JPS61287180A - Josephson integrated circuit - Google Patents

Josephson integrated circuit

Info

Publication number
JPS61287180A
JPS61287180A JP60128484A JP12848485A JPS61287180A JP S61287180 A JPS61287180 A JP S61287180A JP 60128484 A JP60128484 A JP 60128484A JP 12848485 A JP12848485 A JP 12848485A JP S61287180 A JPS61287180 A JP S61287180A
Authority
JP
Japan
Prior art keywords
thin film
film
current
films
grounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60128484A
Other languages
Japanese (ja)
Other versions
JPH0525191B2 (en
Inventor
Chiyoushin Sai
兆申 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60128484A priority Critical patent/JPS61287180A/en
Publication of JPS61287180A publication Critical patent/JPS61287180A/en
Publication of JPH0525191B2 publication Critical patent/JPH0525191B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To eliminate an effect by magnetic flux trapped by a grounding thin-film by arranging conductor films in a shape that paths for vortex driving currents flowing through the grounding thin-film among terminals are narrowed or current paths among the terminals and a grounding terminal are interrupted when transition control currents under a normal conductive state flow through the conductor films. CONSTITUTION:Currents IN are made to flow through vortex driving current control lines 2, grounding thin-film 1 sections magnetically coupled with the control lines 2 are brought to a normal conductive state, and other grounding thin-film 1 sections are brought to a superconductive state. When a Josephson circuit except the grounding thin-films 1 is brought to the normal conductive state under the state and DC currents are injected into the grounding thin-films 1 from a vortex driving-current supply terminal 3, vortexes are moved in the grounding thin-films 1 by Lorentz's force. The grounding thin-films 1 are divided by double pectinate partition walls under the normal conductive state manufactured by the control lines 2 on the injection of driving currents, and currents injected from the terminal 3 move in a zigzag direction and flow in the grounding thin-films 1. Accordingly, vortexes are shifted by a small quantity of driving currents, and can be concentrated to the peripheral sections of the grounding thin-films and the peripheries of the control lines 2, thus avoiding an effect by magnetic flux trapped by the grounding thin-films.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、接地薄膜内にトラップ(捕捉)された磁束を
取り除く手段を有するジョセフソン集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to Josephson integrated circuits having means for removing magnetic flux trapped within a ground film.

(従来の技術及びその問題点) ジョセフソン集積回路は基板上に超伝導薄膜を形成して
なり、その超伝導薄膜は接地薄膜とこの接地薄膜上に設
けたジョセフソン回路薄膜とからなる。このジョセフソ
ン回路薄膜はジョセフソン接合、干渉計ループ、配線等
からなっている。
(Prior Art and Problems Therewith) A Josephson integrated circuit is formed by forming a superconducting thin film on a substrate, and the superconducting thin film consists of a grounded thin film and a Josephson circuit thin film provided on the grounded thin film. This Josephson circuit thin film consists of Josephson junctions, interferometer loops, wiring, etc.

超伝導薄膜によって作られるジョセフソン集積回路の正
常動作をさまたげる障害のひとつとして、従来から超伝
導薄膜における磁束のトラップという現象が問題になっ
ていた。臨界温度Tcをもつ完全な超伝導薄膜の温度T
がT〉τ0からTく工。まで下がることにより、始め超
伝導薄膜を貫いていた磁場はマイスナー効果によってす
べて超伝導薄膜から排除される。しかし、もしこの超伝
導薄膜の超伝導性が多少たりとも不純物、格子欠陥など
によってそこなわれると、TくTcの状態において磁場
は超伝導膜内かも完全には排出されず、トラップきれた
磁束として薄膜内に残る。磁場の十分弱い状態では、ト
ラップされる磁束はボルテックスとよばれる量子化きれ
た磁束である(磁束量子Φm −2X 10− ’G/
an ’ )通常の方法で製作される超伝導薄膜はいず
れも完全なものではなく、アイ・イー・イー・イー・ト
ランズアクションズ・オン・マグネティクス(IEEE
 Transactions onMagnetics
 ) Vol、 !l!AG(9、No、 3 、19
83に述べられているような、磁束量子のトラップ現象
が起きる事が知られている。実際のジョセフソン集積回
路は各ゲート間、ライン間の磁気的結合を小さくするた
めに接地薄膜上に作られている。しかし、この接地薄展
内に磁束量子がトラップされていて(即ち、ボルテック
スが存在して)、そしてそのトラップされた磁束が干渉
計ループ又はジョセフソン接合自身に結合しているとす
ると、ジョセフソン集積回路は誤動作を起す、第4図に
上記のような状態を示す。
The phenomenon of magnetic flux trapping in superconducting thin films has long been a problem that hinders the normal operation of Josephson integrated circuits made of superconducting thin films. Temperature T of a perfect superconducting thin film with critical temperature Tc
is T〉τ0 to T. By lowering the magnetic field to 100%, the magnetic field that initially penetrated the superconducting thin film is completely removed from the superconducting thin film by the Meissner effect. However, if the superconductivity of this superconducting thin film is impaired to some degree by impurities, lattice defects, etc., the magnetic field will not be completely exhausted even within the superconducting film in the Tc state, and the trapped magnetic flux will be remains in the thin film as When the magnetic field is sufficiently weak, the trapped magnetic flux is a fully quantized magnetic flux called a vortex (magnetic flux quantum Φm −2X 10− 'G/
an') None of the superconducting thin films produced by conventional methods are perfect, and the
Transactions on Magnetics
) Vol, ! l! AG (9, No. 3, 19
It is known that the trapping phenomenon of magnetic flux quanta occurs as described in 83. Actual Josephson integrated circuits are built on a grounded thin film to reduce magnetic coupling between each gate and between lines. However, if a flux quantum is trapped within this ground thin extension (i.e., a vortex exists), and the trapped flux is coupled to the interferometer loop or to the Josephson junction itself, then the Josephson FIG. 4 shows the above-mentioned situation in which the integrated circuit malfunctions.

第4図は磁束量子をトラップした超伝導薄膜の模式的な
断面図である0図中、1は接地薄膜、6は干渉計ループ
、7はジョセフソン接合、8はボルテックス(トラップ
された磁束量子)、9は磁力線を示す、ボルテックス8
の径は約50nff1、磁場が貫ぬく接合の断面は約3
00no+85000nm、干渉計の径は約10000
no+、膜厚はすべて約300nmである。
Figure 4 is a schematic cross-sectional view of a superconducting thin film that traps magnetic flux quanta. ), 9 indicates magnetic field lines, vortex 8
The diameter of is approximately 50nff1, and the cross section of the junction through which the magnetic field penetrates is approximately 3
00no+85000nm, the diameter of the interferometer is approximately 10000nm
No+, the film thickness is all about 300 nm.

第41!!!lのようにトラップされた磁束が、ジョセ
フソン接合7と結合していると、その接合7のジョセフ
ソン電流が小さくなるし、またそれが干渉計ループ6と
結合していると干渉計ゲートの制御特性に変化をもたら
す、いずれの場合も磁気的結合の度合によってはその磁
気的結合がゲートの誤動作を誘発するM因となる0通常
ジョセフソン集積回路の動作は磁気遮蔽の中の非常に低
い磁場中で行なわれる。この種の磁気遮蔽内の磁場は約
10μGはどであるが、この磁場は例えば10cmX1
00のチップ総面積を持つ複数のジョセフソン集積回路
チツプからなるジョセフソンコンピュータ内に約500
0個の磁束量子をトラップさせコンビ二一夕の誤動作の
原因となる。実際にはジョセソータコンビ二一タを冷却
する時に熱起電力によって誘起される電流によって、上
記のようなサイズを持つコンピュータはさらに多くの(
数層側乃至数十刃側の)磁束量子をトラップするであろ
うと推測されていて、このような環境下での正常な演算
動作はほとんど不可能である。
41st! ! ! When the magnetic flux trapped like l is coupled to the Josephson junction 7, the Josephson current in that junction 7 becomes small, and when it is coupled to the interferometer loop 6, the interferometer gate resulting in a change in the control characteristics, in any case depending on the degree of magnetic coupling that magnetic coupling may induce gate malfunctions. Normally the operation of Josephson integrated circuits is very low in magnetic shielding. It is carried out in a magnetic field. The magnetic field within this type of magnetic shield is approximately 10 μG;
There are approximately 500 Josephson integrated circuit chips in a Josephson computer with a total chip area of
This traps zero magnetic flux quanta and causes the combination unit to malfunction. In reality, due to the current induced by thermoelectromotive force when cooling the Josesoter Combi-21, a computer with the size mentioned above will require even more (
It is assumed that magnetic flux quanta (from several layers to tens of blades) will be trapped, and normal operation in such an environment is almost impossible.

そこで、本発明の目的は、接地薄膜にトラップされた磁
束による影響が避けられるジョセフソン集積回路を提供
する事にある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a Josephson integrated circuit in which the effects of magnetic flux trapped in a grounded thin film can be avoided.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供するジョセ
フソン集積回路は、ボルテックス駆動電流を接地薄膜に
供給する複数の端子と、前記接地薄膜における前記ボル
テックス駆動電流の流路を制御する電流を通す導線膜と
が設けてあり、前記導線膜は前記接地薄膜の上面又は下
面に絶縁膜を介して配設してあり、前記接地薄膜が超伝
導状態にあるときに前記導線膜の近傍の前記接地薄膜を
常伝導状態に転移させるのに足る大きさの前記制御電流
を流せる電流容量が前記導線膜にあり、前記常伝導状態
転移制御電流が前記導線膜に流れているときは、前記端
子間の前記接地薄膜に流される前記ボルテックス駆動電
流の経路を狭め又は前記端子と接地端子との間の電流経
路を遮る形に前記導線膜は配置してあることを特徴とす
る。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the Josephson integrated circuit provided by the present invention includes a plurality of terminals that supply a vortex drive current to a ground thin film, and a plurality of terminals that supply a vortex drive current to a ground thin film, and A conducting wire film is provided for passing a current to control the flow path of the drive current, and the conducting wire film is disposed on the upper surface or lower surface of the ground thin film with an insulating film interposed therebetween, and the ground thin film is in a superconducting state. The conductor film has a current capacity that allows the control current to flow in a magnitude sufficient to transition the ground thin film in the vicinity of the conductor film to a normal conduction state at a certain time, and the normal conduction state transition control current flows through the conductor film. When the vortex drive current is flowing through the ground thin film between the terminals, the conductive wire film is arranged in such a way as to narrow the path of the vortex drive current flowing through the ground thin film between the terminals or to block the current path between the terminal and the ground terminal. It is characterized by

(作用) 次に本発明の作用について述べる。(effect) Next, the operation of the present invention will be described.

本発明において、接地薄膜にトラップされた磁束の影響
が避けられるように初期化するには、まず接地薄膜以外
の超伝導薄膜、即ちジョセフソン回路薄膜が常伝導状態
になるようにする。こうすることにより接地薄膜中にト
ラップされた磁束ボルテックスは、ジ5セフソン回路薄
膜の影響を受けずに超伝導状態にある接地薄膜中を移動
出来る。上記のような接地薄膜を超伝導状態に保ち同時
にそれ以外の超伝導薄膜(ジ5セフソン回路薄膜)を常
伝導状態にする方式として、たとえば接地薄膜以外の超
伝導薄膜にその薄膜の超伝導臨界電流以上の電流を注入
する方式、または接地薄膜以外の超伝導薄膜の材料とし
てその超伝導臨界温度’fcJが接地薄膜の材料の超伝
導臨界温度XCaよりも低い材料を選びτc、<’r<
τcaという温度Tに環境温度を設定する方式などがあ
る。この状態で、接地薄膜内に電流密度Jを持つ電流(
ボルテックス駆動電流)を流すとローレンツ力F−JX
Φ、がボルテックスに対して作用する(Φ、は磁束量子
であり、F、J、Φ、はベクトル量である)、このロー
レンツ力によってボルテックスは接地薄膜内をボルテッ
クス駆動電流番こ垂直な方向に向って駆動される。トラ
ップされた磁束の方向は上下二種類あるが、この時これ
らは互いに正反対の方向に駆動される。そこで、ボルテ
ックスは接地薄膜の辺部に集中し、そこで停止する。こ
の過程で注意するべきことは超伝導薄膜に流きれる電流
によって接地薄膜表面に誘起きれる磁界■は決して接地
薄膜を構成している材料の臨界磁界He(もし材料が第
2種超伝導ならば下部臨界磁界11c、)を超えてはな
らないということである。上記の臨界磁界を超えると新
しいボルテックスが接地薄膜内に生じてしまう、したが
って電流密度Jには上限JM aヨが存在する。一方接
地薄膜内に各種の格子欠陥が存在すると、その格子欠陥
に捕獲されたボルテックスにはビン留め力が働く、ビン
留め力はビン留めセンターとなる格子欠陥部からボルテ
ックスが脱出するのを紡ぐ力である。ビン留め力F、の
大きさはその薄膜の性質によって決まり、一般的には単
結晶に近く、不純質濃度が低い膜はどビン留め力は弱い
、ローレンツ力Fでボルテックスを動かす場合F> F
Pでなくてはならない、上記のような過程を経た後に常
伝導状態に設定してあったジョセフソン回路薄膜を、電
流、温度などの制御により再度超伝導状態にもどす、そ
うすると接地薄膜にトラップされた磁束の影響のないジ
ョセフソン集積回路が得られる。更に加えて、最後の過
程でジョセフソン回路薄膜が超伝導状態に移行する時に
は、外部磁界は以上説明したように接地薄膜の周辺部に
既に集中しているので、ジョセフソン回路薄膜近傍の磁
場は極めて弱くジョセフソン回路薄膜自体への磁束のト
ラップも非常に起りkくい。
In the present invention, in order to initialize so as to avoid the influence of the magnetic flux trapped in the ground thin film, first the superconducting thin film other than the ground thin film, that is, the Josephson circuit thin film, is brought into a normal conduction state. By doing this, the magnetic flux vortex trapped in the ground thin film can move through the ground thin film in a superconducting state without being affected by the di5-Sefson circuit thin film. As a method for keeping the ground thin film as described above in a superconducting state and at the same time making other superconducting thin films (di5-Sefson circuit thin films) in a normal conducting state, for example, a superconducting thin film other than the ground thin film is made to have its superconducting criticality. A method of injecting a current higher than the current, or a material whose superconducting critical temperature 'fcJ is lower than the superconducting critical temperature XCa of the material of the grounding thin film is selected as the material of the superconducting thin film other than the grounding thin film, τc, <'r<
There is a method of setting the environmental temperature to a temperature T called τca. In this state, a current (with current density J) in the ground thin film (
When a vortex drive current) is applied, Lorentz force F-JX
Φ acts on the vortex (Φ is a magnetic flux quantum and F, J, Φ are vector quantities), and this Lorentz force causes the vortex to move in the ground thin film in a direction perpendicular to the vortex driving current. is driven towards. There are two directions of the trapped magnetic flux, upper and lower, and these are driven in opposite directions. Therefore, the vortex concentrates on the edges of the ground thin film and stops there. What should be noted in this process is that the magnetic field induced on the surface of the ground thin film by the current flowing through the superconducting thin film never exceeds the critical magnetic field He of the material composing the ground thin film (if the material is a type 2 superconductor, This means that the critical magnetic field 11c,) must not be exceeded. If the above-mentioned critical magnetic field is exceeded, a new vortex will be generated in the ground thin film, so there is an upper limit JMayo for the current density J. On the other hand, when various lattice defects exist in the ground thin film, a binding force acts on the vortices captured by the lattice defects.The binding force is the force that prevents the vortices from escaping from the lattice defect, which becomes the binding center. It is. The magnitude of the bottle-holding force F is determined by the properties of the thin film, and in general, films that are close to single crystals and have a low impurity concentration have a weak bottle-holding force.If the vortex is moved by the Lorentz force F, F > F
After going through the process described above, the Josephson circuit thin film, which had been set to a normal conductive state, is returned to a superconducting state by controlling current, temperature, etc., and then it becomes trapped in the grounded thin film. A Josephson integrated circuit without the influence of magnetic flux is obtained. In addition, when the Josephson circuit thin film transitions to a superconducting state in the final process, the external magnetic field is already concentrated around the ground thin film as explained above, so the magnetic field near the Josephson circuit thin film is Trapping of the magnetic flux into the very weak Josephson circuit thin film itself is also very unlikely.

本発明のジョセフソン集積回路では、接地薄膜における
ボルテックス駆動電流を制御する電流を通す導線膜が接
地薄膜の上面又は下面に絶縁膜を介して配設しである。
In the Josephson integrated circuit of the present invention, a conductor film through which a current for controlling the vortex drive current in the ground thin film passes is disposed on the upper or lower surface of the ground thin film via an insulating film.

この導線膜に電流を流す事により、導線膜近辺に大きな
磁場を作る事が出来、この磁場により導線膜と局所的に
結合している接地薄膜の超伝導状態を破壊する事が出来
る。
By passing a current through this conductive wire film, a large magnetic field can be created near the conductive wire film, and this magnetic field can destroy the superconducting state of the ground thin film that is locally coupled to the conductive wire film.

すなわち、導線膜近辺の接地薄膜常伝導状態にする事が
出来、その時にボルテックス駆動電流を接地薄膜内に流
すと、電流は常伝導状態にある接地薄膜の部分を避けて
流れる。つまり、導線膜の配置を工夫する事により、ボ
ルテックス駆動電流の流れを自由に制御出来る。そこで
、本発明では、ボルテックス駆動電流供給端子間の接地
薄膜に流されるボルテックス駆動電流の経路を狭め、又
はそのボルテックス駆動電流供給端子と接地端子(接地
薄膜に設けてあり、接地薄膜をチップ搭載基板の接地面
に接続するのに用いる端子)との間の電流経路を遮る形
に導線膜が配置しである。このような形に導線膜を配置
することにより、導線膜に制御電流を流して、ボルテッ
クス駆動電流の密度を大きくシ、ひいてはボルテックス
に作用するローレンツ力を大きくすることができる。
That is, the ground thin film near the conducting wire membrane can be placed in a normal conduction state, and when a vortex drive current is passed through the ground thin film at that time, the current flows avoiding the portion of the ground thin film that is in the normal conduction state. In other words, by carefully arranging the conductor film, the flow of the vortex drive current can be freely controlled. Therefore, in the present invention, the path of the vortex drive current flowing through the ground thin film between the vortex drive current supply terminals is narrowed, or the vortex drive current supply terminal and the ground terminal (provided on the ground thin film, and the ground thin film is connected to the chip mounting board). A conductive film is placed in such a way as to block the current path between the terminal (used to connect to the ground plane). By arranging the conductive wire film in this manner, it is possible to flow a control current through the conductive wire film, increase the density of the vortex drive current, and thereby increase the Lorentz force acting on the vortex.

(実施例) 本発明の第1の実施例を第1図に示す、第1図中1は本
実施例のジョセフソン集積回路のチップにおける接地薄
膜、2はボルテックス駆動電流制御線(前述の導線膜に
相当)、3はボルテックス駆動電流供給端子、4は1t
Rである。$1図はジョセフソン集積回路チップの平面
図である。本図にはジョセフソン回路薄膜は示していな
いが、これは薄膜1の上部に作られている。ボルテック
ス駆動電流制御1112に電流工、を流し、制御線2に
磁気的に結合きれている接地薄膜1の部分を常伝導状態
にし、他の接地薄膜1の部分を超伝導状態に保つ事が出
来る。このような状態において、前に作用の欄で述べた
ように接地薄膜1以外のジョセフソン回路を常伝導状態
にしてから、ボルテックス駆動電流供給端子3から接地
薄膜1内に直流電流を注入すると、ボルテックスはロー
レンツ力Fによって接地薄膜1内を移動する。前にも述
べたようにF−JXΦ、〉F、という条件を満たきなけ
ればボルテックスはビン留め力F、によって移動出来な
い、ビン留め力の大きさはその薄膜の質によって決まる
が、最悪の場合J−IXIO°A/■1というような電
流密度でなくては上記のJ×Φ、>F、という条件は満
たせない、この電流密度を例えば単純に幅5重m、厚さ
300na+の接地薄膜に流すとすると、全電流は15
Aという大電流になる。このような大電流を超伝導シス
テム内に流す事は、システム内の常伝導部分の発熱をう
ながし、超伝導状態の破壊をも生じる可能性がある。ま
た外部からこのような大電流をシステム内に導入するた
めの大口径の電線によるシステム内への熱の流入も大き
な問題である。本実施例によれば、ボルテックス駆動電
流注入時には接地薄膜1は制御線2はよって作られた二
重の櫛状の常伝導状態の隔壁により分割され、電流供給
端子3から注入きれた電流は第1図中矢印で示されてい
るように接地薄膜1中を蛇行して流れる。一定の電流密
度で電流が第1図矢印のように流れる場合と、常伝導状
態の隔壁がない場合とを比べると、前者の電流値は後者
のそれの数分の−ですむ、第1図を例にとると、ボルテ
ックス駆動電流は隔壁がない場合の5分の1ですむ、こ
のように本実施例によれば、少量のボルテックス駆動電
流によりボルテックスを移動させ、これを接地薄膜辺部
およびボルテックス駆動電流制御線2の周辺に集中させ
ることが出来る。
(Embodiment) A first embodiment of the present invention is shown in FIG. 1. In FIG. (equivalent to the membrane), 3 is the vortex drive current supply terminal, 4 is 1t
It is R. Figure $1 is a top view of a Josephson integrated circuit chip. Although the Josephson circuit membrane is not shown in this figure, it is fabricated on top of membrane 1. By passing a current through the vortex drive current control 1112, the part of the ground thin film 1 that is magnetically coupled to the control line 2 can be brought into a normal conduction state, and the other parts of the ground thin film 1 can be kept in a superconducting state. . In such a state, as described in the operation section above, if the Josephson circuits other than the ground thin film 1 are brought into normal conduction state, and then a DC current is injected into the ground thin film 1 from the vortex drive current supply terminal 3, The vortex moves within the ground thin film 1 by the Lorentz force F. As mentioned before, unless the condition F-JXΦ,〉F is satisfied, the vortex cannot be moved by the bottle-holding force F. The magnitude of the bottle-holding force is determined by the quality of the thin film, but the worst case is In this case, the above condition J×Φ, >F cannot be satisfied unless the current density is J-IXIO°A / If it is passed through a thin film, the total current is 15
It becomes a large current of A. Flowing such a large current into a superconducting system increases heat generation in the normal conducting parts of the system, and may even destroy the superconducting state. Another major problem is the inflow of heat into the system due to large diameter electric wires used to introduce such a large current into the system from the outside. According to this embodiment, when a vortex drive current is injected, the ground thin film 1 and the control line 2 are divided by the double comb-shaped normal-conducting partition walls, and the current completely injected from the current supply terminal 3 is divided by the control line 2. 1, it flows in a meandering manner through the ground thin film 1, as indicated by the arrows in FIG. Comparing the case where the current flows as shown by the arrow in Figure 1 at a constant current density and the case where there is no partition wall in the normal conduction state, the current value in the former case is only a few times lower than that in the latter case, Figure 1. For example, the vortex drive current can be reduced to one-fifth of that without the partition wall. According to this embodiment, the vortex is moved by a small amount of vortex drive current, and this is transferred to the ground thin film side and The vortex drive current can be concentrated around the control line 2.

櫛の目の数は本実施例では片側2本であるが、これは本
実施例の本質ではなく、本数が多くなればなるほどボル
テックス駆動電流は少なくて足りる。また本実施例につ
いては二重の櫛状の構造を持ったボルテックス駆動電流
制御線を例にして説明をしたが、この2重の櫛状構造も
本実施例の本質ではなく、例えば螺旋状のボルテックス
駆動電流制御線を配置し、ボルテックス駆動電流を螺旋
状に流しても小さな電流で全チップ接地薄膜上のボルテ
ックスを動かす事が出来る0本実施例の木質は、接地薄
膜を接地薄膜に磁気的に結合する制御線で分割する事に
よって電流密度Jを高め、出来るだけ小さなボルテック
ス駆動電流でボルテックスを動かすという事である。ボ
ルテックス駆動電流を流した後、制御電流エイを零にす
ると、実施例の初期化が完成する。
Although the number of combs is two on each side in this embodiment, this is not the essence of this embodiment, and the greater the number, the smaller the vortex driving current is required. Furthermore, although this embodiment has been explained using a vortex drive current control line with a double comb-like structure as an example, this double comb-like structure is not the essence of this embodiment. Even if the vortex drive current control line is arranged and the vortex drive current is passed in a spiral pattern, the vortex on the entire chip ground thin film can be moved with a small current. The current density J is increased by dividing it with a control line that connects to the vortex, and the vortex is moved with as small a vortex drive current as possible. After the vortex drive current is applied, the control current A is made zero to complete the initialization of the embodiment.

本発明の第2の実施例を第2図に示す、第2図中1〜4
は第1図と同様のものであり、5は接地端子である。実
際のジョセフソン集積回路では第2図のように複数個の
接地端子5を用いて、チップ上の接地薄膜1とカード(
チップ搭載基板)上の接地面とを電気的に接続している
。第2図中接地端子5はカード上の接地面に接地されて
いる。
A second embodiment of the present invention is shown in FIG. 2, 1 to 4 in FIG.
is the same as that in FIG. 1, and 5 is a ground terminal. In an actual Josephson integrated circuit, a plurality of grounding terminals 5 are used as shown in Figure 2, and the grounding thin film 1 on the chip and the card (
It is electrically connected to the ground plane on the chip mounting board). In FIG. 2, the ground terminal 5 is grounded to the ground plane on the card.

この接地端子5は理想的には超伝導である事が望ましい
、このような超伝導の接地端子が存在すると、ボルテッ
クス駆動電流供給端子3からチップ上の接地′f#膜1
に電流を供給したときに、その電流は接地端子を経由し
てカード上の超伝導接地面にも多量に流れてしまう、つ
まりボルテックスを駆動するため所要の電流密度Jをチ
ップ上の接地薄膜1に流すためには、カード上に流れて
しまう分だけ余計に電流を流言なければならない、超伝
導状態を利用した回路システムに余計の電流を流すとい
う事は、第1の実施例においても説明したように望まし
くない事である0本実施例におけるように、ボルテック
ス駆動電流制御線2に電流を流して接地端子5とボルテ
ックス駆動電流供給端子3とを分離することにより、上
記のようなカード上への電流の漏れを助ぐ事が出来る。
Ideally, this grounding terminal 5 should be superconducting. If such a superconducting grounding terminal exists, the vortex drive current supply terminal 3 will be connected to the ground 'f# film 1 on the chip.
When a current is supplied to the ground thin film 1 on the chip, a large amount of the current also flows to the superconducting ground plane on the card via the ground terminal. In order to cause the current to flow through the card, an extra current must be passed through the card.The fact that extra current is passed through the circuit system that utilizes the superconducting state was also explained in the first embodiment. 0 As in this embodiment, by passing a current through the vortex drive current control line 2 to separate the ground terminal 5 and the vortex drive current supply terminal 3, it is possible to This can help prevent current leakage.

つまり第1の実施例のように、制御I12に電流を流し
その近辺の接地薄膜を常伝導状態した後にボルテックス
駆動電流を流すと、その電流は第2150かられかるよ
うにチップ上の接地薄膜1中に限られて流れる。また本
実施例の木質は、ボルテックス駆動電流制御線によって
接地端子とボルテックス駆動電流供給端子とを電気的に
分離することにあり、その分離の方式、各端子の数など
は第2図のような構成にとられれるものではない。
In other words, as in the first embodiment, when a current is applied to the control I12 to bring the ground thin film in its vicinity into a normal conduction state, and then a vortex drive current is applied, the current flows through the ground thin film 1 on the chip as shown from No. 2150. Flows only inside. In addition, the material of this embodiment is to electrically separate the ground terminal and the vortex drive current supply terminal by the vortex drive current control line, and the method of separation, the number of each terminal, etc. are as shown in Figure 2. It is not something that can be taken as a composition.

本発明の第3の実施例を第3図に示す、第3(50中の
各構成要素は第1図、第2150のそれと同様である6
本実施例は第1の実施例と第2の実施例とを併合したも
のであり、このふたつの実施例の特徴をすべて持ち合わ
せている。すなわち比較的少量のボルテックス駆動電流
でボルテックスを移動させる事が出来、同時にカード側
にもこの電流がリークしないような構造を持っている0
本実施例を個別に第3図のように示したのは、本発明の
第1及び第2の実施例は同時に実現出来るものであり相
互排除的なものではない事を示すためである。
A third embodiment of the present invention is shown in FIG.
This embodiment is a combination of the first embodiment and the second embodiment, and has all the features of these two embodiments. In other words, it is possible to move the vortex with a relatively small amount of vortex drive current, and at the same time, it has a structure that prevents this current from leaking to the card side.
The reason why this embodiment is shown individually as shown in FIG. 3 is to show that the first and second embodiments of the present invention can be realized simultaneously and are not mutually exclusive.

なお、第1、第2及び第3の実施例を変形して、ボルテ
ックス駆動電流制御線2を接地薄膜1の下部に埋めこむ
と、制御線2が表面にあられれない、一様な超伝導接地
薄膜が得られ、ジョセフソン回路薄膜が容易にその出番
こ配置出来る。
Note that if the first, second, and third embodiments are modified and the vortex drive current control line 2 is buried under the ground thin film 1, the control line 2 does not appear on the surface and becomes a uniform superconductor. A ground thin film is obtained, and the Josephson circuit thin film can be easily placed in its place.

(発明の効果) 本発明により、小さなボルテックス駆動電流によって、
実装されていないジョセフソン集積回路チップ又はカー
ド上に実装されたジョセフソン集積回路チップの接地薄
膜にトラップした磁束を駆動する事が出来る。従って、
本発明によれば、接地薄膜にトラップきれた磁束による
影響が避けられるジョセフソン集積回路が提供できる。
(Effects of the Invention) According to the present invention, by a small vortex drive current,
Magnetic flux trapped in the ground thin film of an unpackaged Josephson integrated circuit chip or a mounted Josephson integrated circuit chip on a card can be driven. Therefore,
According to the present invention, a Josephson integrated circuit can be provided in which the influence of magnetic flux trapped in a ground thin film can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図は本発明の第1、第2及び第
3の実施例をそれぞれ示す模式的な平面図、第4図は接
地薄膜に磁束量子がトラップされている状態にあるジョ
セフソン集積回路の超伝導薄膜を示す模式的な断面図で
ある。 1・・・チップ上の接地薄膜、2・・・ボルテックス駆
動電流制御線、3・・・ボルテックス駆動電流供給端子
、4・・・電源、5・・・接地端子、6・・・干渉計ル
ープ、7・・・ジョセフソン接合、8・・・ボルテック
ス(トラップきれた磁束)、9・・・磁力線。
1, 2, and 3 are schematic plan views showing the first, second, and third embodiments of the present invention, respectively, and FIG. 4 shows a state in which magnetic flux quanta are trapped in the ground thin film. 1 is a schematic cross-sectional view showing a superconducting thin film of a Josephson integrated circuit in FIG. DESCRIPTION OF SYMBOLS 1... Ground thin film on chip, 2... Vortex drive current control line, 3... Vortex drive current supply terminal, 4... Power supply, 5... Ground terminal, 6... Interferometer loop , 7...Josephson junction, 8...Vortex (trapped magnetic flux), 9...Magnetic field lines.

Claims (1)

【特許請求の範囲】[Claims] ボルテックス駆動電流を接地薄膜に供給する複数の端子
と、前記接地薄膜における前記ボルテックス駆動電流の
流路を制御する電流を通す導線膜とが設けてあり、前記
導線膜は前記接地薄膜の上面又は下面に絶縁膜を介して
配設してあり、前記接地薄膜が超伝導状態にあるときに
前記導線膜の近傍の前記接地薄膜を常伝導状態に転移さ
せるのに足る大きさの前記制御電流を流せる電流容量が
前記導線膜にあり、前記常伝導状態転移制御電流が前記
導線膜に流れているときは、前記端子間の前記接地薄膜
に流される前記ボルテックス駆動電流の経路を狭め又は
前記端子と接地端子との間の電流経路を遮る形に前記導
線膜は配置してあることを特徴とするジョセフソン集積
回路。
A plurality of terminals for supplying a vortex drive current to the ground thin film, and a conductor film for passing a current that controls the flow path of the vortex drive current in the ground thin film are provided, and the conductor film is on the top or bottom surface of the ground thin film. is disposed through an insulating film to allow the control current to flow in a magnitude sufficient to transfer the ground thin film in the vicinity of the conducting wire film to a normal conductive state when the ground thin film is in a superconducting state. When the current capacity is in the conductive wire film and the normal conduction state transition control current is flowing through the conductive wire film, the path of the vortex drive current flowing through the ground thin film between the terminals is narrowed or the terminal and ground are connected. A Josephson integrated circuit characterized in that the conductor film is arranged in such a way as to block a current path between the conductor film and the terminal.
JP60128484A 1985-06-13 1985-06-13 Josephson integrated circuit Granted JPS61287180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60128484A JPS61287180A (en) 1985-06-13 1985-06-13 Josephson integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128484A JPS61287180A (en) 1985-06-13 1985-06-13 Josephson integrated circuit

Publications (2)

Publication Number Publication Date
JPS61287180A true JPS61287180A (en) 1986-12-17
JPH0525191B2 JPH0525191B2 (en) 1993-04-12

Family

ID=14985884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128484A Granted JPS61287180A (en) 1985-06-13 1985-06-13 Josephson integrated circuit

Country Status (1)

Country Link
JP (1) JPS61287180A (en)

Also Published As

Publication number Publication date
JPH0525191B2 (en) 1993-04-12

Similar Documents

Publication Publication Date Title
US3059196A (en) Bifilar thin film superconductor circuits
US5831278A (en) Three-terminal devices with wide Josephson junctions and asymmetric control lines
US2966647A (en) Shielded superconductor circuits
US2930908A (en) Superconductor switch
JPH01170080A (en) Superconducting fet element
JPS5935117B2 (en) Superconducting bistable device
US4392148A (en) Moat-guarded Josephson devices
EP0076160A2 (en) Josephson-junction logic device
JPS61287180A (en) Josephson integrated circuit
JPH0525190B2 (en)
JP2838979B2 (en) Superconducting circuit
JPH0455543B2 (en)
JPS6288381A (en) Superconducting switching apparatus
US3234439A (en) Thin film cryotron
Fruin et al. A new crossed-film cryotron structure with superimposed controls
JPH0558590B2 (en)
JPS61287178A (en) Josephson integrated circuit and initiating method thereof
US3346829A (en) Cryotron controlled storage cell
JP2583922B2 (en) Superconducting switching element
Ittner Cryogenic Electronics
JPS61287182A (en) Josephson integrated circuit and initiating method thereof
Volkov et al. Multilayered high-temperature superconducting materials as possible base for cryogenic switching elements
JP2856463B2 (en) Magnetic flux trap release device in superconducting circuit
JPH0455354B2 (en)
JP2523655B2 (en) Superconducting element