JPH0525190B2 - - Google Patents

Info

Publication number
JPH0525190B2
JPH0525190B2 JP60128483A JP12848385A JPH0525190B2 JP H0525190 B2 JPH0525190 B2 JP H0525190B2 JP 60128483 A JP60128483 A JP 60128483A JP 12848385 A JP12848385 A JP 12848385A JP H0525190 B2 JPH0525190 B2 JP H0525190B2
Authority
JP
Japan
Prior art keywords
thin film
superconducting
ground
current
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60128483A
Other languages
Japanese (ja)
Other versions
JPS61287179A (en
Inventor
Choshin Sai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60128483A priority Critical patent/JPS61287179A/en
Publication of JPS61287179A publication Critical patent/JPS61287179A/en
Publication of JPH0525190B2 publication Critical patent/JPH0525190B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、接地薄膜内にトラツプ(捕捉)され
た磁束を取り除く手段を有するジヨセフソン集積
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to Josephson integrated circuits having means for removing magnetic flux trapped in a ground film.

(従来の技術及びその問題点) ジヨセフソン集積回路は基板上に超伝導薄膜を
形成してなり、その超伝導薄膜は接地薄膜とこの
接地薄膜上に設けたジヨセフソン回路薄膜とから
なる。このジヨセフソン回路薄膜はジヨセフソン
接合、干渉計ループ、配線等からなつている。
(Prior Art and its Problems) A Josephson integrated circuit is formed by forming a superconducting thin film on a substrate, and the superconducting thin film consists of a ground thin film and a Josephson circuit thin film provided on the ground thin film. This Josephson circuit thin film consists of Josephson junctions, interferometer loops, wiring, etc.

超伝導薄膜によつて作られたジヨセフソン集積
回路の正常動作をさまたげる障害のひとつとし
て、従来から超伝導薄膜における磁束のトラツプ
という現象が問題になつていた。臨界温度TC
もつ完全な超伝導薄膜の温度TがT>TCからT
<TCまで下がることにより、始め超伝導薄膜を
貫いていた磁場はマイスナー効果によつてすべて
超伝導薄膜から排除される。しかし、もしこの超
伝導薄膜の超伝導性が多少たりとも不純物、格子
欠陥などによつてそこなわれると、T<Tcの状
態において磁場は超伝導膜内から完全には排出さ
れず、トラツプされた磁束として薄膜内に残る。
磁場の十分弱い状態では、トラツプされる磁束は
ボルテツクスとよばれる量子化された磁束である
(磁束量子Φ0=2×10-7G/cm2)。通常の方法で製
作される超伝導薄膜はいずれも完全なものではな
く、アイ・イー・イー・イー・トランズアクシヨ
ンズ・オン・マグネテイクス(IEEE
Transactions on Magnetics)Vol.MAG−19,
No.3,1983に述べられているような、磁束量子の
トラツプ現象が起きる事が知られている。実際の
ジヨセフソン集積回路は各ゲート間、ライン間の
磁気的結合を小さくするために接地薄膜上に作ら
れている。しかし、この接地薄膜内に磁束量子が
トラツプされていて(即ち、ボルテツクスが存在
して)、そしてそのトラツプされた磁束が干渉計
ループ又はジヨセフソン接合自身に結合している
とすると、ジヨセフソン集積回路は誤動作を起
す。第4図に上記のような状態を示す。
The phenomenon of magnetic flux traps in superconducting thin films has long been a problem that hinders the normal operation of Josephson integrated circuits made from superconducting thin films. The temperature T of a perfect superconducting thin film with critical temperature T C is from T>T C to T
<T C , the magnetic field that initially penetrated the superconducting thin film is completely removed from the superconducting thin film by the Meissner effect. However, if the superconductivity of this superconducting thin film is impaired to some extent by impurities, lattice defects, etc., the magnetic field will not be completely exhausted from within the superconducting film in the state of T<Tc, but will be trapped. The remaining magnetic flux remains within the thin film.
When the magnetic field is sufficiently weak, the trapped magnetic flux is a quantized magnetic flux called vortex (magnetic flux quantum Φ 0 =2×10 -7 G/cm 2 ). None of the superconducting thin films produced by conventional methods are perfect, and
Transactions on Magnetics) Vol.MAG−19,
No. 3, 1983, it is known that a magnetic flux quantum trap phenomenon occurs. Actual Josephson integrated circuits are built on a grounded thin film to reduce magnetic coupling between each gate and between lines. However, if flux quanta are trapped in this grounded film (i.e., a vortex exists), and the trapped flux is coupled to the interferometer loop or the Josephson junction itself, then the Josephson integrated circuit Causes malfunction. FIG. 4 shows the above state.

第4図は磁束量子をトラツプした超伝導薄膜の
模式的な断面図でである。図中、10は接地薄
膜、6は干渉計ループ、7はジヨセフソン接合、
8はボルテツクス(トラツプされた磁束量子)、
9は磁力線を示す。ボルテツクス8の径は約
50nm、磁場が貫ぬく接合の断面は約300nm×
5000nm、干渉計の径は約10000nm、膜厚はすべ
て約300nmである。第4図のようにトラツプされ
た磁束が、ジヨセフソン接合7と結合している
と、その接合7のジヨセフソン電流が小さくなる
し、またそれが干渉計ループ6と結合している干
渉計ゲートの制御特性に変化をもたらす。いずれ
の場合も磁気的結合の度合によつてはその磁気的
結合がゲートの誤動作を誘発する原因となる。通
常ジヨセフソン集積回路の動作は磁気遮蔽の中の
非常に低い磁場中で行なわれる。この種の磁気遮
蔽内の磁場は約10μGほどであるが、この磁場は
例えば10cm×10cmのチツプ総面積を持つ複数のジ
ヨセフソン集積回路チツプからなるジヨセフソン
コンピユータ内に約5000個の磁束量子をトラツプ
させコンピユータの誤動作の原因となる。実際に
はジヨセフソンコンピユータを冷却する時に熱起
電力によつて誘発される電流によつて、上記のよ
うなサイズを持つコンピユータはさらに多くの
(数万個乃至数十万個の)磁束量子をトラツプす
るであろうと推測されていて、このような環境下
での正常な演算動作はほとんど不可能である。
FIG. 4 is a schematic cross-sectional view of a superconducting thin film in which magnetic flux quanta are trapped. In the figure, 10 is a ground thin film, 6 is an interferometer loop, 7 is a Josephson junction,
8 is vortex (trapped magnetic flux quantum),
9 indicates lines of magnetic force. The diameter of vortex 8 is approx.
50nm, the cross section of the junction through which the magnetic field penetrates is approximately 300nm x
5000nm, the diameter of the interferometer is about 10000nm, and the thickness of all films is about 300nm. When the trapped magnetic flux is coupled to Josephson junction 7 as shown in FIG. bring about changes in characteristics. In either case, depending on the degree of magnetic coupling, the magnetic coupling may induce malfunction of the gate. Normally, Josephson integrated circuits operate in very low magnetic fields within a magnetic shield. The magnetic field in this type of magnetic shield is about 10 μG, which generates about 5000 magnetic flux quanta in a Josephson computer, which consists of several Josephson integrated circuit chips with a total chip area of 10 cm x 10 cm. This can cause the computer to become trapped and malfunction. In reality, a computer with the size described above has even more magnetic flux quanta (tens to hundreds of thousands) due to the current induced by the thermoelectromotive force when cooling the Josephson computer. It is assumed that this will trap the data, and normal operation of the calculation under such an environment is almost impossible.

そこで、本発明の目的は、接地薄膜にトラツプ
された磁束による影響が避けられるジヨセフソン
集積回路を提供する事にある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a Josephson integrated circuit in which the effects of magnetic flux trapped in a grounded thin film can be avoided.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供す
る手段は、超伝導薄膜である接地薄膜を備えるジ
ヨセフソン集積回路であつて、前記接地薄膜が第
1の超伝導臨界温度の第1の薄膜と前記第1の超
伝導臨界温度より低い第2の超伝導臨界温度の第
2の薄膜とからなり、前記第1の薄膜にはボルテ
ツクス駆動電流を供給する複数の端子が設けてあ
り、前記第2の薄膜は、環境温度が前記第1及び
第2の超伝導臨界温度の中間にあるときに、前記
端子間の前記第1の薄膜に流される前記ボルテツ
クス駆動電流の経路を狭め又は前記端子と接地端
子との間の電流経路を遮る形に配置してあること
を特徴とする。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems is a Josephson integrated circuit comprising a ground thin film that is a superconducting thin film, the ground thin film being a first a plurality of thin films comprising a first thin film having a superconducting critical temperature and a second thin film having a second superconducting critical temperature lower than the first superconducting critical temperature, and supplying a vortex driving current to the first thin film; terminals are provided, and the second thin film is provided with the vortex drive that flows across the first thin film between the terminals when the ambient temperature is intermediate between the first and second superconducting critical temperatures. It is characterized in that it is arranged in such a way that the current path is narrowed or the current path between the terminal and the ground terminal is blocked.

(作用) 次に本発明の作用について述べる。(effect) Next, the operation of the present invention will be described.

本発明において、接地薄膜にトラツプされた磁
束の影響が避けられるように初期化するには、ま
ず接地薄膜以外の超伝導薄膜、即ちジヨセフソン
回路薄膜が常伝導状態になるようにする。こうす
ることにより接地薄膜中にトラツプされた磁束ボ
ルテツクスは、ジヨセフソン回路薄膜の影響を受
けずに超伝導状態にある接地薄膜中を移動出来
る。上記のような接地薄膜は超伝導状態に保ち同
時にそれ以外の超伝導薄膜(ジヨセフソン回路薄
膜)を常伝導状態にする方式として、たとえば接
地薄膜以外の超伝導薄膜にその薄膜の超伝導臨界
電流以上の電流を注入する方式、または接地薄膜
以外の超伝導薄膜の材料としてその超伝導臨界温
度TCJ<T<TCGという温度Tに環境温度を設定
する方式などがある。この状態で、接地薄膜内に
電流密度Jを持つ電流を流すとローレンツ力F=
J×Φ0がボルテツクスに対して作用する(Φ0
磁束量子であり、F,J,Φ0はベクトル量であ
る)。このローレンツ力によつてボルテツクスは
接地薄膜内を接地薄膜電流に垂直な方向に向つて
駆動される。トラツプされた磁束の方向は上下二
種類あるが、この時これらは互いに正反対の方向
に駆動される。そこで、ボルテツクスは接地薄膜
の辺部に集中し、そこで停止する。この過程で注
意するべきことは超伝導薄膜に流される電流によ
つて接地薄膜表面に誘起される磁界Hは決して接
地薄膜を構成している材料の臨界磁界HC(もし材
料が第2種超伝導ならば下部臨界磁界HC1)を超
えてはならないということである。上記の臨界磁
界を超えると新しいボルテツクスが接地薄膜内に
生じてしまう。したがつて電流密度Jには上限
JMaxが存在する。一方接地薄膜内に各種の格子欠
陥が存在すると、その格子欠陥に捕獲されたボル
テツクスにはピン留め力が働く。ピン留め力はピ
ン留めセンターとなる格子欠陥部からボルテツク
スが脱出するのを防ぐ力である。ピン留め力FP
の大きさはその薄膜の性質によつて決まり、一般
的には単結晶に近く、不純質濃度が低い膜ほどピ
ン留め力は弱い。ローレンツ力Fでボルテツクス
を動かす場合F>FPでなくてはならない。上記
のような過程を経た後に常伝導状態に設定してあ
つたジヨセフソン回路薄膜を、電流、温度などの
制御により再度超伝導状態にもどす。そうすると
接地薄膜にトラツプされた磁束の影響のないジヨ
セフソン集積回路が得られる。更に加えて、最後
の過程でジヨセフソン回路薄膜が超伝導状態に移
行する時には、外部磁界は以上説明したように接
地薄膜の周辺部に既に集中しているので、ジヨセ
フソン回路薄膜近傍の磁場は極めて弱くジヨセフ
ソン回路薄膜自体への磁束のトラツプも非常に起
りにくい。
In the present invention, in order to initialize so as to avoid the influence of the magnetic flux trapped in the ground thin film, first the superconducting thin film other than the ground thin film, that is, the Josephson circuit thin film, is brought into a normal conduction state. This allows the magnetic flux vortices trapped in the ground thin film to move through the ground thin film in a superconducting state without being affected by the Josephson circuit thin film. As a method for keeping the grounded thin film as described above in a superconducting state and at the same time making other superconducting thin films (Josefson circuit thin films) in a normal conducting state, for example, a superconducting thin film other than the grounded thin film is charged with a superconducting critical current higher than the superconducting critical current of that thin film. There is a method in which a current is injected, or a method in which the environmental temperature is set to the superconducting critical temperature T of the material of the superconducting thin film other than the ground thin film, T CJ < T < T CG . In this state, when a current with current density J is passed through the ground thin film, Lorentz force F=
J×Φ 0 acts on the vortex (Φ 0 is a flux quantum and F, J, Φ 0 are vector quantities). This Lorentz force drives the vortex within the ground membrane in a direction perpendicular to the ground membrane current. There are two directions of the trapped magnetic flux, upper and lower, and these are driven in opposite directions. The vortex then concentrates on the edges of the ground membrane and stops there. What should be noted in this process is that the magnetic field H induced on the surface of the grounding thin film by the current flowing through the superconducting thin film never exceeds the critical magnetic field H C of the material composing the grounding thin film (if the material is In the case of conduction, this means that the lower critical magnetic field H C1 ) must not be exceeded. Above the critical magnetic field, a new vortex is created in the ground film. Therefore, there is an upper limit to the current density J.
J Max exists. On the other hand, if various lattice defects exist in the ground thin film, a pinning force acts on the vortices captured by the lattice defects. The pinning force is the force that prevents the vortices from escaping from the lattice defect that serves as the pinning center. Pinning force F P
The size of the film is determined by the properties of the thin film, and in general, the closer the film is to a single crystal and the lower the impurity concentration, the weaker the pinning force. When moving a vortex with Lorentz force F, F > F P must be satisfied. After going through the above process, the Josephson circuit thin film, which had been set to a normal conductive state, is returned to a superconducting state by controlling current, temperature, etc. This results in a Josephson integrated circuit that is free from the effects of magnetic flux trapped in the grounded film. In addition, when the Josephson circuit thin film transitions to a superconducting state in the final process, the external magnetic field is already concentrated around the ground thin film as explained above, so the magnetic field near the Josephson circuit thin film is extremely weak. It is also very unlikely that the magnetic flux will be trapped in the Josephson circuit thin film itself.

本発明のジヨセフソン集積回路では二種類の異
なつた超伝導臨界温度を持つた材料により接地薄
膜を構成してあるが、これは以下のような原理に
より動作する。回路の環境温度を前記二つの臨界
温度の中間に設定すると、接地薄膜のうち第1の
薄膜は超伝導状態を保つが、他の一部をなす第2
の薄膜は常伝導状態になる。この常伝導状態にあ
る第2の薄膜は第1の薄膜に超伝導電流を流しそ
の中のボルテツクスを駆動する過程において、超
伝導電流の流れの隔壁になる。これは言い換れば
ボルテツクス駆動電流を接地薄膜に流すときに常
伝導転移をして第2の薄膜の形状を工夫する事に
よつて、この電流の流れを制御する事が出来ると
いう事である。この発明では、第2の薄膜によつ
て第1の薄膜内の超伝導電流経路を狭め、電流密
度Jを高めることにより、ローレンツ力Fがピン
留め力Fpより大きくなるのを容易にしている。
なお二種類の接地薄膜がともに超伝導転移をした
正常な回路動作状態において、第2の薄膜は信号
の伝送になんら支障をきたさない。
In the Josephson integrated circuit of the present invention, the ground thin film is made of two different materials having different superconducting critical temperatures, and this operates on the following principle. When the environmental temperature of the circuit is set between the two critical temperatures, the first thin film among the ground thin films maintains a superconducting state, but the second thin film forming the other part remains superconducting.
The thin film becomes a normal conductor. The second thin film in the normal conducting state becomes a barrier for the flow of superconducting current in the process of passing a superconducting current through the first thin film and driving a vortex therein. In other words, when a vortex drive current is passed through a grounded thin film, a normal conduction transition occurs, and by devising the shape of the second thin film, the flow of this current can be controlled. . In this invention, the second thin film narrows the superconducting current path in the first thin film and increases the current density J, thereby making it easier for the Lorentz force F to become larger than the pinning force F p . .
Note that under normal circuit operating conditions in which both types of ground thin films have undergone superconducting transition, the second thin film does not pose any problem in signal transmission.

(実施例) 本発明の第1の実施例を第1図に示す。第1図
中1はジヨセフソン集積回路チツプの接地薄膜の
主要部をなす薄膜(前述の第1の薄膜に相当)、
2は薄膜1よりも低い超伝導臨界温度を持つたボ
ルテツクス駆動電流隔壁(前述の第2の薄膜に相
当)、3はボルテツクス駆動電流供給端子、4は
電源である。第1図は本実施例のジヨセフソン集
積回路チツプの平面図であり、薄膜1と隔壁2と
が接地薄膜を形成している。ジヨセフソンゲート
は、本図には示されていないが、薄膜1の上部に
作られている。薄膜1の超伝導臨界温度をTCG
隔壁2の超伝導臨界温度をTCG′とすると、TCG
TCG′である。そこで、回路の環境温度TをTCG
T>TCG′にすると、隔壁2は常伝導状態になり、
接地薄膜の他の大部分(薄膜1)は超伝導状態に
なる。このような状態において、前に作用の欄で
述べたようにジヨセフソン回路薄膜を常伝導状態
にしてから、ボルテツクス駆動電流供給端子3か
ら接地薄膜内に直流電流を注入すると、ボルテツ
クスはローレンツ力によつて接地薄膜内を移動す
る。前にも述べたようにF=J×Φ0>FPという
条件を満たさなければボルテツクスはピン留め力
によつて移動出来ない。ピン留め力の大きさはそ
の薄膜の質によつて決まるが、最悪の場合J=1
×106A/cm2というような電流密度でなくては上
記のJ×Φ0>FPという条件は満たせない。この
電流密度を例えば単純に幅5nm、厚さ300nmの接
地薄膜に流すとすると、全電流は15Aという大電
流になる。このような大電流を超伝導システム内
に流す事は、システム内の常伝導部分の発熱をう
ながし、超伝導状態の破壊をも生じる可能性があ
る。また外部からこのような大電流をシステム内
に導入するための大口径の電線によるシステム内
への熱の流入も大きな問題である。本実施例によ
れば、ボルテツクス駆動電流注入時には接地薄膜
は二重の櫛状の常伝導状態の隔壁2により分割さ
れ、電流供給端子3から注入された電流は第1図
中矢印で示されているように接地薄膜中を蛇行し
て流れる。一定の電流密度で電流がこのように流
れる場合と、常伝導状態の隔壁がない場合とを比
べると、前者の電流値は後者のそれの数分の一で
すむ。第1図を例にとると、ボルテツクス駆動電
流は隔壁2がない場合の5分の1ですむ。このよ
うに本実施例によれば、少量のボルテツクス駆動
電流によりボルテツクスを移動させ、これを接地
薄膜辺部およびボルテツクス駆動電流隔壁の周辺
に集中ささせることが出来る。櫛の目の数は本実
施例では片側2本であるが、これは本実施例の本
質ではなく、本数が多くなればなるほどボルテツ
クス駆動電流は少なくて足りる。また本実施例に
ついては二重の櫛状の構造を持つたボルテツクス
駆動電流隔壁を例にして説明をしたが、この2重
の櫛状構造も本実施例の本質ではなく、例えば螺
状のボルテツクス駆動電流隔壁を配置し、ボルテ
ツクス駆動電流を螺旋状に流しても小さな電流で
全チツプ接地薄膜上のボルテツクスを動かす事が
出来る。本実施例の本質は、接地薄膜をそれ自身
の臨界温度よりも低い臨界温度を持つた隔壁で分
割する事によつて電流密度Jを高め、出来るだけ
小さなボルテツクス駆動添流でボルテツクスを動
かすという事である。ボルテツクス駆動電流を流
した後、環境温度TをTCG>T>T′CGからTCG
T′CG>Tにすると、実施例の初期化が完成する。
(Example) A first example of the present invention is shown in FIG. 1 in Fig. 1 is a thin film (corresponding to the above-mentioned first thin film) that forms the main part of the ground thin film of the Josephson integrated circuit chip;
Reference numeral 2 designates a vortex drive current barrier having a superconducting critical temperature lower than that of the thin film 1 (corresponding to the aforementioned second thin film), 3 a vortex drive current supply terminal, and 4 a power source. FIG. 1 is a plan view of the Josephson integrated circuit chip of this embodiment, in which a thin film 1 and a partition wall 2 form a ground thin film. The Josefson gate is not shown in this figure, but is made on top of the thin film 1. The superconducting critical temperature of thin film 1 is T CG ,
If the superconducting critical temperature of partition wall 2 is T CG ′, then T CG >
T CG ′. Therefore, the environmental temperature T of the circuit is T CG
When T>T CG ', the partition wall 2 becomes a normal conduction state,
The other large part of the grounded membrane (film 1) becomes superconducting. In such a state, as mentioned in the section on the effect, if the Josephson circuit thin film is brought into a normal conduction state and then a direct current is injected into the ground thin film from the vortex drive current supply terminal 3, the vortex will be caused by the Lorentz force. and move within the ground thin film. As mentioned before, the vortex cannot be moved by the pinning force unless the condition F=J×Φ 0 > FP is satisfied. The magnitude of the pinning force is determined by the quality of the thin film, but in the worst case J = 1
Unless the current density is ×10 6 A/cm 2 , the above condition J×Φ 0 >F P cannot be satisfied. For example, if this current density is simply passed through a ground thin film with a width of 5 nm and a thickness of 300 nm, the total current will be a large current of 15 A. Flowing such a large current into a superconducting system increases heat generation in the normal conducting parts of the system, and may even destroy the superconducting state. Another major problem is the inflow of heat into the system due to large diameter electric wires used to introduce such a large current into the system from the outside. According to this embodiment, when a vortex drive current is injected, the ground thin film is divided by the double comb-shaped partition wall 2 in the normal conduction state, and the current injected from the current supply terminal 3 is as indicated by the arrow in FIG. It flows in a meandering manner through the ground thin film as if it were flowing. Comparing the case where the current flows in this manner at a constant current density with the case where there is no partition wall in the normal conduction state, the current value in the former case is only a fraction of that in the latter case. Taking FIG. 1 as an example, the vortex drive current can be reduced to one-fifth of that without the partition wall 2. As described above, according to this embodiment, it is possible to move the vortex using a small amount of vortex drive current and to concentrate it around the ground thin film side and the vortex drive current partition wall. In this embodiment, the number of combs is two on each side, but this is not the essence of this embodiment; the greater the number, the smaller the vortex driving current is required. Furthermore, although this embodiment has been explained using a vortex driven current barrier wall having a double comb-like structure as an example, this double comb-like structure is not the essence of this embodiment. Even if a drive current partition is placed and a vortex drive current is passed in a spiral pattern, the vortex on the entire chip grounding film can be moved with a small current. The essence of this embodiment is to increase the current density J by dividing the ground thin film with partition walls having a critical temperature lower than its own critical temperature, and to move the vortex with as small a vortex-driving side current as possible. It is. After applying the vortex drive current, the environmental temperature T is changed from T CG > T >T' CG to T CG >
When T′ CG >T, the initialization of the embodiment is completed.

本発明の第2の実施例を第2図に示す。第2図
中1〜4は第1図と同じであり、5は接地端子で
ある。実際のジヨセフソン集積回路では第2図の
ように複数個の接地端子5を用いて、チツプ上の
接地薄膜とカード(チツプ搭載基板)上の接地面
とを電気的に接続している。第2図中接地端子5
はカード上の接地面に接地されている。この接地
端子5は理想的には超伝導である事が望ましい。
このよう超伝導の接地端子が存在すると、ボルテ
ツクス駆動電流供給端子3からチツプ上の接地薄
膜に電流を供給した時に、その電流は接地端子を
経由してカード上の超伝導接地面にも多量に流れ
てしまう。つまりボルテツクスを駆動するため所
要の電流密度Jをチツプ上の接地薄膜に流すため
には、カード上に流れてしまう分だけ余計に電流
を流さなければならない。超伝導状態を利用した
回路システムに余計の電流を流すという事は、第
1の実施例においても説明したように望ましくな
い事である。本実施例におけるように臨界温度
T′CGを持つボルテツクス駆動電流隔壁2により接
地端子5とボルテツクス駆動電流供給端子3とを
分離することにより、上記のようなカード上への
電流の濡れを防ぐ事が出来る。つまり第1の実施
例のように環境温度TをTCG>T>T′CGに設定し、
ボルテツクス駆動電流を流すと、その電流は第2
図からわかるようにチツプ上の接地薄膜中に限ら
れて流れる。また本実施例の本質は、臨界温度が
他の接地薄膜部分よりも低いボルテツクス駆動電
流隔壁によつて接地端子とボルテツクス駆動電流
供給端子とを電気的に分離することにあり、その
分離の方式、各端子の数などは第2図のような構
成にとらわれるものではない。例えばボルテツク
ス駆動電流隔壁によつて接地端子をひとつづつ縁
どるようにしてもよいし、接地端子を直接ボルテ
ツクス駆動電流隔壁上に作つてもよい。本発明の
第3の実施例を第3図に示す。第3図中の各構成
要素は第1図、第2図のそれと同様である。本実
施例は第1の実施例と第2の実施例とを併合した
ものであり、このふたつの実施例の特徴をすべて
持ち合わせている。本実施例を個別に第3図のよ
うに示したのは、本発明の第1及び第2の実施例
は同時に実現出来るものであり相互排除的なもの
ではない事を示すためである。
A second embodiment of the invention is shown in FIG. In FIG. 2, 1 to 4 are the same as in FIG. 1, and 5 is a ground terminal. In an actual Josephson integrated circuit, as shown in FIG. 2, a plurality of ground terminals 5 are used to electrically connect the ground thin film on the chip and the ground plane on the card (chip mounting board). Grounding terminal 5 in Figure 2
is grounded to the ground plane on the card. Ideally, this ground terminal 5 should be superconducting.
If such a superconducting ground terminal exists, when a current is supplied from the vortex drive current supply terminal 3 to the ground thin film on the chip, a large amount of the current will also flow through the ground terminal to the superconducting ground plane on the card. It flows away. In other words, in order to cause the required current density J to flow through the ground thin film on the chip in order to drive the vortex, an extra current must be passed through the card. As explained in the first embodiment, it is undesirable to cause an extra current to flow through a circuit system that utilizes a superconducting state. critical temperature as in this example
By separating the ground terminal 5 and the vortex drive current supply terminal 3 by the vortex drive current partition wall 2 having T' CG , it is possible to prevent the current from wetting onto the card as described above. In other words, as in the first embodiment, the environmental temperature T is set to T CG > T >T' CG ,
When a vortex drive current is applied, the current
As can be seen from the figure, the flow is limited to the ground thin film on the chip. The essence of this embodiment is to electrically separate the ground terminal and the vortex drive current supply terminal by a vortex drive current partition wall whose critical temperature is lower than that of other ground thin film parts, and the method of separation is as follows: The number of each terminal is not limited to the configuration shown in FIG. 2. For example, the ground terminals may be framed one by one by the vortex drive current barrier, or the ground terminals may be formed directly on the vortex drive current barrier. A third embodiment of the invention is shown in FIG. Each component in FIG. 3 is the same as that in FIGS. 1 and 2. This embodiment is a combination of the first embodiment and the second embodiment, and has all the features of these two embodiments. The reason why this embodiment is shown individually as shown in FIG. 3 is to show that the first and second embodiments of the present invention can be realized simultaneously and are not mutually exclusive.

なお、第1、第2及び第3の実施例において示
されている二種類の超伝導臨界温度を持つた接地
薄膜は、異なつた材料により二回に分けて真空蒸
着などの手段で形成してもよいし、またはイオン
ビーム、電子ビーム、α線、β線などの照射によ
り局所的に異なつた臨界温度を持たせて作る事も
出来る。
Note that the ground thin films having two types of superconducting critical temperatures shown in the first, second, and third embodiments are formed using different materials in two steps by means such as vacuum evaporation. Alternatively, it can be made by irradiating with ion beams, electron beams, alpha rays, beta rays, etc. to give locally different critical temperatures.

(発明の効果) 本発明により、小さなボルテツクス駆動電流に
よつて、実装されていないジヨセフソン集積回路
チツプ又はカード上に実装されたジヨセフソン集
積回路チツプの接地薄膜にトラツプした磁束を駆
動する事が出来る。従つて、本発明によれば、接
地薄膜にトラツプされた磁束による影響が避けら
れるジヨセフソン集積回路が提供できる。
(Effects of the Invention) According to the present invention, magnetic flux trapped in the ground thin film of an unmounted Josephson integrated circuit chip or a Josephson integrated circuit chip mounted on a card can be driven by a small vortex drive current. Therefore, according to the present invention, a Josephson integrated circuit can be provided in which the effects of magnetic flux trapped in the ground thin film can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図は本発明の第1、第
2及び第3の実施例をそれぞれ示す模式的な平面
図、第4図は接地薄膜に磁束量子がトラツプされ
ている状態にあるジヨセフソン集積回路の超伝導
薄膜を示す模式的な断面図である。 1…チツプ上の接地薄膜の主要部をなす薄膜、
2…ボルテツクス駆動電流隔壁、3…ボルテツク
ス駆動電流供給端子、4…電源、5…接地端子、
6…干渉計ループ、7…ジヨセフソン接合、8…
ボルテツクス(トラツプされた磁束)、9…磁力
線、10…接地薄膜。
1, 2, and 3 are schematic plan views showing the first, second, and third embodiments of the present invention, respectively, and FIG. 4 shows a state in which magnetic flux quanta are trapped in the ground thin film. 1 is a schematic cross-sectional view showing a superconducting thin film of a Josephson integrated circuit in FIG. 1...Thin film that forms the main part of the ground thin film on the chip,
2... Vortex drive current partition, 3... Vortex drive current supply terminal, 4... Power supply, 5... Ground terminal,
6... Interferometer loop, 7... Josephson junction, 8...
Vortex (trapped magnetic flux), 9... lines of magnetic force, 10... ground thin film.

Claims (1)

【特許請求の範囲】[Claims] 1 超伝導薄膜である接地薄膜を備えるジヨセフ
ソン集積回路において、前記接地薄膜が第1の超
伝導臨界温度の第1の薄膜と前記第1の超伝導臨
界温度より低い第2の超伝導臨界温度の第2の薄
膜とからなり、前記第1の薄膜にはボルテツクス
駆動電流を供給する複数の端子が設けてあり、前
記第2の薄膜は、環境温度が前記第1及び第2の
超伝導臨界温度の中間にあるときに、前記端子間
の前記第1の薄膜に流される前記ボルテツクス駆
動電流の経路を狭め又は前記端子と接地端子との
間の電流経路を遮る形に配置してあることを特徴
とするジヨセフソン集積回路。
1. A Josephson integrated circuit comprising a grounded thin film that is a superconducting thin film, wherein the grounded thin film has a first thin film at a first superconducting critical temperature and a second superconducting critical temperature lower than the first superconducting critical temperature. a second thin film, the first thin film is provided with a plurality of terminals for supplying a vortex drive current, and the second thin film has an environmental temperature that is equal to or less than the first and second superconducting critical temperatures. is arranged in such a way that the path of the vortex driving current flowing through the first thin film between the terminals is narrowed or the current path between the terminal and the ground terminal is blocked when the current is in the middle of the terminal. Josephson integrated circuit.
JP60128483A 1985-06-13 1985-06-13 Josephson integrated circuit Granted JPS61287179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60128483A JPS61287179A (en) 1985-06-13 1985-06-13 Josephson integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128483A JPS61287179A (en) 1985-06-13 1985-06-13 Josephson integrated circuit

Publications (2)

Publication Number Publication Date
JPS61287179A JPS61287179A (en) 1986-12-17
JPH0525190B2 true JPH0525190B2 (en) 1993-04-12

Family

ID=14985858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128483A Granted JPS61287179A (en) 1985-06-13 1985-06-13 Josephson integrated circuit

Country Status (1)

Country Link
JP (1) JPS61287179A (en)

Also Published As

Publication number Publication date
JPS61287179A (en) 1986-12-17

Similar Documents

Publication Publication Date Title
US4371796A (en) Josephson logic gate device
US4831421A (en) Superconducting device
US5665980A (en) Fabrication method of superconducting quantum interference device constructed from short weak links with ultrafine metallic wires
US4392148A (en) Moat-guarded Josephson devices
JPH0525190B2 (en)
JPH0525191B2 (en)
JPH0455543B2 (en)
JPH0558590B2 (en)
US3706064A (en) Magnetically controlled supercurrent switch
JP2838979B2 (en) Superconducting circuit
JPH0455354B2 (en)
JPS61287182A (en) Josephson integrated circuit and initiating method thereof
JPH0558589B2 (en)
EP0218119A2 (en) Superconductor switching device
JP2940503B2 (en) Superconducting integrated circuits
Fruin et al. A new crossed-film cryotron structure with superimposed controls
US3234439A (en) Thin film cryotron
WO1996009654A1 (en) A method and device for improving the performance of thin-film josephson devices in magnetic fields
JPS63263745A (en) Wiring
Tahara et al. Superconducting technology for digital applications using niobium josephson junctions
Hoyle et al. Thin-film superconductor device
JPS6317346B2 (en)
JPS631085A (en) Superconducting three-terminal element
JPS62217679A (en) Magnetic field coupling type josephson element
Kirschman et al. Advances in superconducting quantum electronic microcircuit fabrication