JP3282344B2 - Exhaust gas purification device - Google Patents

Exhaust gas purification device

Info

Publication number
JP3282344B2
JP3282344B2 JP00862494A JP862494A JP3282344B2 JP 3282344 B2 JP3282344 B2 JP 3282344B2 JP 00862494 A JP00862494 A JP 00862494A JP 862494 A JP862494 A JP 862494A JP 3282344 B2 JP3282344 B2 JP 3282344B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
adsorption
adsorption catalyst
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00862494A
Other languages
Japanese (ja)
Other versions
JPH07213910A (en
Inventor
卓弥 池田
真紀 上久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP00862494A priority Critical patent/JP3282344B2/en
Publication of JPH07213910A publication Critical patent/JPH07213910A/en
Application granted granted Critical
Publication of JP3282344B2 publication Critical patent/JP3282344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、排ガス浄化用吸着触媒
に関し、特に、エンジン始動時に排出される高濃度の炭
化水素を効率良く除去することのできる排ガス浄化用吸
着触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying adsorption catalyst, and more particularly to an exhaust gas purifying adsorption catalyst capable of efficiently removing high-concentration hydrocarbons discharged at the time of starting an engine.

【0002】[0002]

【従来技術】従来、自動車等の内燃機関の排ガス浄化用
触媒としては、一酸化炭素(CO)及び炭化水素(H
C)の酸化と、窒素酸化物(NOx )の還元とを同時に
行う触媒が汎用されている。このような触媒としては、
耐火性担体上のアルミナコート層に、Pd、Pt、Rh
等の貴金属を担持させたもの、及び必要に応じて助触媒
成分としてCe、La等の希土類金属やNi等のベース
メタル酸化物を添加したもの等が提案されている(特公
昭58−20307号公報)。この特許公報に記載され
ている触媒は、排ガス温度及びエンジンの設定空燃比の
影響を強く受ける。
2. Description of the Related Art Conventionally, catalysts for purifying exhaust gas of an internal combustion engine of an automobile or the like include carbon monoxide (CO) and hydrocarbon (H).
Catalysts that simultaneously oxidize C) and reduce nitrogen oxides (NOx) are widely used. Such catalysts include:
Pd, Pt, Rh on the alumina coat layer on the refractory carrier
And those having a rare earth metal such as Ce or La or a base metal oxide such as Ni added as a co-catalyst component if necessary (Japanese Patent Publication No. 58-20307). Gazette). The catalyst described in this patent publication is strongly affected by the exhaust gas temperature and the set air-fuel ratio of the engine.

【0003】一方、自動車用触媒が浄化機能を発揮する
排ガス温度は、一般に300℃以上必要であり、また空
燃比は、炭化水素及び一酸化炭素の酸化と窒素酸化物の
還元とのバランスがとれる理論空燃比(A/F=14.
6)付近で触媒が最も有効に働く。従って、従来の三元
触媒を用いる排ガス浄化装置を取り付けた自動車では、
三元触媒が有効に働くような位置に設置されており、ま
た排気系の酸素濃度を検出して、混合気を理論空燃比付
近に保つようにフィードバック制御が行われている。
On the other hand, the temperature of exhaust gas at which an automobile catalyst exerts a purifying function generally needs to be 300 ° C. or higher, and the air-fuel ratio balances the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides. Theoretical air-fuel ratio (A / F = 14.
6) Nearly the catalyst works most effectively. Therefore, in an automobile equipped with a conventional exhaust gas purification device using a three-way catalyst,
It is installed at a position where the three-way catalyst works effectively, and feedback control is performed so as to detect the oxygen concentration of the exhaust system and keep the mixture near the stoichiometric air-fuel ratio.

【0004】しかしながら、従来の三元触媒をエキゾー
ストマニホールド直後に設置した場合であっても、排ガ
ス温度が低い(300℃以下)エンジン始動直後には触
媒活性が低く、始動直後(コールドスタート時)に大量
に排出される炭化水素は浄化されずにそのまま排出され
てしまうという欠点があった。この欠点を解決するた
め、触媒コンバータの排気上流側にコールド炭化水素を
吸着するための吸着材を充填した炭化水素トラッパーを
配置した排ガス浄化装置が提案されている(特開平2−
135126号公報、特開平3−141816号公
報)。
However, even when the conventional three-way catalyst is installed immediately after the exhaust manifold, the catalyst activity is low immediately after starting the engine with a low exhaust gas temperature (300 ° C. or less) and immediately after starting (cold start). There is a drawback that hydrocarbons discharged in large quantities are discharged without being purified. In order to solve this drawback, an exhaust gas purifying apparatus has been proposed in which a hydrocarbon trapper filled with an adsorbent for adsorbing cold hydrocarbons is disposed on the exhaust gas upstream side of a catalytic converter (Japanese Patent Laid-Open Publication No. Hei.
No. 135126, JP-A-3-141816).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
開平2−135126号公報に係る排ガス浄化装置で
は、吸着材の下流側に触媒成分を含浸しているため、触
媒が活性温度に達する前に上流側の吸着材から炭化水素
が脱離してしまうと共に、ゼオライトが触媒金属溶液を
含浸しているため、触媒成分の耐久性に乏しいという欠
点があった。
However, in the exhaust gas purifying apparatus disclosed in JP-A-2-135126, the downstream side of the adsorbent is impregnated with the catalyst component. Hydrocarbons are desorbed from the adsorbent on the side, and the zeolite is impregnated with the catalyst metal solution, so that the durability of the catalyst component is poor.

【0006】また、特開平3−141816号公報に係
る排ガス浄化装置では、吸着した炭化水素の脱離制御を
温度センサ、バイパス管及び制御装置等を用いて行って
いるため、システムが複雑で信頼性に乏しかったり、排
気レイアウト上実用的でないとい欠点があった。
Further, in the exhaust gas purifying apparatus disclosed in Japanese Patent Application Laid-Open No. 3-141816, since the control of desorption of the adsorbed hydrocarbons is performed using a temperature sensor, a bypass pipe and a control device, the system is complicated and reliable. However, there are drawbacks such as poor performance and impracticalness in terms of exhaust layout.

【0007】従って本発明の目的は、エンジン始動時に
排出される高濃度の炭化水素を効率良く除去することの
できる排ガス浄化用吸着触媒を提供することにある。
Accordingly, an object of the present invention is to provide an exhaust gas purifying adsorption catalyst capable of efficiently removing high-concentration hydrocarbons discharged at the time of engine start.

【0008】[0008]

【課題を解決するための手段及び作用】本発明者らは、
上記課題を解決するために鋭意検討した結果、ゼオライ
ト層上に活性セリア及び/又はアルミナを主成分とした
粉末に触媒成分としてPt、Pd及びRhからなる群か
ら選ばれた少なくとも1種を含む触媒層を有する排ガス
浄化用吸着触媒を用いることにより、エンジン始動時に
排出される高濃度の炭化水素を効率良く除去することの
できることを見出し、本発明に到達した。
Means and Action for Solving the Problems The present inventors have
As a result of intensive studies to solve the above-mentioned problems, a catalyst containing, as a catalyst component, at least one selected from the group consisting of Pt, Pd, and Rh in a powder mainly composed of activated ceria and / or alumina on a zeolite layer. The present inventors have found that high-concentration hydrocarbons discharged at the time of engine start can be efficiently removed by using an exhaust gas-purifying adsorption catalyst having a layer, and have reached the present invention.

【0009】本発明の上記の目的は、触媒担体にゼオラ
イトをコーティングした吸着触媒において、前記ゼオラ
イト層上に活性セリア及び/又はアルミナを主成分とし
た粉末に触媒成分としてPt、Pd及びRhからなる群
から選ばれた少なくとも1種を含む触媒層を有すること
特徴とする排ガス浄化用吸着触媒により達成された。以
下、本発明について更に詳細に説明する。
An object of the present invention is to provide an adsorption catalyst comprising a catalyst carrier coated with zeolite, wherein the zeolite layer comprises Pt, Pd and Rh as a catalyst component in a powder mainly composed of activated ceria and / or alumina. The present invention has been achieved by an exhaust gas purifying adsorption catalyst having a catalyst layer containing at least one member selected from the group. Hereinafter, the present invention will be described in more detail.

【0010】本発明は、上述したように触媒担体上に炭
化水素を吸着するのに有効なゼオライトからなる第1層
を設け、更にこの第1層上に活性セリア及び/又はアル
ミナを主成分とした粉末に触媒成分としてPt、Pd及
びRhからなる群から選ばれた少なくとも1種を含む触
媒層を設けた自己浄化型吸着触媒Aを排気流入側に、炭
化水素、一酸化炭素及び窒素酸化物を浄化する三元触媒
をコーティングした触媒Bを排気流出側に、それぞれ配
置したことを特徴とする排ガス浄化用吸着触媒である。
According to the present invention, as described above, a first layer made of zeolite effective for adsorbing hydrocarbons is provided on a catalyst carrier, and on this first layer, activated ceria and / or alumina are mainly contained. A self-purifying adsorption catalyst A provided with a catalyst layer containing at least one selected from the group consisting of Pt, Pd and Rh as a catalyst component on the powder obtained is provided with hydrocarbons, carbon monoxide and nitrogen oxides on the exhaust inflow side. The catalyst B coated with a three-way catalyst for purifying the exhaust gas is disposed on the exhaust gas outflow side, respectively.

【0011】流入側の吸着触媒Aは、ゼオライト層上に
担持された触媒層がゼオライト層よりも早く加熱される
ため、ゼオライト層から炭化水素が脱離する段階におい
て触媒層が活性化されており、炭化水素を良好に浄化す
る。また、流出側に触媒Bを配置することにより、流入
側の触媒層で浄化しきれなかった炭化水素、一酸化炭素
及び窒素酸化物の浄化を向上することができる。これに
よって排ガス中、特にエンジン始動時に排出される炭化
水素を効率良く除去することができる。
In the adsorption catalyst A on the inflow side, since the catalyst layer supported on the zeolite layer is heated faster than the zeolite layer, the catalyst layer is activated at the stage when hydrocarbons are desorbed from the zeolite layer. Cleans hydrocarbons well. Further, by disposing the catalyst B on the outflow side, it is possible to improve the purification of hydrocarbons, carbon monoxide and nitrogen oxides that could not be completely purified by the inflow side catalyst layer. This makes it possible to efficiently remove hydrocarbons emitted from the exhaust gas, particularly, the hydrocarbons discharged when the engine is started.

【0012】本発明において使用するゼオライトとして
は、公知のゼオライトの中から適宜選択して使用するこ
とができるが、特に常温から比較的高い温度で、しかも
水存在雰囲気下であっても十分な炭化水素吸着能を有
し、且つ高い耐久性を有するものを選択することが好ま
しい。このようなゼオライトとしては、例えばモルデナ
イト、USY、β−ゼオライト及びZSM−5からなる
群から選ばれた少なくとも1種を用いることが好まし
い。特にモルデナイト、β−ゼオライト及びZSM−5
がSiO2 /Al2 3モル比で50〜2000の範
囲、USYがSiO2 /Al2 3 モル比で50〜30
0の範囲であることが好ましい。モルデナイト、β−ゼ
オライト、ZSM−5及びUSYがSiO2 /Al2
3 モル比で50未満になると、排ガス中に共存する水分
子の吸着阻害が大きく、有効に炭化水素を吸着すること
ができない。逆にモルデナイト、β−ゼオライト及びZ
SM−5がモル比で2000を、USYがモル比で30
0を、それぞれ超えると、炭化水素の吸着量が減少す
る。細孔径や細孔構造の異なるゼオライトを2種以上混
合することにより、排ガス中の多種類の炭化水素を効率
良く吸収することができる。
The zeolite used in the present invention can be appropriately selected from known zeolites and used. In particular, even if the temperature is from room temperature to a relatively high temperature, and even in an atmosphere containing water, sufficient carbonization can be achieved. It is preferable to select a material having hydrogen absorbing ability and high durability. As such a zeolite, for example, it is preferable to use at least one selected from the group consisting of mordenite, USY, β-zeolite and ZSM-5. In particular, mordenite, β-zeolite and ZSM-5
50-30 but the range of 50 to 2000 in SiO 2 / Al 2 O 3 molar ratio, USY is in SiO 2 / Al 2 O 3 molar ratio
It is preferably in the range of 0. Mordenite, β-zeolite, ZSM-5 and USY are SiO 2 / Al 2 O
If the molar ratio is less than 50, adsorption of water molecules coexisting in the exhaust gas is greatly inhibited, and hydrocarbons cannot be effectively adsorbed. Conversely, mordenite, β-zeolite and Z
SM-5 has a molar ratio of 2000, and USY has a molar ratio of 30.
If each exceeds 0, the amount of adsorption of hydrocarbons decreases. By mixing two or more zeolites having different pore diameters and pore structures, it is possible to efficiently absorb various kinds of hydrocarbons in the exhaust gas.

【0013】こうして得られる吸着触媒のみでも炭化水
素を十分に吸着することができるが、排気系に装着して
実用化するためには温度の上昇と共に脱離する炭化水素
を浄化する性能を追加した、吸着層(ゼオライト)上に
三元触媒層をコーティングした自己浄化タイプとするこ
とが好ましい。即ち、本発明においては、ゼオライト層
上に活性セリア及び/又はアルミナを主成分とした粉末
を塗布し、更にその粉末上に触媒成分としてPt、Pd
及びRhからなる群から選ばれた少なくとも1種を含む
触媒層を備えることができる。
Although hydrocarbons can be sufficiently adsorbed only by the adsorption catalyst obtained in this way, in order to put it into an exhaust system and put it to practical use, the ability to purify hydrocarbons desorbed with an increase in temperature has been added. It is preferable to use a self-cleaning type in which a three-way catalyst layer is coated on an adsorption layer (zeolite). That is, in the present invention, a powder containing activated ceria and / or alumina as a main component is applied on the zeolite layer, and Pt and Pd as catalyst components are further applied on the powder.
And a catalyst layer containing at least one selected from the group consisting of Rh.

【0014】各種ゼオライトは、H型でも十分な吸着能
力を有するが、Pd、Ag、Cu、Cr、Co、Nd等
をイオン交換法、含浸法、浸漬法等の通常の方法を用い
て担持することにより、吸着特性や脱離抑制能をさらに
向上させることができる。各貴金属の担持量は特に制限
されることはないが、0.1〜15重量%の範囲である
ことが好ましい。担持量が0.1重量%未満になると、
吸着特性や脱離抑制能が低下し、逆に15重量%を超え
てもそれ以上の効果は得られない。
Although various zeolites have a sufficient adsorption capacity even in the H type, they support Pd, Ag, Cu, Cr, Co, Nd and the like by a usual method such as an ion exchange method, an impregnation method, and an immersion method. This makes it possible to further improve the adsorption characteristics and the desorption suppressing ability. The amount of each noble metal carried is not particularly limited, but is preferably in the range of 0.1 to 15% by weight. When the loading amount is less than 0.1% by weight,
Adsorption characteristics and desorption inhibiting ability are reduced, and conversely, if it exceeds 15% by weight, no further effect can be obtained.

【0015】流入側の吸着触媒Aと流出側の触媒Bとの
距離は、特に制限されないが、近すぎると背圧上昇によ
るエンジン性能の低下を引き起こす可能性があり、逆に
離れすぎていると触媒Bの温度が上がらず脱離した炭化
水素、一酸化炭素及び窒素酸化物の浄化率が低下する可
能性がある。従って触媒Aと吸着触媒Bの距離は10〜
50mmの範囲とすることが好ましい。
The distance between the adsorbing catalyst A on the inflow side and the catalyst B on the outflow side is not particularly limited, but if it is too close, there is a possibility of causing a decrease in engine performance due to an increase in back pressure. There is a possibility that the purification rate of the desorbed hydrocarbons, carbon monoxide, and nitrogen oxides may be reduced because the temperature of the catalyst B does not rise. Therefore, the distance between the catalyst A and the adsorption catalyst B is 10 to
Preferably, it is in the range of 50 mm.

【0016】本発明において触媒担体としては、公知の
触媒担体の中から適宜選択して使用することができ、例
えばモノリス担体やメタル担体などが挙げられる。この
触媒担体の形状は、特に制限されないが、通常はハニカ
ム形状で使用することが好ましく、ハニカム状の各種基
材に触媒粉末を塗布して用いられる。このハニカム材料
としては、一般にコージエライト質のものが多く用いら
れるが、金属材料からなるハニカムを用いることも可能
であり、更には触媒粉末そのものをハニカム形状に成形
しても良い。触媒の形状をハニカム状とすることによ
り、触媒と排気ガスの接触面積が大きくなり、圧力損失
も抑えられるため自動車用として用いる場合に極めて有
利である。
In the present invention, the catalyst carrier can be appropriately selected from known catalyst carriers, and examples thereof include a monolith carrier and a metal carrier. Although the shape of the catalyst carrier is not particularly limited, it is generally preferable to use the catalyst carrier in a honeycomb shape. The catalyst carrier is used by applying a catalyst powder to various honeycomb substrates. As the honeycomb material, cordierite materials are generally used in many cases, but a honeycomb made of a metal material can also be used, and the catalyst powder itself may be formed into a honeycomb shape. By making the shape of the catalyst into a honeycomb shape, the contact area between the catalyst and the exhaust gas is increased and the pressure loss is suppressed, which is extremely advantageous when used for automobiles.

【0017】[0017]

【実施例】以下、本発明を実施例によって更に詳述す
る。実施例において特に断らない限り、部は重量部を示
す。
The present invention will be described in more detail with reference to the following examples. Unless otherwise specified in the examples, parts are parts by weight.

【0018】参考例1 Ptを担持した活性セリア粉末(以下、Pt/CeO2
という)100部、アルミナ50部及び2%硝酸15
0部を磁性ポットに投入し、振動ミル装置で40分間、
又はユニバーサルボールミル装置で6.5時間混合粉砕
して、ウォッシュコートスラリーを製造した。コーディ
エライト製モノリス担体を吸引コート法で吸水処理した
後、前記製造したスラリーを担体断面全体に均一になる
ように投入し、吸引コート法で余分なスラリーを除去し
た。次いで、乾燥を行った後、400℃で1時間仮焼成
した。これによりPt/CeO2 層が100g/Lコ
ート量で担体にコートされた。上記ウォッシュコート、
乾燥、焼成をさらに繰り返して合計200g/LのPt
/CeO2 層をコートした。次に、Rhを担持したア
ルミナ粉末(以下、Rh/Al23 という)100
部、アルミナ50部及び2%硝酸150部を磁性ポット
に投入し、前記と同様にしてウォッシュコートスラリー
を製造し、同様な方法でPt/CeO2 層上に50g
/LのRh/Al23 触媒層をコートし、乾燥した
後、空気雰囲気下で650℃にて3時間焼成を行い、排
気流出側の触媒1を得た。また、H型ZSN−5(Si
2 /Al23 =700)100部、シリカゾル
(固形分20%)215部、10%硝酸100部及び水
15部を磁性ポットに投入し、前記と同様にしてH型Z
SM−5スラリーを製造し、同方法でモノリス担持上に
150g/Lをコートし、乾燥した後、400℃にて1
時間焼成を行った。前記と同様にしてH型ZSM−5層
上に100g/LのPt/CeO2 触媒層をコート
し、乾燥した後、400℃にて1時間焼成を行った。更
に、Pt/CeO2 層上にRh/Al23 触媒層
を50g/Lコートし、乾燥した後、空気雰囲気下で6
50℃にて3時間の焼成を行い、排気流入側の吸着触媒
1を得た。排気流入側に吸着触媒1を、排気流出側に触
媒1を、それぞれ組合せてタンデム型吸着触媒1を得
た。
Reference Example 1 Activated ceria powder supporting Pt (hereinafter referred to as Pt / CeO 2
100 parts, alumina 50 parts and 2% nitric acid 15
0 parts are put into a magnetic pot, and it is 40 minutes with a vibration mill device.
Alternatively, the mixture was mixed and pulverized for 6.5 hours using a universal ball mill to produce a washcoat slurry. After the cordierite monolithic carrier was subjected to a water absorption treatment by a suction coating method, the produced slurry was charged so as to be uniform over the entire cross section of the carrier, and excess slurry was removed by a suction coating method. Next, after drying, it was calcined at 400 ° C. for 1 hour. Thus, the Pt / CeO 2 layer was coated on the carrier at a coating amount of 100 g / L. Wash coat above,
Drying and baking are further repeated to obtain a total of 200 g / L of Pt.
/ CeO 2 layer. Next, alumina powder carrying the Rh (hereinafter, referred to as Rh / Al 2 0 3) 100
Parts, 50 parts of alumina and 150 parts of 2% nitric acid were charged into a magnetic pot, and a wash coat slurry was produced in the same manner as above, and 50 g of the wash coat slurry was formed on the Pt / CeO 2 layer in the same manner.
/ L Rh / Al 2 O 3 catalyst layer was coated and dried, and then calcined at 650 ° C. for 3 hours in an air atmosphere to obtain catalyst 1 on the exhaust outlet side. In addition, H-type ZSN-5 (Si
100 parts of O 2 / Al 2 O 3 = 700), 215 parts of silica sol (solid content: 20%), 100 parts of 10% nitric acid and 15 parts of water were charged into a magnetic pot, and H-type Z was prepared in the same manner as described above.
An SM-5 slurry was produced, coated with 150 g / L on a monolith carrier by the same method, dried, and then dried at 400 ° C. for 1 hour.
The firing was performed for a time. In the same manner as above, a 100 g / L Pt / CeO 2 catalyst layer was coated on the H-type ZSM-5 layer, dried, and baked at 400 ° C. for 1 hour. Further, a Rh / Al 2 O 3 catalyst layer was coated on the Pt / CeO 2 layer at 50 g / L, dried, and then dried under an air atmosphere.
Firing was performed at 50 ° C. for 3 hours to obtain an adsorption catalyst 1 on the exhaust gas inflow side. The tandem type adsorption catalyst 1 was obtained by combining the adsorption catalyst 1 on the exhaust gas inflow side and the catalyst 1 on the exhaust gas outflow side.

【0019】参考例2 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、参考例1と全く同様な方法で吸着
触媒2を得、排気流入側にこの吸着触媒2を、排気流出
側に参考例1で得た触媒1を、それぞれ組合せてタンデ
ム型吸着触媒2を得た。
Reference Example 2 Pd / Al 2 was used instead of Pt / CeO 2 as a catalyst component.
Except that O 3 was used, an adsorption catalyst 2 was obtained in exactly the same manner as in Reference Example 1, and this adsorption catalyst 2 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 2 was obtained.

【0020】実施例1 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)50部及びH型US
Y(SiO2 /Al23 =50)50部を用いた
他は、参考例1と全く同様な方法で吸着触媒3を得、排
気流入側にこの吸着触媒3を、排気流出側に参考例1で
得た触媒1を、それぞれ組合せてタンデム型吸着触媒3
を得た。
Example 1 H-type ZSM-5 (SiO 2 / Al 2) was used as a zeolite.
O 3 = 700) H-type ZSM-5 (S
iO 2 / Al 2 O 3 = 700) 50 parts and H type US
Except that 50 parts of Y (SiO 2 / Al 2 O 3 = 50) were used, the adsorption catalyst 3 was obtained in exactly the same manner as in Reference Example 1, and this adsorption catalyst 3 was referred to the exhaust inflow side and to the exhaust outflow side. The catalysts 1 obtained in Example 1 were combined with each other to form a tandem-type adsorption catalyst 3.
I got

【0021】実施例2 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、実施例1と全く同様な方法で吸着
触媒4を得、排気流入側にこの吸着触媒4を、排気流出
側に参考例1で得た触媒1を、それぞれ組合せてタンデ
ム型吸着触媒4を得た。
Example 2 Pd / Al 2 was used instead of Pt / CeO 2 as a catalyst component.
Except that O 3 was used, an adsorption catalyst 4 was obtained in exactly the same manner as in Example 1, and the adsorption catalyst 4 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 4 was obtained.

【0022】実施例3 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)67部及びH型US
Y(SiO2 /Al23 =50)33部を用いた
他は、参考例1と全く同様な方法で吸着触媒5を得、排
気流入側にこの吸着触媒5を、排気流出側に参考例1で
得た触媒1を、それぞれ組合せてタンデム型吸着触媒5
を得た。
Example 3 H-type ZSM-5 (SiO 2 / Al 2) was used as the zeolite.
O 3 = 700) H-type ZSM-5 (S
iO 2 / Al 2 O 3 = 700) 67 parts and H type US
Except that 33 parts of Y (SiO 2 / Al 2 O 3 = 50) were used, an adsorption catalyst 5 was obtained in exactly the same manner as in Reference Example 1, and this adsorption catalyst 5 was referred to the exhaust inflow side and to the exhaust outflow side. The catalysts 1 obtained in Example 1 were combined with each other to form a tandem-type adsorption catalyst 5
I got

【0023】実施例4 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、実施例3と全く同様な方法で吸着
触媒6を得、排気流入側にこの吸着触媒6を、排気流出
側に参考例1で得た触媒1を、それぞれ組合せてタンデ
ム型吸着触媒6を得た。
Example 4 Pd / Al 2 was used instead of Pt / CeO 2 as a catalyst component.
Except that O 3 was used, an adsorption catalyst 6 was obtained in exactly the same manner as in Example 3, and this adsorption catalyst 6 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 6 was obtained.

【0024】参考例3 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)50部及びH型モル
デナイト(SiO2 /Al23 =200)50部
を用いた他は、参考例1と全く同様な方法で吸着触媒7
を得、排気流入側にこの吸着触媒7を、排気流出側に参
考例1で得た触媒1を、それぞれ組合せてタンデム型吸
着触媒7を得た。
Reference Example 3 H-type ZSM-5 (SiO 2 / Al 2
O 3 = 700) H-type ZSM-5 (S
Except that 50 parts of iO 2 / Al 2 O 3 = 700) and 50 parts of H-type mordenite (SiO 2 / Al 2 O 3 = 200) were used, the adsorption catalyst 7 was produced in the same manner as in Reference Example 1.
The tandem type adsorption catalyst 7 was obtained by combining the adsorption catalyst 7 on the exhaust gas inflow side and the catalyst 1 obtained in Reference Example 1 on the exhaust gas outflow side.

【0025】参考例4 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、参考例3と全く同様な方法で吸着
触媒8を得、排気流入側にこの吸着触媒8を、排気流出
側に参考例1で得た触媒1を、それぞれ組合せてタンデ
ム型吸着触媒8を得た。
Reference Example 4 Pd / Al 2 was used instead of Pt / CeO 2 as a catalyst component.
Except that O 3 was used, an adsorption catalyst 8 was obtained in exactly the same manner as in Reference Example 3, and this adsorption catalyst 8 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 8 was obtained.

【0026】参考例5 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)50部及びH型βゼ
オライト(SiO2 /Al23 =100)50部
を用いた他は、参考例1と全く同様な方法で吸着触媒9
を得、排気流入側にこの吸着触媒9を、排気流出側に参
考例1で得た触媒1を、それぞれ組合せてタンデム型吸
着触媒9を得た。
Reference Example 5 H-type ZSM-5 (SiO 2 / Al 2
O 3 = 700) H-type ZSM-5 (S
Except that 50 parts of iO 2 / Al 2 O 3 = 700) and 50 parts of H-type β zeolite (SiO 2 / Al 2 O 3 = 100) were used, the adsorption catalyst 9 was produced in the same manner as in Reference Example 1.
The tandem type adsorption catalyst 9 was obtained by combining the adsorption catalyst 9 on the exhaust gas inflow side and the catalyst 1 obtained in Reference Example 1 on the exhaust gas outflow side.

【0027】参考例6 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、参考例5と全く同様な方法で吸着
触媒10を得、排気流入側にこの吸着触媒10を、排気
流出側に参考例1で得た触媒1を、それぞれ組合せてタ
ンデム型吸着触媒10を得た。
Reference Example 6 Instead of Pt / CeO 2 as a catalyst component, Pd / Al 2
Except that O 3 was used, an adsorption catalyst 10 was obtained in exactly the same manner as in Reference Example 5, and this adsorption catalyst 10 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 10 was obtained.

【0028】参考例7 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)67部及びH型βゼ
オライト(SiO2 /Al23 =100)33部
を用いた他は、参考例1と全く同様な方法で吸着触媒1
1を得、排気流入側にこの吸着触媒11を、排気流出側
に参考例1で得た触媒1を、それぞれ組合せてタンデム
型吸着触媒11を得た。
REFERENCE EXAMPLE 7 H-type ZSM-5 (SiO 2 / Al 2
O 3 = 700) H-type ZSM-5 (S
Except that 67 parts of iO 2 / Al 2 O 3 = 700) and 33 parts of H-type β zeolite (SiO 2 / Al 2 O 3 = 100) were used, the adsorption catalyst 1 was prepared in the same manner as in Reference Example 1.
The tandem type adsorption catalyst 11 was obtained by combining the adsorption catalyst 11 on the exhaust gas inflow side and the catalyst 1 obtained in Reference Example 1 on the exhaust gas outflow side.

【0029】参考例8 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、参考例7と全く同様な方法で吸着
触媒12を得、排気流入側にこの吸着触媒12を、排気
流出側に参考例1で得た触媒1を、それぞれ組合せてタ
ンデム型吸着触媒12を得た。
Reference Example 8 Pd / Al 2 was used instead of Pt / CeO 2 as a catalyst component.
Except that O 3 was used, an adsorption catalyst 12 was obtained in exactly the same manner as in Reference Example 7, and this adsorption catalyst 12 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 12 was obtained.

【0030】実施例5 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型USY(SiO2
/Al23 =50)100部を用いた他は、参考
例1と全く同様な方法で吸着触媒13を得、排気流入側
にこの吸着触媒13を、排気流出側に参考例1で得た触
媒1を、それぞれ組合せてタンデム型吸着触媒13を得
た。
Example 5 H-type ZSM-5 (SiO 2 / Al 2) was used as the zeolite.
O 3 = 700) H-type USY (SiO 2
/ Al 2 O 3 = 50) Except that 100 parts were used, the adsorption catalyst 13 was obtained in exactly the same manner as in Reference Example 1, and this adsorption catalyst 13 was obtained on the exhaust inflow side and Reference Example 1 was obtained on the exhaust outflow side. The obtained catalysts 1 were combined to obtain a tandem-type adsorption catalyst 13.

【0031】実施例6 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、実施例5と全く同様な方法で吸着
触媒14を得、排気流入側にこの吸着触媒14を、排気
流出側に参考例1で得た触媒1を、それぞれ組合せてタ
ンデム型吸着触媒14を得た。
Example 6 Pd / Al 2 was used instead of Pt / CeO 2 as a catalyst component.
Except that O 3 was used, an adsorption catalyst 14 was obtained in exactly the same manner as in Example 5, and this adsorption catalyst 14 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem adsorption catalyst 14 was obtained.

【0032】参考例9 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型βゼオライト
(SiO2 /Al23 =100)100部を用い
た他は、参考例1と全く同様な方法で吸着触媒15を
得、排気流入側にこの吸着触媒15を、排気流出側に参
考例1で得た触媒1を、それぞれ組合せてタンデム型吸
着触媒15を得た。
REFERENCE EXAMPLE 9 H-type ZSM-5 (SiO 2 / Al 2) was used as the zeolite.
Except that 100 parts of H-type β zeolite (SiO 2 / Al 2 O 3 = 100) was used instead of 100 parts of O 3 = 700), the adsorption catalyst 15 was obtained in the same manner as in Reference Example 1, and the exhaust gas was introduced. The tandem-type adsorption catalyst 15 was obtained by combining the adsorption catalyst 15 on the exhaust gas outflow side and the catalyst 1 obtained in Reference Example 1 on the exhaust gas outflow side.

【0033】参考例10 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、参考例9と全く同様な方法で吸着
触媒16を得、排気流入側にこの吸着触媒16を、排気
流出側に参考例1で得た触媒1を、それぞれ組合せてタ
ンデム型吸着触媒16を得た。
Reference Example 10 Pd / Al 2 was used instead of Pt / CeO 2 as a catalyst component.
Except that O 3 was used, an adsorption catalyst 16 was obtained in exactly the same manner as in Reference Example 9, and this adsorption catalyst 16 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 16 was obtained.

【0034】参考例11 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型モルデナイト
(SiO2 /Al23 =200)100部を用い
た他は、参考例1と全く同様な方法で吸着触媒17を
得、排気流入側にこの吸着触媒17を、排気流出側に参
考例1で得た触媒1を、それぞれ組合せてタンデム型吸
着触媒17を得た。
Reference Example 11 H-type ZSM-5 (SiO 2 / Al 2
Except that 100 parts of H-type mordenite (SiO 2 / Al 2 O 3 = 200) was used instead of 100 parts of O 3 = 700), the adsorption catalyst 17 was obtained in exactly the same manner as in Reference Example 1, The tandem type adsorption catalyst 17 was obtained by combining the adsorption catalyst 17 with the catalyst 1 obtained in Reference Example 1 on the exhaust gas outflow side.

【0035】参考例12 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、参考例11と全く同様な方法で吸
着触媒18を得、排気流入側にこの吸着触媒18を、排
気流出側に参考例1で得た触媒1を、それぞれ組合せて
タンデム型吸着触媒18を得た。
Reference Example 12 Instead of Pt / CeO 2 as a catalyst component, Pd / Al 2
Except that O 3 was used, an adsorption catalyst 18 was obtained in exactly the same manner as in Reference Example 11, and this adsorption catalyst 18 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 18 was obtained.

【0036】実施例7 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)34部、H型USY
(SiO2 /Al23 =50)33部及びH型モ
ルデナイト(SiO2 /Al23 =200)33
部を用いた他は、参考例1と全く同様な方法で吸着触媒
19を得、排気流入側にこの吸着触媒19を、排気流出
側に参考例1で得た触媒1を、それぞれ組合せてタンデ
ム型吸着触媒19を得た。
Example 7 H-type ZSM-5 (SiO 2 / Al 2) was used as the zeolite.
O 3 = 700) H-type ZSM-5 (S
iO 2 / Al 2 O 3 = 700) 34 parts, H type USY
(SiO 2 / Al 2 O 3 = 50) 33 parts and H-type mordenite (SiO 2 / Al 2 O 3 = 200) 33
A catalyst was obtained in exactly the same manner as in Reference Example 1 except that the catalyst was used in combination with the catalyst 1 obtained in Reference Example 1 on the exhaust inflow side and the catalyst 1 obtained in Reference Example 1 on the exhaust outflow side. A type adsorption catalyst 19 was obtained.

【0037】実施例8 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、実施例7と全く同様な方法で吸着
触媒20を得、排気流入側にこの吸着触媒20を、排気
流出側に参考例1で得た触媒1を、それぞれ組合せてタ
ンデム型吸着触媒20を得た。
Example 8 Instead of Pt / CeO 2 as a catalyst component, Pd / Al 2
Except that O 3 was used, an adsorption catalyst 20 was obtained in exactly the same manner as in Example 7, and this adsorption catalyst 20 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 20 was obtained.

【0038】実施例9 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)34部、H型USY
(SiO2 /Al23 =50)33部及びH型β
ゼオライトを用いた他は、参考例1と全く同様な方法で
吸着触媒21を得、排気流入側にこの吸着触媒21を、
排気流出側に参考例1で得た触媒1を、それぞれ組合せ
てタンデム型吸着触媒21を得た。
Example 9 H-type ZSM-5 (SiO 2 / Al 2) was used as the zeolite.
O 3 = 700) H-type ZSM-5 (S
iO 2 / Al 2 O 3 = 700) 34 parts, H type USY
(SiO 2 / Al 2 O 3 = 50) 33 parts and H-type β
Except for using zeolite, an adsorption catalyst 21 was obtained in exactly the same manner as in Reference Example 1, and this adsorption catalyst 21 was placed on the exhaust gas inflow side.
The tandem adsorption catalyst 21 was obtained by combining the catalysts 1 obtained in Reference Example 1 on the exhaust gas outflow side.

【0039】実施例10 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、実施例9と全く同様な方法で吸着
触媒22を得、排気流入側にこの吸着触媒22を、排気
流出側に参考例1で得た触媒1を、それぞれ組合せてタ
ンデム型吸着触媒22を得た。
Example 10 Pd / Al 2 instead of Pt / CeO 2 as a catalyst component
Except that O 3 was used, an adsorption catalyst 22 was obtained in exactly the same manner as in Example 9, and this adsorption catalyst 22 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem adsorption catalyst 22 was obtained.

【0040】実施例11 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)34部、Agをイオ
ン交換したH型ZSM−5(以下、Ag担持H型ZSM
−5という。Ag担持量5重量%、SiO2 /Al2
3=30)33部及びH型USY(SiO2 /Al2
3 =50)33部を用いた他は、参考例1と全く同
様な方法で吸着触媒23を得、排気流入側にこの吸着触
媒23を、排気流出側に参考例1で得た触媒1を、それ
ぞれ組合せてタンデム型吸着触媒23を得た。
Example 11 H-type ZSM-5 (SiO 2 / Al 2) was used as the zeolite.
O 3 = 700) H-type ZSM-5 (S
34 parts of iO 2 / Al 2 O 3 = 700, H-type ZSM-5 ion-exchanged with Ag (hereinafter, H-type ZSM carrying Ag)
It is called -5. Ag loading 5% by weight, SiO 2 / Al 2
33 parts of O 3 = 30) and H-type USY (SiO 2 / Al 2
O 3 = 50) Except that 33 parts were used, the adsorption catalyst 23 was obtained in exactly the same manner as in Reference Example 1, the adsorption catalyst 23 was provided on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was provided on the exhaust outflow side. Were combined to obtain a tandem type adsorption catalyst 23.

【0041】実施例12 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、実施例11と全く同様な方法で吸
着触媒24を得、排気流入側にこの吸着触媒24を、排
気流出側に参考例1で得た触媒1を、それぞれ組合せて
タンデム型吸着触媒24を得た。
Example 12 Pd / Al 2 was used instead of Pt / CeO 2 as a catalyst component.
Except that O 3 was used, an adsorption catalyst 24 was obtained in exactly the same manner as in Example 11, and this adsorption catalyst 24 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 24 was obtained.

【0042】実施例13 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)34部、Pdをイオ
ン交換したH型ZSM−5(以下、Pd担持H型ZSM
−5という。Pd担持量2重量%、SiO2 /Al2
3 =30)33部及びH型USY(SiO2 /Al
23 =50)33部を用いた他は、参考例1と全く
同様な方法で吸着触媒23を得、排気流入側にこの吸着
触媒23を、排気流出側に参考例1で得た触媒1を、そ
れぞれ組合せてタンデム型吸着触媒23を得た。
Example 13 H-type ZSM-5 (SiO 2 / Al 2) was used as the zeolite.
O 3 = 700) H-type ZSM-5 (S
34 parts of iO 2 / Al 2 O 3 = 700, H-type ZSM-5 ion-exchanged with Pd (hereinafter referred to as Pd-supported H-type ZSM)
It is called -5. Pd loading 2% by weight, SiO 2 / Al 2
33 parts of O 3 = 30) and H-type USY (SiO 2 / Al
2 O 3 = 50) Except that 33 parts were used, the adsorption catalyst 23 was obtained in exactly the same manner as in Reference Example 1, and the adsorption catalyst 23 was obtained on the exhaust inflow side and the catalyst obtained in Reference Example 1 on the exhaust outflow side. 1 were combined to obtain a tandem adsorption catalyst 23.

【0043】実施例14 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、実施例13と全く同様な方法で吸
着触媒26を得、排気流入側にこの吸着触媒26を、排
気流出側に参考例1で得た触媒1を、それぞれ組合せて
タンデム型吸着触媒26を得た。
[0043] Instead of the Pt / CeO 2 as Example 14 the catalyst component Pd / Al 2
Except that O 3 was used, an adsorption catalyst 26 was obtained in exactly the same manner as in Example 13, and this adsorption catalyst 26 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem adsorption catalyst 26 was obtained.

【0044】実施例15 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)34部、Ag担持H
型ZSM−5(Ag担持量5重量%、SiO2 /Al2
3 =30)33部、H型βゼオライト(SiO2
/Al23 =100)33部を用いた他は、参考例
1と全く同様な方法で吸着触媒27を得、排気流入側に
この吸着触媒27を、排気流出側に参考例1で得た触媒
1を、それぞれ組合せてタンデム型吸着触媒27を得
た。
Example 15 H-type ZSM-5 (SiO 2 / Al 2) was used as the zeolite.
O 3 = 700) H-type ZSM-5 (S
iO 2 / Al 2 O 3 = 700) 34 parts, Ag supported H
Type ZSM-5 (Ag carrying amount 5% by weight, SiO 2 / Al 2
O 3 = 30) 33 parts, H-type β-zeolite (SiO 2
/ Al 2 O 3 = 100) Except that 33 parts were used, the adsorption catalyst 27 was obtained in exactly the same manner as in Reference Example 1, and this adsorption catalyst 27 was obtained on the exhaust inflow side and Reference Example 1 was obtained on the exhaust outflow side. The obtained catalysts 1 were combined to obtain a tandem type adsorption catalyst 27.

【0045】実施例16 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、実施例15と全く同様な方法で吸
着触媒28を得、排気流入側にこの吸着触媒28を、排
気流出側に参考例1で得た触媒1を、それぞれ組合せて
タンデム型吸着触媒28を得た。
[0045] Instead of the Pt / CeO 2 as Example 16 the catalyst component Pd / Al 2
Except that O 3 was used, an adsorption catalyst 28 was obtained in exactly the same manner as in Example 15, and this adsorption catalyst 28 was combined with the exhaust gas inflow side, and the catalyst 1 obtained in Reference Example 1 was combined with the exhaust gas outflow side. A tandem adsorption catalyst 28 was obtained.

【0046】実施例17 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)34部、Pd担持H
型ZSM−5(Pd担持量2重量%、SiO2 /Al2
3 =30)33部、H型βゼオライト(SiO2
/Al23 =100)33部を用いた他は、参考例
1と全く同様な方法で吸着触媒29を得、排気流入側に
この吸着触媒29を、排気流出側に参考例1で得た触媒
1を、それぞれ組合せてタンデム型吸着触媒29を得
た。
Example 17 H-type ZSM-5 (SiO 2 / Al 2) was used as the zeolite.
O 3 = 700) H-type ZSM-5 (S
iO 2 / Al 2 O 3 = 700) 34 parts, Pd supported H
Type ZSM-5 (Pd carrying amount 2% by weight, SiO 2 / Al 2
O 3 = 30) 33 parts, H-type β-zeolite (SiO 2
/ Al 2 O 3 = 100) Except that 33 parts were used, an adsorption catalyst 29 was obtained in exactly the same manner as in Reference Example 1, and this adsorption catalyst 29 was obtained on the exhaust inflow side and in Reference Example 1 on the exhaust outflow side. The resulting catalysts 1 were combined to obtain a tandem-type adsorption catalyst 29.

【0047】実施例18 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、実施例17と全く同様な方法で吸
着触媒30を得、排気流入側にこの吸着触媒30を、排
気流出側に参考例1で得た触媒1を、それぞれ組合せて
タンデム型吸着触媒30を得た。
[0047] Instead of the Pt / CeO 2 as Example 18 the catalyst component Pd / Al 2
Except that O 3 was used, the adsorption catalyst 30 was obtained in exactly the same manner as in Example 17, and this adsorption catalyst 30 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 30 was obtained.

【0048】実施例19 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)100部に代えてH型ZSM−5(S
iO2 /Al23 =700)50部及びAgをイ
オン交換したUSY(以下、Ag担持USYという。A
g担持量5重量%、SiO2 /Al23 =12)
50部を用いた他は、参考例1と全く同様な方法で吸着
触媒31を得、排気流入側にこの吸着触媒31を、排気
流出側に参考例1で得た触媒1を、それぞれ組合せてタ
ンデム型吸着触媒31を得た。
Example 19 H-type ZSM-5 (SiO 2 / Al 2) was used as the zeolite.
O 3 = 700) H-type ZSM-5 (S
USY obtained by ion exchange of 50 parts of iO 2 / Al 2 O 3 = 700) and Ag-ion-exchanged USY (hereinafter referred to as Ag-supported USY)
g supported 5% by weight, SiO 2 / Al 2 O 3 = 12)
Except that 50 parts were used, an adsorption catalyst 31 was obtained in exactly the same manner as in Reference Example 1, and this adsorption catalyst 31 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem adsorption catalyst 31 was obtained.

【0049】実施例20 触媒成分としてPt/CeO2 に代えてPd/Al2
3 を用いた他は、実施例19と全く同様な方法で吸
着触媒32を得、排気流入側にこの吸着触媒32を、排
気流出側に参考例1で得た触媒1を、それぞれ組合せて
タンデム型吸着触媒32を得た。
Example 20 Pd / Al 2 was used instead of Pt / CeO 2 as a catalyst component.
Except that O 3 was used, an adsorption catalyst 32 was obtained in exactly the same manner as in Example 19, and this adsorption catalyst 32 was combined on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was combined on the exhaust outflow side. A tandem type adsorption catalyst 32 was obtained.

【0050】実施例21 参考例1と同様な方法でPd/CeO2 層を200g
/Lコートし、乾燥した後、焼成を行った。更に、同様
な方法でPd/CeO2 層上にRh/Al23 層を
50g/Lコートし、乾燥した後、空気雰囲気下で65
0℃にて3時間焼成を行い、触媒2を得た。排気流入側
に吸着触媒5を、排気流出側に触媒2を、それぞれ組み
合わせてタンデム型吸着触媒33を得た。
Example 21 A Pd / CeO 2 layer of 200 g was prepared in the same manner as in Reference Example 1.
/ L coating, dried and then fired. Further, a Rh / Al 2 O 3 layer is coated at 50 g / L on the Pd / CeO 2 layer in the same manner, dried, and dried under air atmosphere.
The mixture was calcined at 0 ° C. for 3 hours to obtain Catalyst 2. A tandem type adsorption catalyst 33 was obtained by combining the adsorption catalyst 5 on the exhaust gas inflow side and the catalyst 2 on the exhaust gas outflow side.

【0051】参考例13 排気流入側に吸着触媒9を、排気流出側に触媒2を、そ
れぞれ組み合わせてタンデム型吸着触媒34を得た。
Reference Example 13 A tandem type adsorption catalyst 34 was obtained by combining the adsorption catalyst 9 on the exhaust gas inflow side and the catalyst 2 on the exhaust gas outflow side.

【0052】実施例22 触媒成分としてPt/CeO2 に代えてPt/CeO2
及びPd/Al23 を用いた他は、実施例1と全く
同様な方法で吸着触媒35を得、排気流入側にこの吸着
触媒35を、排気流出側に参考例1で得た触媒1を、そ
れぞれ組合せてタンデム型吸着触媒35を得た。
[0052] Instead of the Pt / CeO 2 as Example 22 the catalyst component Pt / CeO 2
Except that Pd / Al 2 O 3 was used, an adsorption catalyst 35 was obtained in exactly the same manner as in Example 1, and the adsorption catalyst 35 was obtained on the exhaust inflow side, and the catalyst 1 obtained in Reference Example 1 was obtained on the exhaust outflow side. Were combined to obtain a tandem-type adsorption catalyst 35.

【0053】実施例23 ゼオライトとしてH型ZSM−5(SiO2 /Al2
3 =700)50部及びH型USY(SiO2 /A
23 =50)50部に代えてH型ZSM−5(S
iO2 /Al23 =700)67部及びH型US
Y(SiO2/Al23 =50)37部を用いた他
は、実施例22と全く同様な方法で吸着触媒36を得、
排気流入側にこの吸着触媒36を、排気流出側に参考例
1で得た触媒1を、それぞれ組合せてタンデム型吸着触
媒36を得た。
Example 23 H-type ZSM-5 (SiO 2 / Al 2
O 3 = 700) 50 parts and H-type USY (SiO 2 / A)
(l 2 O 3 = 50) H-type ZSM-5 (S
iO 2 / Al 2 O 3 = 700) 67 parts and H type US
Except that 37 parts of Y (SiO 2 / Al 2 O 3 = 50) were used, an adsorption catalyst 36 was obtained in the same manner as in Example 22 to obtain an adsorption catalyst 36.
The tandem type adsorption catalyst 36 was obtained by combining the adsorption catalyst 36 on the exhaust gas inflow side and the catalyst 1 obtained in Reference Example 1 on the exhaust gas outflow side.

【0054】比較例1 H型USY(SiO2 /Al23 =50)100
部、シリカゾル(固形分20%)215部、10%硝酸
100部及び水15部を磁性ポットに投入し、参考例1
と全く同様な方法でウォッシュコートスラリーを製造
し、同コート方法でモノリス担体に150g/Lコー
ト、乾燥、焼成を行い、吸着触媒37を得た。排気流入
側に吸着触媒37を、排気流出側に触媒1を、それぞれ
組み合わせてタンデム型吸着触媒37を得た。
Comparative Example 1 H-type USY (SiO 2 / Al 2 O 3 = 50) 100
Parts, 215 parts of silica sol (solid content: 20%), 100 parts of 10% nitric acid, and 15 parts of water were charged into a magnetic pot.
A wash coat slurry was produced in exactly the same manner as described above, and the monolith carrier was coated at 150 g / L, dried and calcined by the same coat method to obtain an adsorption catalyst 37. A tandem adsorption catalyst 37 was obtained by combining the adsorption catalyst 37 on the exhaust gas inflow side and the catalyst 1 on the exhaust gas outflow side.

【0055】比較例2 H型USY(SiO2 /Al23 =50)に代え
てH型USY(SiO2/Al23 =7)を用いた
他は、比較例1と全く同様な方法により、吸着触媒38
を得、排気流入側にこの吸着触媒38を、排気流出側に
参考例1で得た触媒1を、それぞれ組合せてタンデム型
吸着触媒38を得た。
Comparative Example 2 The same as Comparative Example 1 except that H-type USY (SiO 2 / Al 2 O 3 = 7) was used instead of H-type USY (SiO 2 / Al 2 O 3 = 50). By the method, the adsorption catalyst 38
The tandem adsorption catalyst 38 was obtained by combining the adsorption catalyst 38 on the exhaust inflow side and the catalyst 1 obtained in Reference Example 1 on the exhaust outflow side.

【0056】試験例 実施例1〜23、参考例1〜13、及び比較例1〜2で
得られたタンデム型吸着触媒を用いて下記評価条件でH
C吸着・浄化特性の評価を行った。その結果を表1、2
及び3に示す。
Test Examples Using the tandem-type adsorption catalysts obtained in Examples 1 to 23, Reference Examples 1 to 13 and Comparative Examples 1 to 2 under the following evaluation conditions,
The C adsorption / purification characteristics were evaluated. Tables 1 and 2 show the results.
And 3.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】尚、評価に当たっては図1に示すようにエ
ンジン1のエキゾーストマニホールド2にプリ三元触媒
3(0.5L)としてPt−Ph系触媒を配置し、床下
触媒5(1.3L)のPt−Rh系触媒の前に吸着触媒
4(1.3L)を装着した排ガス浄化装置を用い、吸着
触媒未装着の場合と性能比較を行った。評価に当たって
は、 (1)エンジン始動時に排出される炭化水素の吸着能を
評価するためAbag0〜125秒間のエミッション低減率
を測定した。 (2)一時的に吸着した炭化水素も吸着触媒下流の三元
触媒が活性化する前に脱離して エミッション低減効果
がない。そこで吸着触媒による脱離抑制能及び自己浄化
能を評価するためAbag0〜505秒間のエミッション低
減率を測定した。
In the evaluation, as shown in FIG. 1, a Pt-Ph-based catalyst was disposed as a pre-three-way catalyst 3 (0.5 L) in the exhaust manifold 2 of the engine 1 and the underfloor catalyst 5 (1.3 L) was used. Using an exhaust gas purifier equipped with the adsorption catalyst 4 (1.3 L) before the Pt-Rh-based catalyst, performance comparison was made with the case where the adsorption catalyst was not installed. In the evaluation, (1) The emission reduction rate in Abag 0 to 125 seconds was measured in order to evaluate the adsorption ability of hydrocarbons discharged at the time of engine start. (2) The temporarily adsorbed hydrocarbons are desorbed before the three-way catalyst downstream of the adsorption catalyst is activated, and there is no emission reduction effect. Then, in order to evaluate the desorption suppressing ability and the self-purifying ability by the adsorption catalyst, the emission reduction rate in Abag 0 to 505 seconds was measured.

【0061】 評価条件 触媒容量 1.3L 評価車両 日産自動車株式会社製、V型6気筒3000ccエンジン 評価モード LA4−CH(Abag) エンジン始動時に排出される(触媒入口のガス中の)炭化水素 炭素数 C2 〜C3 21.2% (C1 成分除く) C4 〜C6 33.0% C7 〜C9 45.8%Evaluation Conditions Catalyst Capacity 1.3 L Evaluation Vehicle Nissan Motor Co., Ltd., V-type 6-cylinder 3000 cc engine Evaluation mode LA4-CH (Abag) Hydrocarbon (in gas at catalyst inlet) discharged at engine start Carbon number C 2 ~C 3 21.2% (excluding C 1 component) C 4 ~C 6 33.0% C 7 ~C 9 45.8%

【0062】[0062]

【発明の効果】本発明の排ガス浄化用吸着触媒は、触媒
担体上に炭化水素吸着に有効な吸着層上に触媒層がコー
トされた吸着触媒を排気流入側に配置し、触媒担体上に
触媒活性成分を含む無機物をコートした触媒を排気流出
側に配置することにより、エンジン始動時に排出される
高濃度の炭化水素を効率良く除去することのできる。
According to the present invention, the adsorption catalyst for purifying exhaust gas has an adsorption catalyst in which a catalyst layer is coated on an adsorption layer effective for adsorbing hydrocarbons on a catalyst carrier, and is disposed on the exhaust gas inflow side. By disposing a catalyst coated with an inorganic substance containing an active component on the exhaust outlet side, it is possible to efficiently remove high-concentration hydrocarbons discharged at the time of starting the engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試験例に用いた排ガス浄化装置の系統図であ
る。
FIG. 1 is a system diagram of an exhaust gas purifying apparatus used in a test example.

【符号の説明】[Explanation of symbols]

1 エンジン 2 エキゾーストマニホールド 3 プリ三元触媒 4 吸着触媒 5 床下三元触媒 Reference Signs List 1 engine 2 exhaust manifold 3 pre-three-way catalyst 4 adsorption catalyst 5 under-floor three-way catalyst

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 B01D 53/86 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00 B01D 53/86

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上流側に排気ガス浄化用吸着触媒を、下
流側に三元触媒を配置した排気ガス浄化装置であって、 触媒担体にゼオライト層をコーティングした前記吸着触
媒は、 ゼオライトとしてSiO2/Al23のモル比が12〜
50の範囲にあるUSY、β−ゼオライト、ZSM−5
から選ばれた少なくとも1種のゼオライトを前記ゼオラ
イト層に含有し、 かつ前記ゼオライト層上に活性セリア及び/又はアルミ
ナを主成分とした粉末にあらかじめ触媒成分としてP
t、Pt及びRhからなる群から選ばれた少なくとも1
種を含む触媒層を積層することを特徴とする排気ガス浄
化装置。
1. An exhaust gas purifying apparatus comprising: an adsorption catalyst for purifying exhaust gas on an upstream side; and a three-way catalyst on a downstream side, wherein the adsorption catalyst having a zeolite layer coated on a catalyst carrier comprises SiO 2 as zeolite. / Al 2 O 3 molar ratio is 12 to
USY, β-zeolite, ZSM-5 in the range of 50
The zeolite layer contains at least one type of zeolite selected from the group consisting of: and a powder containing activated ceria and / or alumina as a main component on the zeolite layer.
at least one selected from the group consisting of t, Pt and Rh
An exhaust gas purifying apparatus characterized by laminating a catalyst layer containing seeds.
【請求項2】請求項1記載の排気ガス浄化装置を床下位
置に配置し、エキゾーストマニホールド位置に三元触媒
をさらに配置し、かつ前記プリ三元触媒を通過したガス
のみが、常時、請求項1記載の排気ガス浄化装置に流入
することを特徴とする排気ガス浄化装置。
2. The exhaust gas purifying apparatus according to claim 1, wherein the exhaust gas purifying apparatus is disposed at a position below the floor, a three-way catalyst is further disposed at an exhaust manifold position, and only the gas which has passed through the pre-three-way catalyst is always present. An exhaust gas purifying apparatus flowing into the exhaust gas purifying apparatus according to claim 1.
JP00862494A 1994-01-28 1994-01-28 Exhaust gas purification device Expired - Lifetime JP3282344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00862494A JP3282344B2 (en) 1994-01-28 1994-01-28 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00862494A JP3282344B2 (en) 1994-01-28 1994-01-28 Exhaust gas purification device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002000012A Division JP3695394B2 (en) 2002-01-04 2002-01-04 Exhaust gas purification device and manufacturing method

Publications (2)

Publication Number Publication Date
JPH07213910A JPH07213910A (en) 1995-08-15
JP3282344B2 true JP3282344B2 (en) 2002-05-13

Family

ID=11698109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00862494A Expired - Lifetime JP3282344B2 (en) 1994-01-28 1994-01-28 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP3282344B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830566B2 (en) 1995-10-04 2006-10-04 日本碍子株式会社 Exhaust gas purification system
DE69826768T2 (en) 1997-07-02 2006-03-09 Tosoh Corp., Shinnanyo Adsorbent for hydrocarbon and catalyst for exhaust gas purification
DE19814132A1 (en) 1998-03-30 1999-10-14 Emitec Emissionstechnologie Honeycomb body with adsorber material, especially for a hydrocarbon trap
EP1129774A4 (en) * 1998-10-28 2003-04-16 Toyota Motor Co Ltd Adsorbent for hydrocarbon and catalyst for exhaust gas purification
JP4736162B2 (en) * 2000-06-26 2011-07-27 マツダ株式会社 HC trap catalyst
JP4631230B2 (en) * 2001-08-03 2011-02-16 マツダ株式会社 Exhaust gas purification catalyst
US7084086B2 (en) 2002-02-01 2006-08-01 Cataler Corporation Catalyst for purifying exhaust gases
EP1332788B1 (en) 2002-02-01 2014-09-24 Cataler Corporation Catalyst for purifying exhaust gases
JP4776151B2 (en) 2003-05-27 2011-09-21 日産自動車株式会社 Exhaust gas purification system
CN111801157A (en) 2018-03-02 2020-10-20 东曹株式会社 Hydrocarbon adsorbent
CN117412923A (en) 2021-06-02 2024-01-16 东曹株式会社 YFI zeolite, process for producing the same, hydrocarbon adsorbent, and process for adsorbing hydrocarbon

Also Published As

Publication number Publication date
JPH07213910A (en) 1995-08-15

Similar Documents

Publication Publication Date Title
US7820123B2 (en) Device for the purification of exhaust gas
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
CN112041051B (en) Hydrocarbon trapping catalyst
JP2800499B2 (en) Hydrocarbon adsorbent
JPH07124468A (en) Production of hydrocarbon adsorbent and adsorption catalyst
EP0716877A1 (en) Catalytic purification of engine exhaust gas
JPH06210136A (en) Exhaust gas purification apparatus for decreasing discharge of hydrocarbon during cold start of internal combustion engine
JP3282344B2 (en) Exhaust gas purification device
JPH11179158A (en) Adsorbent and adsorber for cleaning of exhaust gas of automobile containing fine hole porous body and exhaust gas cleaning system using them and method for cleaning of exhaust gas
JP2682404B2 (en) Method for producing hydrocarbon adsorbent and catalyst
JPH07332073A (en) Exhaust emission control device
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JP3546547B2 (en) HC adsorbent for exhaust gas purification device and method for producing the same
JPH07241471A (en) Production of adsorptive catalyst for purification of exhaust gas
JPH06142519A (en) Hydrocarbon adsorptive catalyst
JPH04293519A (en) Exhaust gas purification device
JPH0999217A (en) Exhaust gas purifying system
JP3295989B2 (en) Exhaust gas purification catalyst
JPH09225265A (en) Exhaust gas purifying device
JP3459037B2 (en) Exhaust gas purification equipment
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3414808B2 (en) Hydrocarbon adsorbent in exhaust gas
JP3321831B2 (en) Exhaust gas purification catalyst
JP3991908B2 (en) Exhaust gas purification method
JP3460364B2 (en) Method for producing hydrocarbon adsorbent

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

EXPY Cancellation because of completion of term