化用触媒であって、担体上に形成され排
気ガスの低温時にNOxを浄化しかつHCと反応する貴
金属を含む触媒からなる第1触媒層と、この第1触媒層
の上層に形成され排気ガスの高温時にNOxを浄化する
ゼオライトからなる第2触媒層とを備える構成とするも
のである。
In order to achieve the above object, the invention according to claim 1 is an exhaust gas purifying catalyst provided in an exhaust gas exhaust passage, the exhaust gas being formed on a carrier. First catalyst layer composed of a catalyst containing a noble metal that purifies NOx at low temperatures and reacts with HC, and a second catalyst layer formed on the first catalyst layer and composed of zeolite that purifies NOx at high temperatures of exhaust gas And a configuration including.

【0011】請求項2記載の発明は、上記第1触媒層
を、貴金属が担持されたγ−アルミナからなる構成とす
るものである。
According to a second aspect of the present invention, the first catalyst layer is composed of γ-alumina carrying a noble metal.

【0012】請求項3記載の発明は、上記第1触媒層
を、貴金属が担持されたゼオライトからなる構成とする
ものである。
According to a third aspect of the present invention, the first catalyst layer is made of a zeolite carrying a noble metal.

【0013】[0013]

【作用】上記の構成により、請求項1記載の発明では、
第2触媒層を通過した排気ガス中のHCが、第1触媒層
の貴金属と反応して燃焼し、担体の温度を高めるため、
排気ガスの温度が低かったり、従来では担体温度が低く
なるような運転条件でも、第2触媒層は、NOxを浄化
することが可能な活性温度まで到達し、低温時の排気ガ
ス中のNOxを浄化することになる。排気ガスが高温時
には、第2触媒層によりNOxが浄化される。
With the above construction, in the invention according to claim 1,
Since HC in the exhaust gas that has passed through the second catalyst layer reacts with the noble metal of the first catalyst layer and burns to raise the temperature of the carrier,
Even under operating conditions in which the temperature of exhaust gas is low or the carrier temperature is low in the past, the second catalyst layer reaches an activation temperature at which NOx can be purified, and NOx in exhaust gas at low temperature is removed. It will be purified. When the exhaust gas has a high temperature, NOx is purified by the second catalyst layer.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1および図2は、本発明の第1実施例に
係る排気ガス浄化用触媒を示す。この排気ガス浄化用触
媒Aは、排気ガスの排気路1の途中に設けられており、
ハニカム担体2上に形成された第1触媒層3と、この第
1触媒層3の上層に形成された第2触媒層4とを備えて
いる。すなわち、上記ハニカム担体2の各孔2a内にお
いては、上記第1触媒層3と上記第2触媒層4とが層状
に形成されており、排気ガスは、各孔2a内を第2触媒
層4の表面に接しながら流れるようになっている。
1 and 2 show an exhaust gas purifying catalyst according to a first embodiment of the present invention. The exhaust gas purifying catalyst A is provided in the middle of the exhaust gas exhaust passage 1,
A first catalyst layer 3 formed on the honeycomb carrier 2 and a second catalyst layer 4 formed on the first catalyst layer 3 are provided. That is, in each hole 2a of the honeycomb carrier 2, the first catalyst layer 3 and the second catalyst layer 4 are formed in layers, and the exhaust gas passes through the hole 2a in the second catalyst layer 4. It is designed to flow while touching the surface of.

【0016】上記第1触媒層3は、排気ガスの低温時に
NOxを浄化しかつHCと反応する貴金属を含む触媒か
らなり、上記ハニカム担体2上に、Pt,Rh,Pd,
Ru等の貴金属のうち1種類以上を含む高比表面積のγ
−アルミナがウオッシュコートされたものである。
The first catalyst layer 3 is composed of a catalyst containing a noble metal that purifies NOx and reacts with HC at a low temperature of exhaust gas, and is formed on the honeycomb carrier 2 with Pt, Rh, Pd,
Γ with a high specific surface area containing one or more kinds of precious metals such as Ru
-Alumina is wash-coated.

【0017】上記第2触媒層4は、排気ガスの高温時に
NOxを浄化するゼオライトからなり、上記第1触媒層
3上に、Cu,Co,Ni等の遷移金属をイオン交換担
持してなるゼオライトがウオッシュコートされたもので
ある。
The second catalyst layer 4 is made of zeolite that purifies NOx when the exhaust gas is at a high temperature, and the first catalyst layer 3 is made by carrying out ion exchange loading of transition metals such as Cu, Co and Ni. Is wash-coated.

【0018】次に、上記排気ガス浄化用触媒Aの作用効
果について説明する。この触媒Aに排気ガスを通すと、
上層の第2触媒層4を通過した排気ガス中のHCが、下
層の第1触媒層3上で燃焼し、ハニカム担体2の温度が
高められる。そのため、アイドルアップ時や高速走行時
等、排気ガスの温度が低かったり、従来では担体の温度
が低くて浄化が不可能な運転条件であっても、上層の第
2触媒層4がNOxを浄化可能な温度まで達し、排気ガ
ス中のHC、COはもとよりNOxを効率よく浄化する
ことができる。また、排気ガスが高温時には、第2触媒
層4によりHC、COおよびNOxが浄化される。以上
の結果、アイドルアップ時から高速運転時まで排気ガス
の広い温度域でNOxの浄化率を高くし、様々な自動車
のエンジンに実用化させることができる。
Next, the function and effect of the exhaust gas purifying catalyst A will be described. When exhaust gas is passed through this catalyst A,
HC in the exhaust gas that has passed through the upper second catalyst layer 4 burns on the lower first catalyst layer 3 and the temperature of the honeycomb carrier 2 is raised. Therefore, even when the exhaust gas temperature is low, such as when the engine is idling up or running at high speeds, or under the operating conditions where the temperature of the carrier is low and purification cannot be performed conventionally, the upper second catalyst layer 4 purifies NOx. When the temperature reaches a possible temperature, NOx as well as HC and CO in the exhaust gas can be efficiently purified. Further, when the exhaust gas has a high temperature, the second catalyst layer 4 purifies HC, CO and NOx. As a result, the NOx purification rate can be increased in a wide temperature range of exhaust gas from idle-up to high-speed operation, and can be put to practical use in various automobile engines.

【0019】この場合、第1触媒層3がHCの燃焼を促
進させるためには、γ−アルミナが250 m2 /g以上
の高比表面積を有することが望ましく、また、排気ガス
を下層の第1触媒層3にまで到達させるためには、上層
の第2触媒層4が厚すぎない方が良い。
In this case, in order for the first catalyst layer 3 to promote the combustion of HC, it is desirable that γ-alumina has a high specific surface area of 250 m 2 / g or more. In order to reach the first catalyst layer 3, it is better that the upper second catalyst layer 4 is not too thick.

【0020】さらに、第1触媒層3に含まれる貴金属は
高分散されていることが望ましい。また、HCの燃焼を
進めすぎる貴金属は、上層の第2触媒層4での反応に用
いられるHCまで奪うので好ましくなく、逆に、HCの
燃焼をあまり進めない貴金属は、上層の第2触媒層4を
通過した排気ガスのみでは燃焼を起こしにくい。したが
って、第1触媒層3に含まれる貴金属としては、Rh系
およびPt系が望ましい。
Further, it is desirable that the noble metal contained in the first catalyst layer 3 be highly dispersed. In addition, noble metal that advances combustion of HC too much robs HC used for reaction in the upper second catalyst layer 4, which is not preferable, and conversely, noble metal that does not advance combustion of HC too much is used as the upper second catalyst layer. Combustion is unlikely to occur with only the exhaust gas passing through No. 4. Therefore, the noble metal contained in the first catalyst layer 3 is preferably Rh-based or Pt-based.

【0021】以下、上記排気ガス浄化用触媒Aの具体例
を比較例とともに列挙し、かつその効果を述べる。
Specific examples of the exhaust gas purifying catalyst A will be listed below along with comparative examples, and the effects thereof will be described.

【0022】具体例1〜2および比較例1〜2 4重量%のRhを均一に分散させた比表面積320 m2
/gのγ−アルミナにバインダーとして水和アルミナを
少量加えたものを、テストピース形状のコーディライト
製ハニカムにウオッシュコートした後、500℃で約2
時間焼成した。この時、担体に対するウオッシュコート
量は約10重量%とした。こうして得られた担体に対し
て、Si/Al比が30の酢酸銅を用いて約130%で
Cuイオン交換したZSM−5(ゼオライトの1種)に
バインダーとして水和アルミナを少量加えたものを、ウ
オッシュコートした後、500℃で約2時間焼成した。
Specific Examples 1-2 and Comparative Examples 1-2 Specific surface area of 320 m 2 in which 4% by weight of Rh is uniformly dispersed.
/ G of γ-alumina with a small amount of hydrated alumina added as a binder was wash-coated on a test piece-shaped honeycomb made of cordierite, and then at about 500 ° C for about 2
Burned for hours. At this time, the amount of washcoat with respect to the carrier was set to about 10% by weight. To the carrier thus obtained, a small amount of hydrated alumina was added as a binder to ZSM-5 (a kind of zeolite) which was Cu ion-exchanged at about 130% with copper acetate having a Si / Al ratio of 30. After washcoating, it was baked at 500 ° C. for about 2 hours.

【0023】こうして得られたテストピースを固定床流
通反応評価装置に設定し、実車の模擬ガス条件で排気ガ
スの浄化特性を評価した。評価テストは、NOが200
0ppm と、HCが6000ppm ・Cと、Oが8%と、
COが10%と、COが0.2%と、Hが650pp
mとからなる混合ガスを、SV(空間速度)25000h
r-1で流すことにより行った。テスト中、バインダーの
パウダーが飛散しないようにした。その結果、図3に示
すように、テストピースaは、Cuイオン交換したZS
M−5のみからなる触媒層に混合ガスを流す場合b(比
較例1)に比べ、NOxに反応する活性温度域が大幅に
低温側へ広がるとともに、4重量%のRhを含むγ−ア
ルミナのみからなる触媒層へ混合ガスを流す場合c(比
較例2)に比べ、NOx浄化率が40%以上向上し、優
れたNOx浄化特性が得られた。
The test piece thus obtained was set in a fixed bed flow reaction evaluation apparatus, and exhaust gas purification characteristics were evaluated under simulated gas conditions of an actual vehicle. The evaluation test is NO 200
0ppm, HC 6000ppm, C, O 2 8%,
CO 2 10%, CO 0.2%, H 2 650 pp
The mixed gas consisting of m and SV (space velocity) 25000h
It was carried out by flowing at r -1 . During the test, the binder powder was prevented from scattering. As a result, as shown in FIG. 3, the test piece a was Cu ion-exchanged ZS.
Compared to the case of b (Comparative Example 1) in which a mixed gas is flowed through a catalyst layer composed of only M-5, the active temperature range that reacts with NOx is greatly expanded to the low temperature side, and only γ-alumina containing 4% by weight of Rh is used. The NOx purification rate was improved by 40% or more, and excellent NOx purification characteristics were obtained, as compared with the case c (Comparative Example 2) in which the mixed gas was flowed to the catalyst layer made of.

【0024】また、HC濃度を10000ppm ・Cに変
え、それ以外を上記と同じ条件で評価テストをしたとこ
ろ、図4のdに示すように、上記テストピースaに比
べ、NOxに反応する活性温度域がさらに低温側へ広が
るとともに、NOx浄化率もさらに向上した。
Further, when the HC concentration was changed to 10000 ppm · C and the other conditions were evaluated under the same conditions as above, as shown in FIG. 4d, as compared with the test piece a, the active temperature which reacts with NOx was higher. The range expanded to lower temperatures, and the NOx purification rate also improved.

【0025】具体例3〜8 具体例1と同じテスト条件で、材料の組み合わせと量と
を様々に変えて上記固定床流通反応評価装置によるテス
トを行った。その結果を表1に示す。具体例3〜7につ
いては、NOx浄化率および活性温度域ともに良好な結
果を得た。具体例8については、Cuイオン交換ゼオラ
イトの量が相対的に少なく、浄化開始温度は低温側へ移
動したが、高温域でのNOx浄化性能があまり充分では
なかった。また、具体例3の如く、第1触媒層をPtを
含むγ−アルミナで構成したところ、浄化開始温度はC
uイオン交換ゼオライトのみの場合に比べて60℃近く
低くなり、燃焼特性が優れ、活性ピーク時に高いNOx
浄化率が得られた。しかしながら、Ptの添加量が多す
ぎると、HCの燃焼のみが進行する場合があった。第1
触媒層をPdを含むγ−アルミナで構成した場合、さら
にHCの燃焼を進行させる傾向があった。
Specific Examples 3 to 8 Under the same test conditions as in Specific Example 1, various combinations of materials and various amounts of materials were used to perform the tests by the above fixed bed flow reaction evaluation apparatus. The results are shown in Table 1. For the specific examples 3 to 7, good results were obtained for both the NOx purification rate and the active temperature range. In Example 8, the amount of Cu ion-exchanged zeolite was relatively small and the purification start temperature moved to the low temperature side, but the NOx purification performance in the high temperature region was not sufficient. When the first catalyst layer is composed of γ-alumina containing Pt as in Example 3, the purification start temperature is C
Compared to the case of u ion-exchanged zeolite alone, the temperature is lower by about 60 ° C, the combustion characteristics are excellent, and NOx is high at the activity peak.
A purification rate was obtained. However, if the amount of Pt added is too large, only the combustion of HC may proceed. First
When the catalyst layer was composed of γ-alumina containing Pd, there was a tendency to further promote the combustion of HC.

【0026】比較例3〜6 具体例1と同じテスト条件で、触媒層を1層のみとして
材料の種類を変え、上記固定床流通反応評価装置による
テストを行った。その結果を表1に示す。比較例1につ
いては、HCの燃焼が良く進み、浄化開始温度は低かっ
たが、NOx浄化率は極めて低かった。また、比較例4
〜6については、いずれも浄化開始温度は高く、NOx
浄化率も極めて低かった。
Comparative Examples 3 to 6 Under the same test conditions as in Concrete Example 1, the catalyst bed was changed to one layer, the kind of material was changed, and the test was carried out by the above fixed bed flow reaction evaluation apparatus. The results are shown in Table 1. In Comparative Example 1, the combustion of HC proceeded well and the purification start temperature was low, but the NOx purification rate was extremely low. In addition, Comparative Example 4
For Nos. 6 to 6, the purification start temperature was high, and NOx
The purification rate was also extremely low.

【0027】比較例7〜8 具体例1と同じテスト条件で、材料の組み合わせと割合
とを様々に変えて上記固定床流通反応評価装置によるテ
ストを行った。その結果を表1に示す。いずれも、広い
温度域で高いNOx浄化率を得ることはできなかった。
比較例8の場合、第1触媒層にCuイオン交換したZS
M−5を使用し、その上層にPtを含む高比表面積のγ
−アルミナで構成したもので、浄化開始温度は低かった
が、その後HCの燃焼が優先的に進み、NOx浄化率は
Cuイオン交換ゼオライトのみの場合よりも大きく低下
した。
Comparative Examples 7 to 8 Under the same test conditions as in Concrete Example 1, various combinations of materials and different ratios were used to carry out tests using the fixed bed flow reaction evaluation apparatus. The results are shown in Table 1. In all cases, it was not possible to obtain a high NOx purification rate in a wide temperature range.
In the case of Comparative Example 8, Cu ion-exchanged ZS was used for the first catalyst layer.
M-5 is used, and γ having a high specific surface area containing Pt in the upper layer is used.
-Although it was made of alumina, the purification start temperature was low, but then the combustion of HC proceeded preferentially, and the NOx purification rate was greatly reduced as compared with the case of Cu ion-exchanged zeolite alone.

【0028】なお、図示はしないが、第1触媒層を金属
活性種を担持したアルミナで構成し、第2触媒層をCu
イオン交換ゼオライトで構成した場合、第1触媒層の活
性温度が第2触媒層の活性温度と同じであるか、もしく
はより高いため、良好なNOx浄化性能が得られなかっ
た。
Although not shown, the first catalyst layer is made of alumina carrying metal active species, and the second catalyst layer is made of Cu.
In the case of using ion-exchanged zeolite, the activation temperature of the first catalyst layer is the same as or higher than the activation temperature of the second catalyst layer, so that good NOx purification performance was not obtained.

【0029】[0029]

【表1】 [Table 1]

【0030】図5および図6は、本発明の第2実施例に
係る排気ガス浄化用触媒を示す。この排気ガス浄化用触
媒Bは、第1実施例と同様、排気ガスの排気路1の途中
に設けられており、6はハニカム担体5上に形成された
第1触媒層、7はこの第1触媒層6の上層に形成された
第2触媒層であり、上記ハニカム担体5の各孔5a内に
おいて、上記第1触媒層6と上記第2触媒層7とが層状
に形成されている。排気ガスは、各孔5a内を第2触媒
層7の表面に接しながら流れるようになっている。
5 and 6 show an exhaust gas purifying catalyst according to the second embodiment of the present invention. The exhaust gas purifying catalyst B is provided in the middle of the exhaust gas exhaust passage 1 as in the first embodiment, 6 is the first catalyst layer formed on the honeycomb carrier 5, and 7 is the first catalyst layer. It is a second catalyst layer formed on the upper layer of the catalyst layer 6, and the first catalyst layer 6 and the second catalyst layer 7 are formed in layers in each hole 5a of the honeycomb carrier 5. The exhaust gas flows in each hole 5a while being in contact with the surface of the second catalyst layer 7.

【0031】上記第1触媒層6は、上記ハニカム担体5
上に、Pt,Rh等の貴金属をイオン交換担持してなる
ゼオライトがウオッシュコートされたものであり、排気
ガスの低温域(300℃前後)でNOx浄化率のピーク
を示す。
The first catalyst layer 6 is the honeycomb carrier 5
The zeolite coated with ion-exchanged noble metals such as Pt and Rh is wash-coated on the top, and shows a peak of NOx purification rate in a low temperature region of exhaust gas (around 300 ° C.).

【0032】上記第2触媒層7は、上記第1触媒層6上
に、Cuをイオン交換担持してなるCuイオン交換ゼオ
ライトがウオッシュコートされたものであり、排気ガス
の高温域(400℃付近)でNOxを浄化する性能を有
する。
The second catalyst layer 7 is formed by wash-coating Cu ion-exchanged zeolite having Cu ion-exchanged thereon on the first catalyst layer 6, and is used in a high temperature region of the exhaust gas (around 400 ° C.). ) Has the ability to purify NOx.

【0033】そして、上記排気ガス浄化用触媒Bに排気
ガスを通すと、第1実施例の場合と同様に、上層の第2
触媒層7を通過した排気ガス中のHCが、下層の第1触
媒層6上で燃焼し、ハニカム担体5の温度が高められ
る。そのため、排気ガスが低温時であっても、上層の第
2触媒層7がNOxを浄化可能な温度に到達し、排気ガ
ス中のNOxを効率よく浄化することができる。また、
排気ガスが高温時には、第2触媒層4によりNOxが浄
化される。以上の結果、アイドルアップ時から高速運転
時まで排気ガスの広い温度域でNOxの浄化率を高く
し、様々な自動車のエンジンに実用化させることができ
る。
Then, when the exhaust gas is passed through the exhaust gas purifying catalyst B, as in the case of the first embodiment, the second upper layer is used.
HC in the exhaust gas that has passed through the catalyst layer 7 burns on the lower first catalyst layer 6 and the temperature of the honeycomb carrier 5 is increased. Therefore, even when the exhaust gas is at a low temperature, the upper second catalyst layer 7 reaches a temperature at which NOx can be purified, and NOx in the exhaust gas can be efficiently purified. Also,
When the exhaust gas has a high temperature, the second catalyst layer 4 purifies NOx. As a result, the NOx purification rate can be increased in a wide temperature range of exhaust gas from idle-up to high-speed operation, and can be put to practical use in various automobile engines.

【0034】上記排気ガス浄化用触媒Bは、次のように
して製造する。まず、ZSM−5またはモルデナイトを
用意し、これを湿式イオン交換法によりイオン交換率1
20〜140%でPtおよびRhとイオン交換を行い、
その後、これにバインダーとして水和アルミナを加えて
水でスラリーとしたものを、ハニカムにウオッシュコー
トし、乾燥させた後、焼成する。一方、あらかじめCu
イオン交換を行ったZSM−5またはモルデナイトにバ
インダーとして水和アルミナを加え、以下、上記と同じ
要領で製造する。
The exhaust gas purifying catalyst B is manufactured as follows. First, ZSM-5 or mordenite is prepared, and the ion exchange rate of the ZSM-5 or mordenite is set to 1 by the wet ion exchange method.
Ion exchange with Pt and Rh at 20-140%,
Then, hydrated alumina as a binder is added to this, and a slurry made of water is wash-coated on the honeycomb, dried, and then fired. On the other hand, Cu
Hydrated alumina is added as a binder to ion-exchanged ZSM-5 or mordenite, and the same procedure as above is followed.

【0035】図7は、上記排気ガス浄化用触媒Bに対し
てそのNOx浄化特性を評価した結果を示す。この評価
テストに当たり、第2触媒層のCuイオン交換ゼオライ
トのみを触媒として用いた場合の排気ガス浄化率を図8
に示し、第1触媒層のPt−Rhイオン交換ゼオライト
のみを触媒として用いた場合の排気ガス浄化率を図9に
示して、それぞれ比較例とした。
FIG. 7 shows the results of evaluation of the NOx purification characteristics of the exhaust gas purification catalyst B. In this evaluation test, the exhaust gas purification rate when only the Cu ion-exchanged zeolite of the second catalyst layer was used as a catalyst is shown in FIG.
Fig. 9 shows the exhaust gas purification rate when only the Pt-Rh ion-exchanged zeolite of the first catalyst layer was used as a catalyst, and shown in Fig. 9 as comparative examples.

【0036】上記テストは、NOxが2100ppm 、H
Cが1400ppm ・C、Oが7.5%、COが0.2
%、COが10%およびNバランスとで組成したガ
スを、SV(空間速度)25000hr-1で流すことによ
り行った。
In the above test, NOx is 2100 ppm, H
C is 1400ppm-C, O 2 is 7.5%, CO is 0.2
%, CO 2 10%, and N 2 balance were used to flow at a SV (space velocity) of 25000 hr −1 .

【0037】テストの結果、図7に示すように、300
℃前から600℃付近までの広い温度域でNOxを浄化
することができた。
As a result of the test, as shown in FIG.
It was possible to purify NOx in a wide temperature range from ℃ before to around 600 ℃.

【0038】なお、Cuイオン交換ZSM−5のみを触
媒として用いた場合は、図8に示すように、HCの燃焼
(浄化反応)が始まり、その浄化率が高まるのと比例し
て、NOx浄化率も向上し、400℃付近でピークを迎
えた。ところが、その温度域より低温側ではNOx浄化
率は低かった。また、HCおよびCOについては高い浄
化性能を示した。一方、Pt−Rhイオン交換ZSM−
5のみを触媒として用いた場合は、図9に示すように、
NOx浄化性能を発現させる温度域は、約270℃〜約
330℃付近の低温域であり、それ以上の温度域ではN
Ox浄化性能が極めて悪かった。また、HCおよびCO
については広い温度域で高い浄化性能を示した。
When only Cu ion-exchange ZSM-5 is used as a catalyst, as shown in FIG. 8, combustion of HC (purification reaction) begins and NOx purification increases in proportion to the increase of the purification rate. The rate also improved and reached a peak near 400 ° C. However, the NOx purification rate was low at a temperature lower than that temperature range. Further, it showed high purification performance for HC and CO. On the other hand, Pt-Rh ion exchange ZSM-
When only 5 is used as a catalyst, as shown in FIG.
The temperature range in which the NOx purification performance is exhibited is a low temperature range of about 270 ° C. to about 330 ° C.
The Ox purification performance was extremely poor. Also, HC and CO
As for, the high purification performance was exhibited in a wide temperature range.

【0039】上記第2実施例では、ハニカム担体5上
に、貴金属をイオン交換担持してなるゼオライトをウオ
ッシュコートして第1触媒層6とし、この第1触媒層6
の上層にCuイオン交換ゼオライトをウオッシュコート
して第2触媒層7とする構成であったが、これに限られ
るものではなく、排気路1の上流側にCuイオン交換ゼ
オライトを配置し、その下流側に貴金属をイオン交換担
持してなるゼオライトを配置するよう構成しても良い。
In the second embodiment, the first catalyst layer 6 is wash-coated on the honeycomb carrier 5 with zeolite formed by carrying an ion exchange of a noble metal, to form the first catalyst layer 6.
The upper layer of the above was wash-coated with Cu ion-exchanged zeolite to form the second catalyst layer 7. However, the present invention is not limited to this, and the Cu ion-exchanged zeolite is arranged on the upstream side of the exhaust passage 1 and the downstream side thereof. You may comprise so that the zeolite which carries the ion exchange of the noble metal may be arrange | positioned at the side.

【0040】図10および図11は、本発明の第3実施
例に係る排気ガス浄化用触媒を示す。この排気ガス浄化
用触媒Cは、第1実施例と同様、排気ガスの排気路1の
途中に設けられており、9はハニカム担体8上に形成さ
れた第1触媒層、10はこの第1触媒層9の上層に形成
された第2触媒層であり、上記ハニカム担体8の各孔8
a内において、上記第1触媒層9と上記第2触媒層10
とが層状に形成されている。排気ガスは、各孔8a内を
第2触媒層10の表面に接しながら流れるようになって
いる。
10 and 11 show an exhaust gas purifying catalyst according to the third embodiment of the present invention. The exhaust gas purifying catalyst C is provided in the middle of the exhaust gas exhaust passage 1 as in the first embodiment, and 9 is the first catalyst layer formed on the honeycomb carrier 8 and 10 is the first catalyst layer. The second catalyst layer is formed on the catalyst layer 9 and each hole 8 of the honeycomb carrier 8 is formed.
In a, the first catalyst layer 9 and the second catalyst layer 10
And are formed in layers. The exhaust gas flows in each hole 8a while being in contact with the surface of the second catalyst layer 10.

【0041】上記第1触媒層9は、上記ハニカム担体8
上に高比表面積のγ−アルミナがウオッシュコートされ
たものであり、排気ガスの高温側(500℃付近)でN
Ox浄化率のピークを示す。
The first catalyst layer 9 is the honeycomb carrier 8
Γ-alumina having a high specific surface area is wash-coated on the upper side, and N on the high temperature side of exhaust gas (around 500 ° C)
The peak of Ox purification rate is shown.

【0042】上記第2触媒層10は、上記第1触媒層9
上に、Cuをイオン交換担持してなるCuイオン交換ゼ
オライトがウオッシュコートされたものであり、排気ガ
スの低温側(400℃付近)でNOxを浄化する性能を
有する。
The second catalyst layer 10 is the first catalyst layer 9
A Cu ion-exchanged zeolite having Cu ion-exchanged thereon is wash-coated, and has a capability of purifying NOx on the low temperature side of exhaust gas (around 400 ° C.).

【0043】そして、上記排気ガス浄化用触媒Cに排気
ガスを通すと、排気ガスの低温側では、上層の第2触媒
層10がNOxに対する浄化性能を発揮し、排気ガス中
のNOxを効率よく浄化することができる。また、排気
ガスの高温側では、第1触媒層9によりNOxが浄化さ
れる。以上の結果、排気ガスの広い温度域でNOxの浄
化率を高くし、酸素過剰雰囲気下の自動車のエンジンに
実用化させることができる。
When the exhaust gas is passed through the exhaust gas purifying catalyst C, the upper second catalyst layer 10 exerts the purifying performance for NOx on the low temperature side of the exhaust gas, and the NOx in the exhaust gas is efficiently emitted. Can be purified. Further, on the high temperature side of the exhaust gas, NOx is purified by the first catalyst layer 9. As a result, the NOx purification rate can be increased in a wide temperature range of the exhaust gas, and the NOx purification rate can be put to practical use in an automobile engine under an oxygen excess atmosphere.

【0044】図12は、上記排気ガス浄化用触媒Cに対
してそのNOx浄化特性aをテストした結果を示す。こ
のテストに当たり、第2触媒層のCuイオン交換ゼオラ
イトのみを触媒として用いた場合bと、第1触媒層のγ
−アルミナのみを触媒として用いた場合cとを、比較例
とした。上記Cuイオン交換ゼオライトを製造するにあ
たり、ZSM−5またはモルデナイトを用意し、これを
湿式イオン交換法によりイオン交換率120〜140%
でCuイオン交換を行い、その後、これにバインダーと
して水和アルミナ10重量%を加えて水でスラリーとし
たものを、ハニカムにウオッシュコートし、120℃で
乾燥させた後、500℃で焼成した。一方、γ−アルミ
ナとしては、比表面積300 m2 /gのものを用意し、
これにバインダーとして水和アルミナ10重量%を加
え、以下、上記と同じ要領で製造した。
FIG. 12 shows the results of testing the NOx purification characteristic a of the exhaust gas purification catalyst C. In this test, when only the Cu ion-exchanged zeolite in the second catalyst layer was used as a catalyst b, and in the first catalyst layer γ
A case where only alumina was used as a catalyst was used as a comparative example. In producing the Cu ion-exchanged zeolite, ZSM-5 or mordenite is prepared, and the ion exchange rate is 120 to 140% by a wet ion-exchange method.
Cu ion exchange was carried out, and thereafter, 10% by weight of hydrated alumina as a binder was added thereto to make a slurry with water, which was wash-coated on a honeycomb, dried at 120 ° C., and then fired at 500 ° C. On the other hand, γ-alumina having a specific surface area of 300 m 2 / g is prepared,
To this, 10% by weight of hydrated alumina was added as a binder, and the same procedure as above was followed.

【0045】本実施例の排気ガス浄化用触媒Cは、次の
ようにして調整した。まず、ハニカムに上記と同じ方法
でγ−アルミナをウオッシュコートして、乾燥および焼
成を行った後、その上層に上記と同じ方法でCuイオン
交換ZSM−5をウオッシュコートして、乾燥および焼
成を行った。
The exhaust gas purifying catalyst C of this example was prepared as follows. First, the honeycomb was wash-coated with γ-alumina by the same method as described above, dried and fired, and then the Cu ion-exchange ZSM-5 was wash-coated on the upper layer by the same method as described above, and dried and fired. went.

【0046】テストの結果、Cuイオン交換ZSM−5
(図12のb)は、400℃付近を浄化率のピークと
し、この温度域より高温側ではNOx浄化率は低かっ
た。一方、γ−アルミナ(図12のc)は、500℃付
近で浄化率のピークを示した。本実施例の排気ガス浄化
用触媒C(図12のa)は、個々の触媒の活性温度域よ
り広い温度域でNOx浄化特性を示した。
As a result of the test, Cu ion exchange ZSM-5
In (b of FIG. 12), the peak of the purification rate is around 400 ° C., and the NOx purification rate was low on the higher temperature side than this temperature range. On the other hand, γ-alumina (c in FIG. 12) showed a peak of purification rate at around 500 ° C. The exhaust gas purifying catalyst C (a in FIG. 12) of the present example exhibited NOx purification characteristics in a temperature range wider than the activation temperature range of each catalyst.

【0047】テスト条件は、担体として400セルのハ
ニカムを使用し、ガスは、NOが1400ppm 、HCが
2000ppm ・C、Oが8%およびNバランスとで
組成し、SV(空間速度)25000hr-1で流した。
The test conditions were that a honeycomb of 400 cells was used as a carrier, and the gas was composed of NO of 1400 ppm, HC of 2000 ppm.C, O 2 of 8% and N 2 balance, and SV (space velocity) of 25000 hr. -1 shed.

【0048】[0048]

【発明の効果】以上のように、本発明の排気ガス浄化用
触媒によれば、第2触媒層を通過した排気ガス中のHC
が、第1触媒層の貴金属と反応して燃焼し、担体の温度
を高めるため、排気ガスの温度が低かったり、従来では
担体温度が低くなるような運転条件でも、第2触媒層が
NOxを浄化することが可能な活性温度まで到達し、低
温時の排気ガス中のNOxを浄化することができる。ま
た、排気ガスが高温時には、第2触媒層によりNOxを
浄化することができる。よって、アイドルアップ時から
高速運転時まで排気ガスの広い温度域でNOxの浄化率
を高くすることができ、様々な自動車のエンジンに実用
化させることができる。
As described above, according to the exhaust gas purifying catalyst of the present invention, the HC in the exhaust gas that has passed through the second catalyst layer is
However, since it reacts with the noble metal of the first catalyst layer and burns to raise the temperature of the carrier, the second catalyst layer produces NOx even under operating conditions where the temperature of the exhaust gas is low or the temperature of the carrier is conventionally low. The NOx in the exhaust gas at low temperature can be purified by reaching the active temperature at which purification is possible. Further, when the exhaust gas has a high temperature, NOx can be purified by the second catalyst layer. Therefore, the NOx purification rate can be increased in a wide temperature range of exhaust gas from idling up to high speed operation, and can be put to practical use in various automobile engines.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す排気ガス浄化用触媒
の斜視図である。
FIG. 1 is a perspective view of an exhaust gas purifying catalyst according to a first embodiment of the present invention.

【図2】同部分拡大図である。FIG. 2 is an enlarged view of the same portion.

【図3】第1実施例における排気ガス浄化用触媒の排気
ガスに対するNOx浄化率を示すグラフである。
FIG. 3 is a graph showing the NOx purification rate for exhaust gas of the exhaust gas purification catalyst in the first embodiment.

【図4】同じく排気ガスの組成を変えた場合のNOx浄
化率を示すグラフである。
FIG. 4 is a graph showing the NOx purification rate when the composition of exhaust gas is changed.

【図5】本発明の第2実施例を示す排気ガス浄化用触媒
の斜視図である。
FIG. 5 is a perspective view of an exhaust gas purifying catalyst showing a second embodiment of the present invention.

【図6】同部分拡大図である。FIG. 6 is an enlarged view of the same portion.

【図7】第2実施例における排気ガス浄化用触媒の排気
ガスに対するNOx浄化率を示すグラフである。
FIG. 7 is a graph showing the NOx purification rate with respect to exhaust gas of the exhaust gas purification catalyst in the second embodiment.

【図8】Cuイオン交換ZSM−5の排気ガス低減率を
示すグラフである。
FIG. 8 is a graph showing the exhaust gas reduction rate of Cu ion exchange ZSM-5.

【図9】Pt−Rhイオン交換ZSM−5の排気ガス低
減率を示すグラフである。
FIG. 9 is a graph showing an exhaust gas reduction rate of Pt-Rh ion exchange ZSM-5.

【図10】第3実施例における排気ガス浄化用触媒の排
気ガスに対するNOx浄化率を示すグラフである。
FIG. 10 is a graph showing the NOx purification rate with respect to exhaust gas of the exhaust gas purification catalyst in the third embodiment.

【図11】本発明の第3実施例を示す排気ガス浄化用触
媒の斜視図である。
FIG. 11 is a perspective view of an exhaust gas purifying catalyst showing a third embodiment of the present invention.

【図12】同部分拡大図である。FIG. 12 is an enlarged view of the same portion.

【符号の説明】[Explanation of symbols]

1 排気路 2,5,8 ハニカム担体 3,6,9 第1触媒層 4,7,10 第2触媒層 1 Exhaust Path 2, 5, 8 Honeycomb Carrier 3, 6, 9 First Catalyst Layer 4, 7, 10 Second Catalyst Layer

フロントページの続き (72)発明者 高見 明秀 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (72)発明者 市川 智士 広島県安芸郡府中町新地3番1号 マツダ 株式会社内Front Page Continuation (72) Inventor Akihide Takami, 3-1, Shinchi Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Co., Ltd. (72) Inventor, Satoshi Ichikawa 3-1-1 Shinchu, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排気ガスの排気路に設けられた排気ガス
浄化用触媒であって、担体上に形成され排気ガスの低温
時にNOxを浄化しかつHCと反応する貴金属を含む触
媒からなる第1触媒層と、この第1触媒層の上層に形成
され排気ガスの高温時にNOxを浄化するゼオライトか
らなる第2触媒層とを備えたことを特徴とする排気ガス
浄化用触媒。
1. A catalyst for purifying exhaust gas provided in an exhaust passage for exhaust gas, comprising a catalyst containing a noble metal which is formed on a carrier for purifying NOx and reacting with HC when purifying exhaust gas at a low temperature. An exhaust gas purifying catalyst comprising: a catalyst layer; and a second catalyst layer formed on the first catalyst layer, the second catalyst layer consisting of zeolite that purifies NOx when the exhaust gas has a high temperature.
【請求項2】 上記第1触媒層は、貴金属が担持された
γ−アルミナからなる請求項1記載の排気ガス浄化用触
媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the first catalyst layer is composed of γ-alumina carrying a noble metal.
【請求項3】 上記第1触媒層は、貴金属が担持された
ゼオライトからなる請求項1記載の排気ガス浄化用触
媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the first catalyst layer is made of a zeolite carrying a noble metal.
JP3234669A 1991-09-13 1991-09-13 Waste gas cleaning catalyst Pending JPH0568888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234669A JPH0568888A (en) 1991-09-13 1991-09-13 Waste gas cleaning catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234669A JPH0568888A (en) 1991-09-13 1991-09-13 Waste gas cleaning catalyst

Publications (1)

Publication Number Publication Date
JPH0568888A true JPH0568888A (en) 1993-03-23

Family

ID=16974618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234669A Pending JPH0568888A (en) 1991-09-13 1991-09-13 Waste gas cleaning catalyst

Country Status (1)

Country Link
JP (1) JPH0568888A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315635A (en) * 1992-12-14 1994-11-15 Sekiyu Sangyo Kasseika Center Catalytic structure for nitrogen oxide catalytic reduction
US5427989A (en) * 1993-03-11 1995-06-27 Nissan Motor Co., Ltd. Catalysts for the purification of exhaust gas
EP0935055A2 (en) 1998-02-05 1999-08-11 Nissan Motor Company, Limited Device for purifying oxygen rich exhaust gas
US6066587A (en) * 1996-09-26 2000-05-23 Mazda Motor Corporation Catalyst for purifying exhaust gas
JP2008279352A (en) * 2007-05-10 2008-11-20 Asahi Kasei Corp Catalyst for removing nitrogen oxide discharged from lean burn automobile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315635A (en) * 1992-12-14 1994-11-15 Sekiyu Sangyo Kasseika Center Catalytic structure for nitrogen oxide catalytic reduction
US5427989A (en) * 1993-03-11 1995-06-27 Nissan Motor Co., Ltd. Catalysts for the purification of exhaust gas
US6066587A (en) * 1996-09-26 2000-05-23 Mazda Motor Corporation Catalyst for purifying exhaust gas
EP0935055A2 (en) 1998-02-05 1999-08-11 Nissan Motor Company, Limited Device for purifying oxygen rich exhaust gas
JP2008279352A (en) * 2007-05-10 2008-11-20 Asahi Kasei Corp Catalyst for removing nitrogen oxide discharged from lean burn automobile

Similar Documents

Publication Publication Date Title
JP5875586B2 (en) Catalyst for removing nitrogen oxides from diesel engine exhaust
US20080282683A1 (en) Device for the purification of exhaust gas
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
KR20140015295A (en) Nox absorber catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JPH07124468A (en) Production of hydrocarbon adsorbent and adsorption catalyst
JP3282344B2 (en) Exhaust gas purification device
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
JPH0568888A (en) Waste gas cleaning catalyst
JP2005007260A (en) Exhaust gas cleaner
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JPH09225265A (en) Exhaust gas purifying device
JPH09103649A (en) Method and apparatus for purifying automobile exhaust gas
JP2004322022A (en) Catalyst for cleaning exhaust gas
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JPH07166854A (en) Exhaust emission controlling catalytic structure
JP3321831B2 (en) Exhaust gas purification catalyst
JP2001058131A (en) Catalyst for exhaust gas treatment
JP3391569B2 (en) Exhaust gas purification method
JP3291316B2 (en) Exhaust gas purification catalyst
JPH0824654A (en) Matreial and method for pufitying exhaust gas
JPH06198195A (en) Purifying material for exhaust gas and purifying method thereof
JP3530214B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH0568887A (en) Waste gas cleaning catalystic device
JPH0938502A (en) Catalyst for removing nox and method for removing nox

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011204