JPH07166854A - Exhaust emission controlling catalytic structure - Google Patents

Exhaust emission controlling catalytic structure

Info

Publication number
JPH07166854A
JPH07166854A JP5313923A JP31392393A JPH07166854A JP H07166854 A JPH07166854 A JP H07166854A JP 5313923 A JP5313923 A JP 5313923A JP 31392393 A JP31392393 A JP 31392393A JP H07166854 A JPH07166854 A JP H07166854A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
gas purifying
purifying catalyst
active species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5313923A
Other languages
Japanese (ja)
Other versions
JP3278514B2 (en
Inventor
Akihide Takami
明秀 高見
Tomoji Ichikawa
智士 市川
Takashi Takemoto
崇 竹本
Hideji Iwakuni
秀治 岩国
Kazuya Komatsu
一也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP31392393A priority Critical patent/JP3278514B2/en
Publication of JPH07166854A publication Critical patent/JPH07166854A/en
Application granted granted Critical
Publication of JP3278514B2 publication Critical patent/JP3278514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high purifying rate of exhaust gas even in the case that a nature of exhaust gas is frequently changed. CONSTITUTION:The first/second catalysts 3, 4 are arranged in series so as to place the former in the downstream and the latter in the upstream, in a flow direction of exhaust gas. An activation temperature range of the first catalyst 3 is wide in a low temperature side from that of the second catalyst 4, and on the other hand, an activation temperature range of the second catalyst 11 is wide in a high temperature side from that of the first catalyst 3, further with mutual activation temperature range partly lapped of both the catalysts 3, 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排気ガス浄化用触媒構造
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst structure.

【0002】[0002]

【従来の技術】エンジンの排気ガス浄化用触媒として、
CO及びHCの酸化とNOxの還元とを同時に行なう三
元触媒が知られている。これはγ−アルミナにPt等の
貴金属を担持させてなるものであって、エンジンの空燃
比(A/F)が理論空燃比であるときには高い浄化率を
示すものの、排気ガス中の酸素濃度が高くなると、NO
xの浄化率が急激に低くなる。
2. Description of the Related Art As a catalyst for purifying engine exhaust gas,
A three-way catalyst that simultaneously oxidizes CO and HC and reduces NOx is known. This is a system in which a precious metal such as Pt is supported on γ-alumina and shows a high purification rate when the engine air-fuel ratio (A / F) is the theoretical air-fuel ratio, but the oxygen concentration in the exhaust gas is When it gets higher, NO
The purification rate of x sharply decreases.

【0003】これに対して、NOx浄化用触媒として、
排気ガス中のNOをNO2 に酸化するための酸化触媒を
排気ガス流れ方向の上流側に、NO2 を吸着・分解する
ためのゼオライトよりなる第2触媒を下流側に配置し、
NOxを効率良く分解除去するようにしたものは知られ
ている(特開昭63−49234号公報参照)。このも
のでは、第1触媒の方が第2触媒よりも活性温度が高く
なっている。
On the other hand, as a NOx purification catalyst,
An oxidation catalyst for oxidizing NO in exhaust gas to NO 2 is arranged on the upstream side in the exhaust gas flow direction, and a second catalyst made of zeolite for adsorbing / decomposing NO 2 is arranged on the downstream side,
It is known that NOx is efficiently decomposed and removed (see JP-A-63-49234). In this case, the activation temperature of the first catalyst is higher than that of the second catalyst.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述の如き、
排気ガス流れ方向の上流側にNOxの酸化触媒を配置
し、下流側に吸着・分解触媒を配置したものでは、排気
ガスが上流側の触媒を該触媒の活性温度で通過し且つ下
流側の触媒を該触媒の活性温度で通過する必要がある
が、排気ガスをそのような温度条件になるようにするこ
とは難しい。特に、自動車エンジンの場合はその運転条
件が刻々と変化するために、排気ガスが上記のような温
度条件になることは少なく、所期の排気ガス浄化率が得
られない。
However, as described above,
In the case where the NOx oxidation catalyst is arranged on the upstream side in the exhaust gas flow direction and the adsorption / decomposition catalyst is arranged on the downstream side, the exhaust gas passes through the upstream catalyst at the activation temperature of the catalyst and the downstream catalyst. Must be passed at the activation temperature of the catalyst, but it is difficult to bring the exhaust gas to such temperature conditions. Particularly, in the case of an automobile engine, the operating conditions thereof change every moment, so that the exhaust gas rarely reaches the above temperature condition, and the desired exhaust gas purification rate cannot be obtained.

【0005】[0005]

【課題を解決するための手段及びその作用】本発明者
は、このような課題に対して鋭意研究した結果、貴金属
活性種をゼオライト等の活性種担持母材に担持させた触
媒に関して、活性温度域が互いに一部ラップする高温活
性の触媒と低温活性の触媒とを組み合わせると、排気ガ
ス浄化率が高くなることを見出だし、本発明を完成する
に至ったものである。
Means for Solving the Problem and Its Action As a result of intensive studies on such problems, the present inventor has found that a catalyst in which a noble metal active species is supported on an active species supporting base material such as zeolite has an active temperature The inventors have found that a combination of a high temperature active catalyst and a low temperature active catalyst whose regions partially overlap each other increases the exhaust gas purification rate, and has completed the present invention.

【0006】−請求項1に係る発明− すなわち、上記課題を解決する請求項1に係る発明は、
各々貴金属活性種が活性種担持母材に担持されてなる第
1排気ガス浄化用触媒と第2排気ガス浄化用触媒とのう
ちの一方が排気ガス流れ方向における上流側に、他方が
下流側に配置されていて、上記第1排気ガス浄化用触媒
は第2排気ガス浄化用触媒よりも活性温度域が低温側に
広く、該第2排気ガス浄化用触媒は第1排気ガス浄化用
触媒よりも活性温度域が高温側に広く、且つ該両排気ガ
ス浄化用触媒の活性温度域が互いに一部ラップしている
ことを特徴とする排気ガス浄化用触媒構造である。
-Invention of Claim 1- That is, the invention of Claim 1 which solves the above problems is
One of the first exhaust gas purifying catalyst and the second exhaust gas purifying catalyst, each of which has a precious metal active species supported on the active species-supporting base material, is on the upstream side in the exhaust gas flow direction, and the other is on the downstream side. The first exhaust gas purifying catalyst has a wider active temperature range on the low temperature side than the second exhaust gas purifying catalyst, and the second exhaust gas purifying catalyst is more than the first exhaust gas purifying catalyst. The exhaust gas purifying catalyst structure is characterized in that the active temperature range is wide toward the high temperature side, and the active temperature ranges of both the exhaust gas purifying catalysts partially overlap each other.

【0007】当該発明においては、第1排気ガス浄化用
触媒と第2排気ガス浄化用触媒とは互いの活性温度域が
一部ラップするが、前者は低温活性の触媒であり、後者
は高温活性の触媒であるから、両者合わせたトータルの
活性温度域は各々単独の場合よりも広くなる。そして、
当該両触媒の活性温度域が一部ラップしているから、こ
のラップ領域においては、排気ガスの浄化率が一段と高
くなる。
In the present invention, the first exhaust gas purifying catalyst and the second exhaust gas purifying catalyst partially overlap in the activation temperature range, but the former is a low temperature active catalyst and the latter is a high temperature active catalyst. Since they are the catalysts, the total activation temperature range of the both is wider than that of the case where each is used alone. And
Since the activation temperature regions of both catalysts partially overlap, the purification rate of the exhaust gas is further increased in this overlap region.

【0008】この場合、低温活性の第1排気ガス浄化用
触媒と高温活性の第2排気ガス浄化用触媒とは、自動車
エンジンの排気ガス浄化に用いる場合、いずれを排気ガ
ス流れ方向の上流側に配置してもよい。これは、自動車
エンジンの場合は運転条件(加速・減速)によって排気
ガス温度が頻繁に上下動するため、上述の如く第1排気
ガス浄化用触媒と第2排気ガス浄化用触媒との活性温度
域がラップしているものでは、いずれが上流側にあって
も排気ガス浄化率に大差はないからである。むしろ、排
気ガス浄化率は、第1排気ガス浄化用触媒と第2排気ガ
ス浄化用触媒とを合わせたトータルの活性温度域や、上
記ラップ領域が広いほど高くなる。
In this case, when the low temperature active first exhaust gas purifying catalyst and the high temperature active second exhaust gas purifying catalyst are used for purifying exhaust gas of an automobile engine, whichever is located upstream of the exhaust gas flow direction. You may arrange. In the case of an automobile engine, this is because the exhaust gas temperature frequently fluctuates depending on operating conditions (acceleration / deceleration), so that the active temperature range of the first exhaust gas purification catalyst and the second exhaust gas purification catalyst is as described above. This is because there is no great difference in the exhaust gas purification rate regardless of which is on the upstream side. Rather, the exhaust gas purification rate becomes higher as the total activation temperature range of the first exhaust gas purification catalyst and the second exhaust gas purification catalyst combined and the lap region become wider.

【0009】ここに、上記貴金属活性種としては、P
t、Rh、Ir、Pdが好適であり、特に触媒の低温活
性の点からはPtが好適であり、また、これら貴金属を
組み合わせて用いることもでき、先に述べたように、か
かる組み合わせとしては、PtとIrとを組み合わせ、
PtとIrとRhとの組み合わせが好適であるが、さら
にPdを組み合わせることもできる。
Here, as the noble metal active species, P
t, Rh, Ir, and Pd are preferable, and Pt is particularly preferable from the viewpoint of low-temperature activity of the catalyst, and these noble metals can be used in combination. , Pt and Ir are combined,
A combination of Pt, Ir and Rh is preferable, but Pd can be further combined.

【0010】また、上記活性種担持母材としては、多孔
質の金属含有シリケートが好適であるが、他の無機多孔
質等を用いることもできる。上記多孔質の金属含有シリ
ケートは、結晶の骨格を形成する金属としてAlを用い
たアルミノシリケート(ゼオライト)に代表されるよう
なミクロの細孔を有する結晶質の多孔体を意味する。も
ちろん、上記Alに代えてあるいはAlと共にGa、C
e、Mn、Tb等の他の金属を骨格形成材料とする金属
含有シリケートを用いることもできる。また、アルミノ
シリケートについても、ZSM−5、フェリエライト、
モルデナイト、A型、X型、Y型などその種類を問わず
に採用することができ、ケイバン比も特に問わない。
As the active species-supporting base material, a porous metal-containing silicate is suitable, but other inorganic porous materials can be used. The above-mentioned porous metal-containing silicate means a crystalline porous body having micropores as represented by aluminosilicate (zeolite) using Al as a metal forming a crystal skeleton. Of course, instead of Al or together with Al, Ga, C
It is also possible to use a metal-containing silicate whose skeleton-forming material is another metal such as e, Mn, or Tb. In addition, regarding aluminosilicate, ZSM-5, ferrierite,
It can be used regardless of the type such as mordenite, A type, X type, Y type, and the Caban ratio is not particularly limited.

【0011】しかして、上記第1排気ガス浄化用触媒及
び第2排気ガス浄化用触媒については、両者を互いに同
じ材料構成として、後者のみに加熱処理を施すことによ
り、前者を低温活性の触媒に、後者を高温活性の触媒に
することができる。例えば、貴金属活性種としてPt、
Ir及びRhを用い、活性種担持母材として多孔質の金
属含有シリケートを用いた場合、第2排気ガス浄化用触
媒については、温度600〜800℃、時間10〜30
hr程度の加熱処理を施せばよい。
With respect to the first exhaust gas purifying catalyst and the second exhaust gas purifying catalyst, however, the former and the second exhaust gas purifying catalyst are made to have the same material composition, and only the latter is subjected to heat treatment, so that the former becomes a low temperature active catalyst. , The latter can be a high temperature active catalyst. For example, Pt as the noble metal active species,
When Ir and Rh are used and a porous metal-containing silicate is used as the active species-supporting base material, the temperature of the second exhaust gas purifying catalyst is 600 to 800 ° C., and the time is 10 to 30.
The heat treatment may be performed for about hr.

【0012】この場合、第2排気ガス浄化用触媒はその
活性温度域が第1排気ガス浄化用触媒よりも高くなる
が、これは、当該加熱によって貴金属活性種としてのP
tの強い酸化力が抑制されるためと考えられる。
In this case, the activation temperature range of the second exhaust gas purifying catalyst becomes higher than that of the first exhaust gas purifying catalyst.
It is considered that the strong oxidizing power of t is suppressed.

【0013】また、第1排気ガス浄化用触媒と第2排気
ガス浄化用触媒とは、請求項2や請求項3に係る発明の
ように、互いの材料構成を異なるものにすることによっ
て、前者を低温活性の触媒に、後者を高温活性の触媒に
することもできる。
Further, the first exhaust gas purifying catalyst and the second exhaust gas purifying catalyst are different from each other in that the material configurations are different from each other as in the inventions according to claim 2 and claim 3. Can be a low temperature active catalyst and the latter a high temperature active catalyst.

【0014】−請求項2に係る発明− 上記課題を解決する請求項2に係る発明は、上記請求項
1に記載の排気ガス浄化用触媒構造において、上記第1
及び第2の両排気ガス浄化用触媒の貴金属活性種がP
t、Ir及びRhであり、上記第1排気ガス浄化用触媒
の活性種担持母材が多孔質の金属含有シリケートであ
り、上記第2排気ガス浄化用触媒の活性種担持母材が多
孔質の金属含有シリケートと、アルミナ又はセリアとの
混合物であることを特徴とする。
-Invention of Claim 2- The invention of Claim 2 which solves the above-mentioned problems is the catalyst structure for purifying exhaust gas according to Claim 1, wherein the first
And the noble metal active species of the second exhaust gas purifying catalyst are P
t, Ir, and Rh, the active species-supporting base material of the first exhaust gas purifying catalyst is a porous metal-containing silicate, and the active species-supporting base material of the second exhaust gas purifying catalyst is porous. It is characterized by being a mixture of a metal-containing silicate and alumina or ceria.

【0015】当該発明において、貴金属活性種としての
Ptは排気ガス中のHCを低温でも活性化させる作用を
呈し、Irは排気ガス中のNOxを捕捉することによっ
て上記Ptによって活性化されたHCとの接触を促すと
ともに、Ptの結晶成長を抑制することによって触媒の
耐熱性向上に寄与する。Rhは触媒の耐熱性を高める作
用を呈する。また、上記金属含有シリケートはNOxの
選択的な吸着に有利に作用する。よって、第1排気ガス
浄化用触媒は低温活性が高く且つ耐熱性にも優れたもの
になっている。
In the present invention, Pt as the noble metal active species has the effect of activating HC in the exhaust gas even at low temperatures, and Ir is the HC activated by Pt by trapping NOx in the exhaust gas. Of the Pt and the suppression of Pt crystal growth contribute to improving the heat resistance of the catalyst. Rh has the function of increasing the heat resistance of the catalyst. Further, the metal-containing silicate advantageously acts on the selective adsorption of NOx. Therefore, the first exhaust gas purification catalyst has high low-temperature activity and excellent heat resistance.

【0016】一方、第2排気ガス浄化用触媒は、活性種
担持母材として上記金属含有シリケートに加えてアルミ
ナ又はセリアを備えているから、その活性温度域が第1
排気ガス浄化用触媒よりも高くなっている。すなわち、
上記アルミナやセリアは、いずれも当該触媒の最高NO
x浄化率の実質的な低下を招くことなく、かえってNO
x浄化率を向上させながら、活性温度を高温側にずらす
温度シフト作用を呈する。
On the other hand, since the second exhaust gas purifying catalyst comprises alumina or ceria in addition to the above metal-containing silicate as an active species supporting base material, its active temperature range is the first.
It is higher than the exhaust gas purification catalyst. That is,
The above-mentioned alumina and ceria are the highest NO of the catalyst.
x Instead of substantially reducing the purification rate, NO
It exhibits a temperature shift action of shifting the activation temperature to the high temperature side while improving the x purification rate.

【0017】その理由は必ずしも明確ではないが、一つ
の理由としては、貴金属活性種としてのPtはその強い
酸化力によって比較的低い温度でもHC等の還元剤を活
性化させ、そのためNOxを低温から浄化するものであ
るところ、アルミナやセリアがPtの酸化力を抑制する
ため、上述の如く活性温度域が高温側へずれることが考
えられる。また、アルミナやセリアは貴金属活性種の耐
熱性を向上させる。
Although the reason is not always clear, one reason is that Pt as a noble metal active species activates a reducing agent such as HC even at a relatively low temperature due to its strong oxidizing power, so that NOx is changed from a low temperature. In the case of purification, alumina or ceria suppresses the oxidizing power of Pt, and it is considered that the active temperature range shifts to the high temperature side as described above. Further, alumina and ceria improve the heat resistance of the noble metal active species.

【0018】上記アルミナは、その量が少ないと上記活
性温度域のシフト効果が低くなり、また、多すぎると触
媒の排気ガス浄化率が低下する。かかる観点から、活性
種担持母材におけるアルミナの量は5〜80重量%、さ
らには15〜60重量%が好適である。また、セリアの
場合も同様の観点から5〜70重量%、さらには15〜
50重量%が好適である。アルミナ及びセリアの両者を
添加する場合でも、その総量は上記アルミナ単独、セリ
ア単独の場合に倣って決定すればよく、アルミナ/セリ
ア比については0.1〜10程度にすればよい。
When the amount of alumina is small, the effect of shifting the active temperature range is low, and when it is too large, the exhaust gas purification rate of the catalyst is low. From this viewpoint, the amount of alumina in the active species-supporting base material is preferably 5 to 80% by weight, more preferably 15 to 60% by weight. In the case of ceria, from the same viewpoint, it is 5 to 70% by weight, and further 15 to
50% by weight is preferred. Even when both alumina and ceria are added, the total amount may be determined in the same manner as in the case of alumina alone or ceria alone, and the alumina / ceria ratio may be about 0.1 to 10.

【0019】この場合、上記第2排気ガス浄化用触媒に
加熱処理を施すことは、該第2排気ガス浄化用触媒の活
性温度域をさらに高温側へシフトさせる好適な手段とな
る。これは、当該加熱によって貴金属活性種に何らかの
状態を変化を生じてアルミナやセリアとの相互作用がよ
り顕著になるためと考えられる。この場合の加熱処理の
条件としては、例えば、温度を550〜900℃、時間
を10〜30hr程度とすればよい。
In this case, the heat treatment of the second exhaust gas purifying catalyst is a suitable means for shifting the activation temperature range of the second exhaust gas purifying catalyst to a higher temperature side. This is considered to be because the heating causes a change in the noble metal active species in some state, and the interaction with alumina or ceria becomes more prominent. The conditions for the heat treatment in this case may be, for example, a temperature of 550 to 900 ° C. and a time of 10 to 30 hours.

【0020】−請求項3に係る発明− 上記課題を解決する請求項3に係る発明は、上記請求項
1に記載の排気ガス浄化用触媒構造において、上記第1
排気ガス浄化用触媒は、貴金属活性種としてPt、Ir
及びRhが用いられ、活性種担持母材として多孔質の金
属含有シリケートが用いられたものであり、上記第2排
気ガス浄化用触媒は、貴金属活性種としてのPt、Ir
及びRhが活性種担持母材としての多孔質の金属含有シ
リケートに担持されてなる触媒粉と、アルミナ及びセリ
アの少なくとも一方との混合物によって形成されている
ことを特徴とする。
-Invention of Claim 3- The invention according to claim 3 for solving the above-mentioned problems is the catalyst structure for purifying exhaust gas according to claim 1, wherein:
The exhaust gas purifying catalyst contains Pt and Ir as the noble metal active species.
And Rh are used, and a porous metal-containing silicate is used as an active species-supporting base material, and the second exhaust gas purification catalyst is Pt or Ir as a noble metal active species.
And Rh are formed by a mixture of a catalyst powder supported on a porous metal-containing silicate as an active species supporting base material and at least one of alumina and ceria.

【0021】当該発明は、第2排気ガス浄化用触媒にお
けるアルミナやセリアが活性種担持母材としてではなく
触媒の一部として混合されている点で請求項2に係る発
明と相違するが、請求項2の発明の場合と同様に、第2
排気ガス浄化用触媒は、上記アルミナやセリアの添加に
よってその活性温度域が第1排気ガス浄化用触媒よりも
高くなっている。
The present invention is different from the invention according to claim 2 in that alumina and ceria in the second exhaust gas purifying catalyst are mixed as a part of the catalyst rather than as the active species supporting base material. As in the case of the invention of Item 2, the second
The exhaust gas purifying catalyst has an active temperature range higher than that of the first exhaust gas purifying catalyst due to the addition of alumina or ceria.

【0022】上記アルミナ量については、請求項2に係
る発明の場合と同様の観点から、5〜70重量%、さら
には10〜50重量%が好適である。また、セリアの場
合は5〜60重量%、さらには10〜50重量%が好適
である。アルミナ及びセリアの両者を添加する場合で
も、その総量は上記アルミナ単独、セリア単独の場合に
倣って決定すればよく、アルミナ/セリア比については
0.1〜10程度にすればよい。
The amount of alumina is preferably 5 to 70% by weight, more preferably 10 to 50% by weight from the same viewpoint as in the case of the invention according to claim 2. Further, in the case of ceria, 5 to 60% by weight, more preferably 10 to 50% by weight is suitable. Even when both alumina and ceria are added, the total amount may be determined in the same manner as in the case of alumina alone or ceria alone, and the alumina / ceria ratio may be about 0.1 to 10.

【0023】また、当該発明においても、請求項2に係
る発明と同様に第2排気ガス浄化用触媒に同様の加熱処
理を施すことができ、それによって、該第2排気ガス浄
化用触媒の活性温度域をさらに高温側へシフトさせるこ
とができる。
Also in the present invention, the same heat treatment can be applied to the second exhaust gas purifying catalyst as in the second aspect of the invention, whereby the activity of the second exhaust gas purifying catalyst is increased. The temperature range can be shifted to a higher temperature side.

【0024】[0024]

【発明の効果】従って、請求項1に係る発明によれば、
第1排気ガス浄化用触媒は第2排気ガス浄化用触媒より
も活性温度域が低温側に広く、該第2排気ガス浄化用触
媒は第1排気ガス浄化用触媒よりも活性温度域が高温側
に広く、且つ該両排気ガス浄化用触媒の活性温度域が互
いに一部ラップしていて、このような2つの触媒の一方
を排気ガス流れ方向の上流側に、他方を下流側に配置し
たから、両触媒が排気ガス温度が低い低温時から同温度
が高い高温時まで排気ガスの浄化に有効に働き、排気ガ
スの特性が頻繁に変化する場合でも高い排気ガス浄化効
率が得られる。
Therefore, according to the invention of claim 1,
The first exhaust gas purifying catalyst has a wider active temperature range than the second exhaust gas purifying catalyst on the low temperature side, and the second exhaust gas purifying catalyst has a higher active temperature range than the first exhaust gas purifying catalyst. Since the exhaust gas purifying catalysts have a wide area, and the activation temperature ranges of the two exhaust gas purifying catalysts partially overlap each other, one of the two catalysts is arranged on the upstream side in the exhaust gas flow direction and the other is arranged on the downstream side. Both catalysts work effectively for purification of exhaust gas from a low exhaust gas temperature to a high exhaust gas temperature, and high exhaust gas purification efficiency is obtained even when the characteristics of the exhaust gas change frequently.

【0025】請求項2又は請求項3の各発明によれば、
それぞれ第2排気ガス浄化用触媒の活性温度域を第1排
気ガス浄化用触媒の活性温度域よりも高くして、実施例
1と同様に排気ガスの特性が頻繁に変化する場合でも高
い排気ガス浄化効率を得ることができる。
According to each invention of claim 2 or 3,
Each of the second exhaust gas purifying catalyst has an active temperature range higher than that of the first exhaust gas purifying catalyst so that the exhaust gas has high exhaust gas characteristics even when the characteristics of the exhaust gas frequently change as in the first embodiment. Purification efficiency can be obtained.

【0026】[0026]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0027】図1には実施例に係る排気ガス浄化用触媒
構造が示されている。すなわち、同図において、1は自
動車エンジンの排気通路2に介設された触媒コンバータ
であって、第1排気ガス浄化用触媒(以下、単に第1触
媒という)3と第2排気ガス浄化用触媒(以下、単に第
2触媒という)4とを前者が排気ガス流れ方向の下流側
に、後者が上流側になるように直列に配置して備えてい
る。そして、図2に示すように、第1触媒3の活性温度
域は第2触媒4の活性温度域よりも低温側に広く、一
方、第2触媒4の活性温度域は第1触媒3の活性温度域
よりも高温側に広くなっており、さらに、この両触媒
1,2は互いの活性温度域が一部ラップしているもので
ある。
FIG. 1 shows an exhaust gas purifying catalyst structure according to an embodiment. That is, in FIG. 1, reference numeral 1 denotes a catalytic converter provided in an exhaust passage 2 of an automobile engine, which includes a first exhaust gas purifying catalyst (hereinafter, simply referred to as a first catalyst) 3 and a second exhaust gas purifying catalyst. (Hereinafter, simply referred to as a second catalyst) 4 are arranged in series so that the former is on the downstream side in the exhaust gas flow direction and the latter is on the upstream side. As shown in FIG. 2, the activation temperature range of the first catalyst 3 is wider than the activation temperature range of the second catalyst 4 on the lower temperature side, while the activation temperature range of the second catalyst 4 is higher than that of the first catalyst 3. The temperature is wider than the temperature range, and the catalysts 1 and 2 partially overlap in the active temperature range.

【0028】次に、当該配置を採用した具体的な実施例
1〜8、上記第1触媒3と第2触媒4との配置を入れ替
えた実施例9、並びに比較例1,2について説明する。
Next, specific Examples 1 to 8 adopting the above arrangement, Example 9 in which the arrangements of the first catalyst 3 and the second catalyst 4 are replaced, and Comparative Examples 1 and 2 will be described.

【0029】<実施例1>下流側の第1触媒3について
は、貴金属活性種としてPt、Ir及びRhを採用し、
活性種担持母材としてZSM−5を採用した。
<Example 1> For the first catalyst 3 on the downstream side, Pt, Ir and Rh were used as the noble metal active species,
ZSM-5 was adopted as the active species supporting base material.

【0030】すなわち、2価白金アンミン結晶、三塩化
イリジウム及び硝酸ロジウムを、各々の金属重量比がP
t:Ir:Rh=30:6:1となり且つ総量が触媒1
リットル当り4.5gとなるように秤量し、2価白金ア
ンミン結晶及び硝酸ロジウムについてはイオン交換水に
溶かし、三塩化イリジウムについてはプロパノールに分
散させ、しかる後に両者を混合した。この混合液にZS
M−5(SiO2 /Al2 3 =70〜90)を加え、
室温で2時間撹拌した。そうして、これをスプレードラ
イ法によって瞬間乾燥させることによって、Pt,Ir,Rh/Z
SM-5触媒粉を得た。
That is, divalent platinum ammine crystals, iridium trichloride, and rhodium nitrate are used, each having a metal weight ratio of P.
t: Ir: Rh = 30: 6: 1 and the total amount is catalyst 1
The weight was adjusted to 4.5 g per liter, the divalent platinum ammine crystal and rhodium nitrate were dissolved in ion-exchanged water, and iridium trichloride was dispersed in propanol, and then both were mixed. ZS in this mixture
M-5 the (SiO 2 / Al 2 O 3 = 70~90) was added,
Stir at room temperature for 2 hours. Then, Pt, Ir, Rh / Z is obtained by instantaneously drying this by the spray drying method.
SM-5 catalyst powder was obtained.

【0031】上記触媒粉に大気中で200℃×14時間
の熱処理(活性化処理)を施した後に、これにバインダ
(水和アルミナ)20重量%と適量の水を加えてスラリ
ー化し、これをコーディエライト製のハニカム担体(4
00セル/inch2 )にウォッシュコートし、次に150
℃×3時間の大気中乾燥及び500℃×2時間の大気中
焼成を行なうことによって触媒容量0.8リットルのハ
ニカム触媒3を得た。ハニカム担体への触媒の担持量は
ハニカム重量の35〜40重量%となるようにした。
After the catalyst powder was heat-treated (activation treatment) at 200 ° C. for 14 hours in the air, 20% by weight of a binder (hydrated alumina) and an appropriate amount of water were added to make a slurry, which was then slurried. Honeycomb carrier made of cordierite (4
00 cells / inch 2 ) with washcoat, then 150
Honeycomb catalyst 3 having a catalyst capacity of 0.8 liter was obtained by performing drying in the air for 3 hours at 500 ° C. and firing in the air for 2 hours at 500 ° C. The amount of the catalyst loaded on the honeycomb carrier was set to 35 to 40% by weight of the weight of the honeycomb.

【0032】上記第1触媒3の活性温度域をリグテスト
(A/F=22相当のモデル排気ガスをSV=5500
0h-1となるように当該触媒に流してNOx浄化率を測
定した)によって評価したところ、NOx浄化率25%
以上が得られる活性温度域は170〜280℃であっ
た。なお、ここでいう温度は触媒入り口の排気ガス温度
である。また、以下、活性温度域は全てNOx浄化率2
5%以上が得られる温度域のことである。
A rig test was conducted for the activation temperature range of the first catalyst 3 (model exhaust gas corresponding to A / F = 22 was used for SV = 5500).
The NOx purification rate was 25% when the NOx purification rate was measured by flowing it through the catalyst so as to be 0 h −1.
The active temperature range in which the above was obtained was 170 to 280 ° C. The temperature referred to here is the exhaust gas temperature at the catalyst inlet. Further, hereinafter, the NOx purification rate 2 is all in the active temperature range.
It is a temperature range where 5% or more is obtained.

【0033】上流側の第2触媒4については、貴金属活
性種としては第1触媒3と同じものを用い、活性種担持
母材としてZSM−5とアルミナとの混合物を用いた。
For the second catalyst 4 on the upstream side, the same noble metal active species as the first catalyst 3 was used, and a mixture of ZSM-5 and alumina was used as the active species supporting base material.

【0034】すなわち、上記ZSM−5と比表面積20
0程度のγ−アルミナ(以下、単にアルミナという)と
を後者の割合が20重量%となるように混合した。一
方、2価白金アンミン結晶、三塩化イリジウム及び硝酸
ロジウムを上記第1触媒3の場合と同じ条件で秤量し溶
媒に溶かして同様の混合液を得た。そして、該混合液に
上記ZSM−5とアルミナとの混合物を加え、室温で2
時間撹拌し、これをスプレードライ法によって瞬間乾燥
させることによって、Pt,Ir,Rh/ZSM-5・アルミナ触媒粉
を得た。
That is, the above ZSM-5 and specific surface area 20
About 0 of γ-alumina (hereinafter, simply referred to as alumina) was mixed so that the ratio of the latter was 20% by weight. On the other hand, divalent platinum ammine crystals, iridium trichloride and rhodium nitrate were weighed under the same conditions as in the case of the first catalyst 3 and dissolved in a solvent to obtain a similar mixed solution. Then, the mixture of ZSM-5 and alumina is added to the mixed solution, and the mixture is stirred at room temperature for 2 hours.
After stirring for a period of time, this was instantaneously dried by a spray drying method to obtain Pt, Ir, Rh / ZSM-5 / alumina catalyst powder.

【0035】そうして、上記触媒粉を上記第1触媒3の
場合と同様に処理して触媒容量0.8リットルのハニカ
ム触媒4を得た。この触媒4について第1触媒3の場合
と同じ条件で活性温度域を評価したところ、190〜3
10℃であった。
Then, the catalyst powder was treated in the same manner as in the case of the first catalyst 3 to obtain a honeycomb catalyst 4 having a catalyst capacity of 0.8 liter. When the active temperature range of this catalyst 4 was evaluated under the same conditions as in the case of the first catalyst 3, it was found to be 190 to 3
It was 10 ° C.

【0036】<実施例2>本例においても第1触媒3に
ついては実施例1と同じものを用いた。第2触媒4とし
ては、実施例1におけるアルミナに代えてこれをセリア
(CeO2 )としたPt,Ir,Rh/ZSM-5・セリア触媒粉を用
いた。すなわち、活性種担持母材としてZSM−5とア
ルミナとを後者の割合が40重量%となるように混合し
たものを用い、他は実施例1の第2触媒と同様の処理を
行なってハニカムの第2触媒4を得た。この第2触媒4
の活性温度域は185〜305℃であった。
<Example 2> In this example, the same catalyst as in Example 1 was used as the first catalyst 3. As the second catalyst 4, Pt, Ir, Rh / ZSM-5.ceria catalyst powder in which ceria (CeO 2 ) was used instead of alumina in Example 1 was used. That is, as the active species-supporting base material, a mixture of ZSM-5 and alumina such that the ratio of the latter was 40% by weight was used, and otherwise the same treatment as in the second catalyst of Example 1 was performed to form a honeycomb. The second catalyst 4 was obtained. This second catalyst 4
The activation temperature range of was 185 to 305 ° C.

【0037】<実施例3>本例の第1触媒3も実施例1
と同じである。第2触媒4については、第1触媒3と同
じ条件及び方法によってハニカム触媒を調製し、該ハニ
カム触媒に大気中で700℃×25時間の加熱処理Aを
施すことによって得た。この第2触媒4の活性温度域は
190〜295℃であった。
<Example 3> The first catalyst 3 of this example is also the same as Example 1.
Is the same as. The second catalyst 4 was obtained by preparing a honeycomb catalyst under the same conditions and method as those of the first catalyst 3 and subjecting the honeycomb catalyst to a heat treatment A at 700 ° C. for 25 hours in the atmosphere. The activation temperature range of the second catalyst 4 was 190 to 295 ° C.

【0038】<実施例4>本例の第1触媒3も実施例1
と同じである。第2触媒4については、先に説明したP
t,Ir,Rh/ZSM-5触媒粉とアルミナとを後者の割合が40
重量%となるように混合してなる触媒粉混合物に用い、
他は実施例1の場合と同じ条件及び方法によってハニカ
ム触媒を得た。そして、該ハニカム触媒に大気中で70
0℃×12時間の加熱処理Bを施した。このようにして
得られた第2触媒4の活性温度域は175〜310℃で
あった。
<Embodiment 4> The first catalyst 3 of this embodiment is also used in Embodiment 1.
Is the same as. Regarding the second catalyst 4, the P described above
The ratio of t, Ir, Rh / ZSM-5 catalyst powder and alumina is 40%.
Used in a catalyst powder mixture prepared by mixing so as to be wt%,
A honeycomb catalyst was obtained under the same conditions and method as in Example 1 except for the above. Then, the honeycomb catalyst is 70
Heat treatment B was performed at 0 ° C. for 12 hours. The activation temperature range of the second catalyst 4 thus obtained was 175 to 310 ° C.

【0039】<実施例5>本例の第1触媒3も実施例1
と同じである。第2触媒4については、上記実施例4の
第2触媒4におけるアルミナに代えてセリアを用い、他
は実施例4の場合と同じ条件及び方法によってハニカム
触媒を得て、同様の加熱処理Bを施した。この第2触媒
4の活性温度域は180〜310℃であった。
<Embodiment 5> The first catalyst 3 of this embodiment is also the embodiment 1
Is the same as. For the second catalyst 4, ceria was used in place of the alumina in the second catalyst 4 of Example 4 above, except that a honeycomb catalyst was obtained under the same conditions and methods as in Example 4, and the same heat treatment B was performed. gave. The activation temperature range of the second catalyst 4 was 180 to 310 ° C.

【0040】<実施例6>本例の第1触媒3も実施例1
と同じである。第2触媒4については、Pt,Ir,Rh/ZSM-5
触媒粉と、アルミナ及びセリアとを後者の割合が40重
量%となるように且つアルミナ/セリア=2/1となる
ように混合してなる触媒粉混合物に用い、他は実施例4
の場合と同じ条件及び方法によってハニカム触媒を得
て、同様の加熱処理Bを施した。この第2触媒4の活性
温度域は185〜305℃であった。
<Embodiment 6> The first catalyst 3 of this embodiment is also the embodiment 1
Is the same as. For the second catalyst 4, Pt, Ir, Rh / ZSM-5
The catalyst powder and alumina and ceria were used in a catalyst powder mixture prepared by mixing the latter so that the ratio of the latter was 40% by weight and alumina / ceria = 2/1.
A honeycomb catalyst was obtained under the same conditions and method as in the above case, and the same heat treatment B was performed. The activation temperature range of the second catalyst 4 was 185 to 305 ° C.

【0041】<実施例7>本例の第1触媒3も実施例1
と同じである。第2触媒4にはPt,Ir/ZSM-5 触媒粉を用
いた。すなわち、2価白金アンミン結晶及び三塩化イリ
ジウムを、各々の金属重量比がPt:Ir=2:1とな
り且つ総量が触媒1リットル当り4.5gとなるように
秤量し、2価白金アンミン結晶はイオン交換水に溶か
し、三塩化イリジウムはプロパノールに分散させ、しか
る後に両者を混合した。この混合液にZSM−5(Si
2 /Al2 3 =70〜90)を加え、室温で2時間
撹拌した。そうして、これをスプレードライ法によって
瞬間乾燥させることによって、Pt,Ir/ZSM-5 触媒粉を得
た。そして、この触媒粉を上記第1触媒3の場合と同様
に処理して触媒容量0.8リットルのハニカム触媒4を
得た。この第2触媒4の活性温度域は200〜310℃
であった。
<Embodiment 7> The first catalyst 3 of this embodiment is also used in Embodiment 1.
Is the same as. As the second catalyst 4, Pt, Ir / ZSM-5 catalyst powder was used. That is, divalent platinum ammine crystals and iridium trichloride were weighed so that the weight ratio of each metal was Pt: Ir = 2: 1 and the total amount was 4.5 g per liter of catalyst. Iridium trichloride was dissolved in ion-exchanged water and dispersed in propanol, and then both were mixed. ZSM-5 (Si
O 2 / Al 2 O 3 = 70~90) , and the mixture was stirred for 2 hours at room temperature. Then, Pt, Ir / ZSM-5 catalyst powder was obtained by instantaneously drying this by a spray drying method. Then, this catalyst powder was treated in the same manner as the case of the first catalyst 3 to obtain a honeycomb catalyst 4 having a catalyst capacity of 0.8 liter. The activation temperature range of the second catalyst 4 is 200 to 310 ° C.
Met.

【0042】<実施例8>本例の第1触媒3も実施例1
と同じである。第2触媒4については、第1触媒3と同
じ条件及び方法によってハニカム触媒を調製し、該ハニ
カム触媒に加熱処理Bを施すことによって得た。この第
2触媒4の活性温度域は180〜295℃であった。
<Embodiment 8> The first catalyst 3 of this embodiment is also used in Embodiment 1.
Is the same as. The second catalyst 4 was obtained by preparing a honeycomb catalyst under the same conditions and method as those of the first catalyst 3 and subjecting the honeycomb catalyst to the heat treatment B. The activation temperature range of the second catalyst 4 was 180 to 295 ° C.

【0043】<実施例9>本例では実施例1と同様の第
1触媒3を排気ガス流れ方向の上流側に、実施例3と同
様の第2触媒2を下流側に配置した。
<Example 9> In this example, the same first catalyst 3 as in Example 1 was arranged on the upstream side in the exhaust gas flow direction, and the same second catalyst 2 as in Example 3 was arranged on the downstream side.

【0044】<比較例1>本例では実施例1の第1触媒
3と同じものを2つ準備し、これらを排気ガス流れ方向
の上流側と下流側とに直列配置した。
Comparative Example 1 In this example, two same catalysts as the first catalyst 3 of Example 1 were prepared, and these were arranged in series on the upstream side and the downstream side in the exhaust gas flow direction.

【0045】<比較例2>本例では実施例3の第2触媒
4と同じものを2つ準備し、これらを排気ガス流れ方向
の上流側と下流側とに直列配置した。
<Comparative Example 2> In this example, two same catalysts as the second catalyst 4 of Example 3 were prepared, and these were arranged in series on the upstream side and the downstream side in the exhaust gas flow direction.

【0046】−浄化テスト− 上記実施例及び比較例の各触媒をA/F=16〜22の
領域で運転される自動車のエンジンの排気管に組み込
み、該自動車を所定の運転モードで走行させてHC、C
O、NOxの各浄化率を測定した。テスト結果は表1に
示されている。
-Purification test-The catalysts of the above-mentioned examples and comparative examples were installed in the exhaust pipe of the engine of an automobile operated in the region of A / F = 16 to 22, and the automobile was run in a predetermined operation mode. HC, C
Each purification rate of O and NOx was measured. The test results are shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】−テスト結果について− 実施例1〜9ではいずれも比較例1,2よりもCO浄化
率及びNOx浄化率が高くなっている。また、HC浄化
率については、実施例と比較例とではあまり代わらな
い。このことから、活性温度域の異なる2種類の触媒を
組み合わせることが排気ガスの浄化率の向上に有効であ
ることがわかる。
-Test Results-In all of Examples 1 to 9, the CO purification rate and the NOx purification rate were higher than those of Comparative Examples 1 and 2. Further, regarding the HC purification rate, the examples and the comparative examples do not change much. From this, it can be seen that combining two types of catalysts having different activation temperature ranges is effective in improving the purification rate of exhaust gas.

【0049】特に、実施例4,5は第1触媒3と第2触
媒4とを合わせたトータルの活性温度域が広く且つ両触
媒の活性温度ラップ領域が広い例であるが、高いCO浄
化率及びNOx浄化率を示している。これに対して、実
施例1、実施例3又は実施例7はトータル活性温度域は
広いが、上記ラップ領域がそれほど広くなく、実施例実
施例8は上記ラップ領域は広いがトータルの活性温度域
が広くないため、CO浄化率やNOx浄化率は比較例よ
りも高いものの、上記実施例4,5等よりも低くなって
いる。このことから、上記トータル活性温度域及びラッ
プ領域の両者が広いことが好適であることがわかる。
In particular, Examples 4 and 5 are examples in which the total active temperature range of the first catalyst 3 and the second catalyst 4 is wide and the active temperature wrap range of both catalysts is wide, but a high CO purification rate is obtained. And the NOx purification rate. On the other hand, in Example 1, Example 3 or Example 7, the total active temperature range is wide, but the lap region is not so wide, and in Example 8 the lap region is wide but the total active temperature range is total. Since the ratio is not wide, the CO purification rate and the NOx purification rate are higher than those in the comparative examples, but are lower than those in the above-mentioned Examples 4 and 5. From this, it is understood that it is preferable that both the total activation temperature range and the lap region are wide.

【0050】さらに、実施例9では、排気ガス流れ方向
の上流側に低温活性の第1触媒3が設けられ、下流側に
高温活性の第2触媒4が設けられているが、同じ触媒構
成において触媒の配置が逆になっている実施例3のモー
ド浄化率と遜色はなく、むしろ実施例9の方が優ってい
る。このことから、第1触媒3と第2触媒4との配置自
体は問題にならないことがわかる。
Furthermore, in Example 9, the low temperature active first catalyst 3 is provided on the upstream side in the exhaust gas flow direction, and the high temperature active second catalyst 4 is provided on the downstream side. It was comparable to the mode purification rate of Example 3 in which the catalyst arrangement was reversed, and Example 9 was rather superior. From this, it can be seen that the arrangement itself of the first catalyst 3 and the second catalyst 4 does not matter.

【図面の簡単な説明】[Brief description of drawings]

【図1】排気ガス浄化用触媒構造を示す構成図FIG. 1 is a configuration diagram showing an exhaust gas purifying catalyst structure.

【図2】第1触媒と第2触媒との活性温度域を示すグラ
フ図
FIG. 2 is a graph showing the activation temperature range of the first catalyst and the second catalyst.

【符号の説明】[Explanation of symbols]

1 触媒コンバータ 2 排気通路 3 第1排気ガス浄化用触媒 4 第2排気ガス浄化用触媒 1 Catalytic Converter 2 Exhaust Passage 3 First Exhaust Gas Purification Catalyst 4 Second Exhaust Gas Purification Catalyst

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/24 C (72)発明者 岩国 秀治 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (72)発明者 小松 一也 広島県安芸郡府中町新地3番1号 マツダ 株式会社内Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location F01N 3/24 C (72) Inventor Shuji Iwakuni Shinchi Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Co., Ltd. ( 72) Inventor Kazuya Komatsu 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Motor Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 各々貴金属活性種が活性種担持母材に担
持されてなる第1排気ガス浄化用触媒と第2排気ガス浄
化用触媒とのうちの一方が排気ガス流れ方向における上
流側に、他方が下流側に配置されていて、 上記第1排気ガス浄化用触媒は第2排気ガス浄化用触媒
よりも活性温度域が低温側に広く、該第2排気ガス浄化
用触媒は第1排気ガス浄化用触媒よりも活性温度域が高
温側に広く、且つ該両排気ガス浄化用触媒の活性温度域
が互いに一部ラップしていることを特徴とする排気ガス
浄化用触媒構造。
1. One of a first exhaust gas purifying catalyst and a second exhaust gas purifying catalyst, each of which has a precious metal active species supported on an active species-supporting base material, on the upstream side in the exhaust gas flow direction, The other is disposed on the downstream side, the first exhaust gas purifying catalyst has a wider active temperature range on the low temperature side than the second exhaust gas purifying catalyst, and the second exhaust gas purifying catalyst is the first exhaust gas. An exhaust gas purifying catalyst structure, characterized in that the active temperature range is wider toward the high temperature side than that of the purifying catalyst, and the active temperature ranges of both of the exhaust gas purifying catalysts partially overlap each other.
【請求項2】 請求項1に記載の排気ガス浄化用触媒構
造において、 上記第1及び第2の両排気ガス浄化用触媒の貴金属活性
種がPt、Ir及びRhであり、 上記第1排気ガス浄化用触媒の活性種担持母材が多孔質
の金属含有シリケートであり、 上記第2排気ガス浄化用触媒の活性種担持母材が多孔質
の金属含有シリケートと、アルミナ又はセリアとの混合
物であることを特徴とする排気ガス浄化用触媒構造。
2. The exhaust gas purifying catalyst structure according to claim 1, wherein the noble metal active species of the first and second exhaust gas purifying catalysts are Pt, Ir and Rh, and the first exhaust gas The active species-supporting base material of the purification catalyst is a porous metal-containing silicate, and the active species-supporting base material of the second exhaust gas purification catalyst is a mixture of a porous metal-containing silicate and alumina or ceria. An exhaust gas purifying catalyst structure characterized by the above.
【請求項3】 請求項1に記載の排気ガス浄化用触媒構
造において、 上記第1排気ガス浄化用触媒は、貴金属活性種としてP
t、Ir及びRhが用いられ、活性種担持母材として多
孔質の金属含有シリケートが用いられたものであり、 上記第2排気ガス浄化用触媒は、貴金属活性種としての
Pt、Ir及びRhが活性種担持母材としての多孔質の
金属含有シリケートに担持されてなる触媒粉と、アルミ
ナ及びセリアの少なくとも一方との混合物によって形成
されていることを特徴とする排気ガス浄化用触媒構造。
3. The exhaust gas purifying catalyst structure according to claim 1, wherein the first exhaust gas purifying catalyst contains P as a noble metal active species.
t, Ir, and Rh are used, and a porous metal-containing silicate is used as the active species-supporting base material, and the second exhaust gas purifying catalyst contains Pt, Ir, and Rh as the noble metal active species. An exhaust gas purifying catalyst structure comprising a mixture of a catalyst powder supported on a porous metal-containing silicate as an active species supporting base material and at least one of alumina and ceria.
JP31392393A 1993-12-15 1993-12-15 Exhaust gas purification catalyst structure Expired - Fee Related JP3278514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31392393A JP3278514B2 (en) 1993-12-15 1993-12-15 Exhaust gas purification catalyst structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31392393A JP3278514B2 (en) 1993-12-15 1993-12-15 Exhaust gas purification catalyst structure

Publications (2)

Publication Number Publication Date
JPH07166854A true JPH07166854A (en) 1995-06-27
JP3278514B2 JP3278514B2 (en) 2002-04-30

Family

ID=18047152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31392393A Expired - Fee Related JP3278514B2 (en) 1993-12-15 1993-12-15 Exhaust gas purification catalyst structure

Country Status (1)

Country Link
JP (1) JP3278514B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182443B1 (en) * 1999-02-09 2001-02-06 Ford Global Technologies, Inc. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent
US7229596B2 (en) 1998-06-17 2007-06-12 Nissan Motor Co., Ltd. Exhaust emission control device
JP2007181749A (en) * 2005-12-29 2007-07-19 Toshiba Corp Gas cleaning apparatus
EP2241731A1 (en) * 2008-01-09 2010-10-20 Toyota Jidosha Kabushiki Kaisha Nox adsorbing device and exhaust purifying device
JP2013146726A (en) * 2011-12-19 2013-08-01 Osaka Gas Co Ltd Exhaust emission control device and exhaust emission control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229596B2 (en) 1998-06-17 2007-06-12 Nissan Motor Co., Ltd. Exhaust emission control device
US6182443B1 (en) * 1999-02-09 2001-02-06 Ford Global Technologies, Inc. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent
JP2007181749A (en) * 2005-12-29 2007-07-19 Toshiba Corp Gas cleaning apparatus
EP2241731A1 (en) * 2008-01-09 2010-10-20 Toyota Jidosha Kabushiki Kaisha Nox adsorbing device and exhaust purifying device
EP2241731A4 (en) * 2008-01-09 2011-02-09 Toyota Motor Co Ltd Nox adsorbing device and exhaust purifying device
US8435456B2 (en) 2008-01-09 2013-05-07 Toyota Jidosha Kabushiki Kaisha NOx adsorbing apparatus and exhaust-gas converting apparatus
JP2013146726A (en) * 2011-12-19 2013-08-01 Osaka Gas Co Ltd Exhaust emission control device and exhaust emission control method

Also Published As

Publication number Publication date
JP3278514B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
WO2005044426A1 (en) Method for catalytically reducing nitrogen oxide and catalyst therefor
JPH0596133A (en) Multiple stage catalyst system
JPH06106065A (en) Catalyst for purification of exhaust gas
JPH0623274A (en) Structure of catalyst for cleaning waste gas
JP3517973B2 (en) Exhaust gas purifying catalyst, method for producing the exhaust gas purifying catalyst, and method for producing the exhaust gas purifying honeycomb catalyst
JPH07166854A (en) Exhaust emission controlling catalytic structure
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JPH06226107A (en) Exhaust gas purification catalyst
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JPH11226414A (en) Exhaust gas purification catalyst
JP3300027B2 (en) Exhaust gas purification catalyst
JPH0568888A (en) Waste gas cleaning catalyst
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3342043B2 (en) Exhaust gas purification device
JP3296848B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3493693B2 (en) Exhaust gas purification catalyst
JP3291316B2 (en) Exhaust gas purification catalyst
JP3361121B2 (en) Exhaust gas purification catalyst
JPH0615182A (en) Catalyst for purification of exhaust gas
JPH08141405A (en) Catalyst for purification of exhaust gas from internal-combustion engine
JPH05317722A (en) Catalyst for purification of exhaust gas
JP2932106B2 (en) Exhaust gas purification catalyst
JP3363160B2 (en) Nitrogen oxide removal catalyst
JPH0824655A (en) Catalyst for purifying exhaust gas
JPH05317720A (en) Catalyst for purification of exhaust gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees