JPH0455354B2 - - Google Patents

Info

Publication number
JPH0455354B2
JPH0455354B2 JP61018784A JP1878486A JPH0455354B2 JP H0455354 B2 JPH0455354 B2 JP H0455354B2 JP 61018784 A JP61018784 A JP 61018784A JP 1878486 A JP1878486 A JP 1878486A JP H0455354 B2 JPH0455354 B2 JP H0455354B2
Authority
JP
Japan
Prior art keywords
thin film
vortex
josephson
ground
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61018784A
Other languages
Japanese (ja)
Other versions
JPS62176179A (en
Inventor
Choshin Sai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61018784A priority Critical patent/JPS62176179A/en
Publication of JPS62176179A publication Critical patent/JPS62176179A/en
Publication of JPH0455354B2 publication Critical patent/JPH0455354B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、接地薄膜内にトラツプ(捕捉)され
た磁束を取り除く手段を有するジヨセフソン集積
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to Josephson integrated circuits having means for removing magnetic flux trapped in a ground film.

(従来の技術) ジヨセフソン集積回路は基板上に超伝導薄膜を
形成してなり、その超伝導薄膜は接地薄膜とこの
接地薄膜上に設けたジヨセフソン回路薄膜とから
なる。このジヨセフソン回路薄膜がジヨセフソン
接合、干渉計ループ等のジヨセフソン回路をなし
ている。
(Prior Art) A Josephson integrated circuit is formed by forming a superconducting thin film on a substrate, and the superconducting thin film consists of a ground thin film and a Josephson circuit thin film provided on the ground thin film. This Josephson circuit thin film forms Josephson circuits such as Josephson junctions and interferometer loops.

超伝導薄膜によつて作られるジヨセフソン集積
回路の正常動作をさまたげる障害のひとつとし
て、従来から超伝導薄膜における磁束のトラップ
という現象が問題になつていた。臨界温度Tcを
もつ完全な超伝導薄膜の温度TがT>TcからT
<Tcまで下がることにより、始め超伝導薄膜を
貫ぬいていた弱い磁場はマイスナー効果によつて
すべて超伝導薄膜から排除される。しかし、もし
この超伝導薄膜の超伝導性が多少たりとも不純
物、格子欠陥などによつてそこなわれると、T<
Tcの状態において磁場は超伝導膜内から完全に
は排出されず、トラツプされた磁束として薄膜内
に残る。磁場の十分弱い状態では、トラツプされ
る磁束はボルテツクスとよばれる量子化された磁
束である(磁束量子Φ0=2×10−7G/cm2)通常
の方法で製作される超伝導薄膜はいずれも完全な
ものではなく、アイ・イー・イー・イー・トラン
ズアクシヨンズ・オン・マグネテイクス(IEEE
Transactions on Magnetics)Vol.MAG−19、
No.3、1983に述べられているような、磁束量子の
トラツプ現象が起きる事が知られている。実際の
ジヨセフソン回路は各ゲート間、ライン間の磁気
的結合を小さくするために接地薄膜上に作られて
いる。しかし、この接地薄膜内に磁束量子がトラ
ツプされていて(即ち、ボルテツクスが存在し
て)、そしてそのトラツプされた磁束が干渉計ル
ープ又はジヨセフソン接合自身に結合していると
すると、ジヨセフソン集積回路は誤動作を起す。
第2図に上記のような状態を示す。
The phenomenon of magnetic flux trapping in superconducting thin films has long been a problem that hinders the normal operation of Josephson integrated circuits made of superconducting thin films. The temperature T of a perfect superconducting thin film with critical temperature Tc is from T>Tc to T
By lowering the magnetic field to <Tc, the weak magnetic field that initially penetrated the superconducting thin film is completely removed from the superconducting thin film by the Meissner effect. However, if the superconductivity of this superconducting thin film is impaired by impurities, lattice defects, etc., then T<
In the Tc state, the magnetic field is not completely exhausted from within the superconducting film and remains within the thin film as a trapped magnetic flux. When the magnetic field is sufficiently weak, the trapped magnetic flux is a quantized magnetic flux called vortex (magnetic flux quantum Φ 0 = 2 × 10-7 G/cm 2 ). None of these are complete, and the IE Transactions on Magnetics (IEEE
Transactions on Magnetics) Vol.MAG−19,
No. 3, 1983, it is known that a magnetic flux quantum trap phenomenon occurs. The actual Josephson circuit is built on a grounded thin film to reduce magnetic coupling between each gate and between lines. However, if flux quanta are trapped in this grounded film (i.e., a vortex exists), and the trapped flux is coupled to the interferometer loop or the Josephson junction itself, then the Josephson integrated circuit Causes malfunction.
FIG. 2 shows the above state.

第2図は磁束量子をトラツプした超伝導薄膜の
模式的な断面図である。図中、1は接地薄膜、2
は干渉計ループ、3はジヨセフソン接合、4はボ
ルテツクス(トラツプされた磁束量子)、5は磁
力線を示す。ボルテツクス4の径は約50nm、磁
場が貫ぬく接合の断面は約300nm×5000nm、干
渉計の径は約10000nm、膜厚はすべて約300nm
である。第2図のようにトラツプされた磁束が、
ジヨセフソン接合3と結合していると、その接合
3のジヨセフソン電流が小さくなるし、またそれ
が干渉計ループ2と結合していると干渉計ゲート
の制御特性に変化をもたらす。いずれの場合も磁
気的結合の度合によつてはその磁気的結合がゲー
トの誤動作を誘発する原因となる。通常ジヨセフ
ソン集積回路の動作は磁気遮蔽の中の非常に低い
磁場中で行なわれる。この種の磁気遮蔽内の磁場
は約10μGほどであるが、この磁場は例えば10cm
×10cmのチツプ総面積を持つ複数のジヨセフソン
集積回路チツプからなるジヨセフソンコンピユー
タ内に約5000個の磁束量子をトラツプさせコンピ
ユータの誤動作の原因となる。実際にはジヨセフ
ソンコンピユータを冷却する時に熱起電力によつ
て誘起される電流によつて、上記のようなサイズ
を持つコンピユータはさらに多くの(数万個乃至
数十万個の)磁束量子をトラツプするであろうと
推測されていて、このような環境下での正常な演
算動作はほとんど不可能である。
FIG. 2 is a schematic cross-sectional view of a superconducting thin film in which magnetic flux quanta are trapped. In the figure, 1 is a ground thin film, 2
is an interferometer loop, 3 is a Josephson junction, 4 is a vortex (trapped magnetic flux quantum), and 5 is a magnetic field line. The diameter of vortex 4 is approximately 50 nm, the cross section of the junction through which the magnetic field penetrates is approximately 300 nm x 5000 nm, the diameter of the interferometer is approximately 10000 nm, and the thickness of all films is approximately 300 nm.
It is. As shown in Figure 2, the trapped magnetic flux is
If it is coupled to Josephson junction 3, the Josephson current in that junction 3 will be small, and if it is coupled to interferometer loop 2, it will change the control characteristics of the interferometer gate. In either case, depending on the degree of magnetic coupling, the magnetic coupling may induce malfunction of the gate. Normally, Josephson integrated circuits operate in very low magnetic fields within a magnetic shield. The magnetic field within this type of magnetic shield is about 10 μG;
This traps about 5,000 magnetic flux quanta in the Josephson computer, which consists of multiple Josephson integrated circuit chips with a total chip area of 10cm x 10cm, causing the computer to malfunction. In reality, a computer with the above size can generate even more magnetic flux quanta (tens to hundreds of thousands) due to the current induced by thermoelectromotive force when cooling the Josephson computer. It is assumed that this will trap the data, and normal operation of the calculation under such an environment is almost impossible.

従来ではこのように接地薄膜にトラツプされた
磁束の影響が避けられるように回路初期化するに
は、以下のような方法があつた。そのその方法で
はまず接地薄膜以外の超伝導薄膜、即ちジヨセフ
ソン回路薄膜が常伝導状態になるようにする。こ
うすることにより接地薄膜中にトラツプされた磁
束ボルテツクスは、ジヨセフソン回路薄膜の影響
を受けずに超伝導状態にある接地薄膜中を移動出
来る。上記のような接地薄膜を超伝導状態に保ち
同時にそれ以外の超伝導薄膜(ジヨセフソン回路
薄膜)を常伝導状態にする方式として、たとえば
接地薄膜以外の超伝導薄膜にその薄膜の超伝導臨
界電流以上の電流を注入する方式、または接地薄
膜以外の超伝導薄膜の材料としてその超伝導臨界
温度TCJが接地薄膜の材料の超伝導臨界温度TCG
よりも低い材料を選びTCJ<T<TCGという温度
Tに環境温度を設定する方式などがある。この状
態で、接地薄膜内に電流密度Jを持つ電流(ボル
テツクス駆動電流)を流すとローレンツ力F=J
×Φ0がボルテツクスに対して作用する(Φ0は磁
束量子であり、F、J、Φ0はベクトル量であ
る)。このローレンツ力によつてボルテツクスは
接地薄膜内をボルテツクス駆動電流に垂直な方向
に向って駆動される。
Conventionally, the following methods were used to initialize the circuit so as to avoid the influence of the magnetic flux trapped in the ground thin film. In that method, first, the superconducting thin film other than the ground thin film, that is, the Josephson circuit thin film, is brought into a normal conducting state. This allows the magnetic flux vortices trapped in the ground thin film to move through the ground thin film in a superconducting state without being affected by the Josephson circuit thin film. As a method of keeping the grounded thin film as described above in a superconducting state and simultaneously making other superconducting thin films (Josefson circuit thin films) in a normal conducting state, for example, a superconducting thin film other than the grounded thin film is charged with a superconducting critical current higher than the superconducting critical current of that thin film. A method of injecting a current of
There is a method of selecting a material with a lower temperature than T CJ < T < T CG and setting the environmental temperature to T. In this state, when a current with a current density J (vortex drive current) is passed through the ground thin film, the Lorentz force F = J
×Φ 0 acts on the vortex (Φ 0 is a flux quantum and F, J, Φ 0 are vector quantities). This Lorentz force drives the vortex within the ground thin film in a direction perpendicular to the vortex drive current.

超伝導薄膜内では、ピン留めセンターを呼ばれ
るボルテツクスの初期の位置からボルテツクスが
脱出するのを防ぐピン留め力FPが存在する事が
知られている。このピン留め力FP大きさは、薄
膜の材料、膜質、膜厚などによつて左右される。
したがつてローレンツ力Fによつて薄膜内のボル
テツクスを駆動するにはF>FPという条件が満
足しなければならない。つまりある一定の電流密
度JP=FP/Φ0以上の電流を薄膜内に流さないと
ボルテツクスは駆動出来ない。
It is known that a pinning force F P exists in a superconducting thin film that prevents the vortex from escaping from its initial position, called the pinning center. The magnitude of this pinning force F P depends on the material, film quality, film thickness, etc. of the thin film.
Therefore, in order to drive the vortex in the thin film by the Lorentz force F, the condition F>F P must be satisfied. In other words, the vortex cannot be driven unless a current with a certain current density J P =F P0 or higher is passed through the thin film.

第3図はJ>JPという電流密度Jを超伝導接地
薄膜に流した時の接地薄膜の模式断面図である。
第3図中1は接地薄膜、4はボルテツクス、6は
反ボルテツクス、7は接地薄膜を流れる電流、8
はローレンツ力である。反ボルテツクスにはボル
テツクスの反対の方向に磁束がトラツプされてい
る。第3図からわかるように、このような場合接
地薄膜の中心部からボルテツクスまたは反ボルテ
ツクスはとり除かれている。
FIG. 3 is a schematic cross-sectional view of the superconducting ground thin film when a current density J of J>J P is applied to the superconducting ground thin film.
In Figure 3, 1 is the ground thin film, 4 is the vortex, 6 is the anti-vortex, 7 is the current flowing through the ground thin film, and 8
is the Lorentz force. The anti-vortex has magnetic flux trapped in the opposite direction of the vortex. As can be seen in FIG. 3, in such a case the vortex or anti-vortex is removed from the center of the ground membrane.

(発明が解決しようとする問題点) しかし電流密度を上げ過ぎると、薄膜内電流に
平行した超伝導薄膜の辺部に超伝導臨界磁場HC
(第2種超伝導導体であればHCI)以上の磁場が
生じてしまい、新しいボルテツクスが薄膜内に生
じてしまう。このような状態の臨界電流をJC
KHCとすると(Kは定数)、理想的なボルテツク
ス駆動電流JはJC>J>JFとなる。実際には超伝
導薄膜内の電流密度は、膜辺部で高く、中心部で
低くなつているが、本特許の論議にはさしさわり
ないので、電流密度はすべて均一なJとする。
(Problem to be solved by the invention) However, if the current density is increased too much, the superconducting critical magnetic field H C
(If it is a type 2 superconducting conductor, H CI ) or more magnetic field is generated, and a new vortex is generated in the thin film. The critical current in this state is J C =
Assuming KH C (K is a constant), the ideal vortex drive current J becomes J C > J > J F. In reality, the current density in a superconducting thin film is high at the edges of the film and low at the center, but this does not affect the discussion of this patent, so all current densities are assumed to be uniform J.

言うまでもなく、薄膜のピン留め力FPは小さ
ければ小さいほど有利であるが、薄膜により例え
ばJP>JCというような極端な条件を持つものであ
る。上記のように極端ではなくとも、ピン留め力
が大きいとJPとJCの差が縮まり、JP<J<JCとい
う条件を満たすJの動作領域が狭くなる。
Needless to say, the smaller the pinning force F P of a thin film is, the more advantageous it is, but depending on the thin film, extreme conditions such as J P >J C may apply. Even if it is not extreme as described above, when the pinning force is large, the difference between J P and J C narrows, and the operating range of J that satisfies the condition J P < J < J C becomes narrower.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供す
る手段は、接地薄膜上の一定の領域にジヨセフソ
ン回路を設けてなるジヨセフソン集積回路であつ
て、前記接地薄膜のボルテツクスにローレンツ力
を作用してそのボルテツクスを移動させる電流が
供給される端子が前記接地薄膜の相対する縁辺に
設けてあり、前記ジヨセフソン回路が設けてない
領域の前記接地薄膜の少なくとも一部分に前記ジ
ヨセフソン回路が設けてある領域の前記接地薄膜
と材料の異なる超伝導薄膜をもうけた事を特徴と
するジヨセフソン集積回路である。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems is a Josephson integrated circuit in which a Josephson circuit is provided in a certain area on a ground thin film, Terminals to which a current is supplied to apply a Lorentz force to the vortex of the thin film to move the vortex are provided on opposite edges of the ground thin film, and at least a portion of the ground thin film in an area where the Josephson circuit is not provided. The Josephson integrated circuit is characterized in that a superconducting thin film made of a different material from the ground thin film in the region where the Josephson circuit is provided is provided.

(作用) 前記のボルテツクス駆動電流密度Jの狭い動作
領域を広くするために、本発明では薄膜内電流に
平行した超伝導薄膜の辺部に、ピン留め力の特別
に強い材料で作られた領域をもうける。この辺部
のピン留め力をFPEとすると、電流密度Jがたと
え多少JC以上であつてもJPE=FPE/Φ0以上であれ
ば薄膜辺部から侵入したボルテツクスは、辺部の
大きなピン留め力FPEにより薄膜辺部に固定され、
薄膜の中心部へ向つてローレンツ力によつて移動
する事が出来ない。
(Function) In order to widen the narrow operating region of the vortex drive current density J, in the present invention, a region made of a material with a particularly strong pinning force is provided on the side of the superconducting thin film parallel to the current in the thin film. make a profit. Assuming that the pinning force at this side is F PE , even if the current density J is slightly higher than J C , if J PE = F PE / Φ 0 or more, the vortex that has entered from the thin film side will be absorbed by the large side It is fixed to the thin film edge by the pinning force F PE ,
It cannot move towards the center of the thin film due to Lorentz force.

第4図及び第5図に上記の各状況を図解して示
す。これらの図はいずれで超伝導接地薄膜の断面
図であり、図中1は接地薄膜、4はボルテツク
ス、6は反ボルテツクス、7は接地薄膜を流れる
電流、8はローレンツ力、9は大きなピン留め力
を持つ材料で作られた接地薄膜の部分であり、1
0はピン留め力である。反ボルテツクスにはボル
テツクスの反対の方向に磁束がトラツプされてい
る。
FIGS. 4 and 5 illustrate each of the above situations. Each of these figures is a cross-sectional view of a superconducting ground thin film, where 1 is the ground thin film, 4 is the vortex, 6 is the anti-vortex, 7 is the current flowing through the ground thin film, 8 is the Lorentz force, and 9 is the large pinning force. It is a part of the ground thin film made of a material that has strength, and 1
0 is the pinning force. The anti-vortex has magnetic flux trapped in the opposite direction of the vortex.

第4図は電流密度が増えJ>JC>JP又はJ>JP
>JCとなつた場合のボルテツクスの分布である。
これはボルテツクスと反ボルテツクスが絶えず接
地薄膜の辺部より膜内に侵入し、ローレンツ力に
よつて膜中心部へと駆動され、膜のほぼ中心部で
お互いに衝突して消滅するボルテツクスの定常的
に流動する状態である。第5図は接地薄膜の辺部
にピン留め力の強い材料で作られた部分9を配置
し、第4図のように電流密度であつても、膜辺部
のピン留め力FPE=Φ0JPEが、JPE>J>JP>JC又は
JPE>J>JC>JPであれば、ボルテツクスの定常
的に流動する状態はまのがれる事が出来、薄膜中
心部にはボルテツクスが存在しない状態を示し
た。
Figure 4 shows that the current density increases when J>J C >J P or J>J P
This is the vortex distribution when >J C.
This is because vortexes and anti-vortexes constantly invade the membrane from the edges of the ground thin film, are driven to the center of the membrane by the Lorentz force, and collide with each other almost at the center of the membrane and disappear. It is in a state of flux. In Figure 5, a part 9 made of a material with strong pinning force is placed on the side of the ground thin film, and even at the current density as shown in Figure 4, the pinning force on the side of the membrane F PE = Φ 0 J PE is J PE >J>J P >J C or
If J PE > J > J C > J P , the state in which the vortex constantly flows can be avoided, and a state in which there is no vortex at the center of the thin film is shown.

(実施例) 第1図a及び第1図bに本発明の実施例を示
す。第1図aは本実施例の上面図、第1図bはそ
の断面図である。両図中1は接地薄膜、9はピン
留め力の強い超伝導材料例えば超伝導マグネツト
用材料で作られた接地薄膜の部分である。11は
ジヨセフソン回路が分布している領域、12は電
源、13は電流供給線、14はボルテツクス駆動
電流供給端子。分布している領域11の接地薄膜
は、出来るだけボルテツクスの取り除きやすいよ
うにジヨセフソン回路の弱いピン留め力、そして
接地薄膜1の辺部では新たに型成されたボルテツ
クスが動かないように大きなピン留め力を有する
事が理想的である。これらの要求を実現するため
に、接地薄膜の中心部と辺部でを異なつた超伝導
金属材料で構成する事に本発明の特徴がある。
(Example) An example of the present invention is shown in FIG. 1a and FIG. 1b. FIG. 1a is a top view of this embodiment, and FIG. 1b is a sectional view thereof. In both figures, 1 is a ground thin film, and 9 is a part of the ground thin film made of a superconducting material with a strong pinning force, such as a material for superconducting magnets. 11 is an area where Josephson circuits are distributed, 12 is a power supply, 13 is a current supply line, and 14 is a vortex drive current supply terminal. The grounding thin film in the distributed area 11 has a weak pinning force of the Josephson circuit to make it as easy to remove the vortex as possible, and a large pinning force is applied to the edges of the grounding thin film 1 to prevent the newly formed vortex from moving. Having power is ideal. In order to meet these requirements, the present invention is characterized in that the center and side parts of the ground thin film are made of different superconducting metal materials.

このような構造を持つ接地薄膜を使用すると、
第5図で示したようなJPE>J>JC>JP又はJPE
J>JP>JCといつたような電流密度でも正常にボ
ルテツクスを接地薄膜の中心部から取り除く事が
出来る。
Using a grounding thin film with such a structure,
J PE > J > J C > J P or J PE > as shown in Figure 5
Even at current densities such as J > J P > J C , the vortex can be successfully removed from the center of the ground thin film.

(発明の効果) 以上説明したように、本発明を使用する事によ
り、ジヨセフソン回路中のボルテツクスを取り除
くために接地薄膜中に流すボルテツクス駆動電流
の上限を増す事が出来る。したがつてボルテツク
ス駆動電流の動作マージンがより大きくなり、ロ
ーレンツ力に対して比較的ピン留め力の強い膜質
を持つた接地薄膜中央部からもボルテツクスを取
り除く事が出来る。
(Effects of the Invention) As explained above, by using the present invention, it is possible to increase the upper limit of the vortex drive current that is passed through the ground thin film in order to remove the vortex in the Josephson circuit. Therefore, the operating margin of the vortex drive current becomes larger, and the vortex can be removed even from the center of the ground thin film, which has a film quality that has a relatively strong pinning force against the Lorentz force.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の実施例の模式的な上面図、
第1図bはその段面図、第2図は接地薄膜に磁束
量子がトラツプされている状態にあるジヨセフソ
ン集積回路の超伝導薄膜を示す模式的な断面図、
第3図はピン留め力以上のローレンツ力を発生さ
せるボルテツクス駆動電流によりボルテツクスを
膜中心部より取り除いた状態を示す模式的断面
図、第4図はボルテツクスが定常的に流動してい
る状態を示す模式的断面図、第5図は接地薄膜辺
部にピン留め力の強い部分を配置した状態の模式
的断面図。 1……接地薄膜、2……干渉計ループ、3……
ジヨセフソン接合、4……ボルテツクス、5……
磁力線、6……反ボルテツクス、7……接地薄膜
を流れる電流、8……ローレンツ力、9……大き
なピン留め力を持つ材料で作られた接地薄膜の部
分、10……ピン留め力、11……ジヨセフソン
回路が分布している領域、12……電源、13…
…電流供給線、14……ボルテツクス駆動電流供
給端子。
FIG. 1a is a schematic top view of an embodiment of the present invention;
FIG. 1b is a cross-sectional view of the superconducting integrated circuit, and FIG. 2 is a schematic cross-sectional view showing the superconducting thin film of the Josephson integrated circuit in a state where magnetic flux quanta are trapped in the grounded thin film.
Figure 3 is a schematic cross-sectional view showing the state in which the vortex is removed from the center of the membrane by a vortex drive current that generates a Lorentz force greater than the pinning force, and Figure 4 shows the state in which the vortex is constantly flowing. Schematic sectional view. FIG. 5 is a schematic sectional view of a state where a portion with strong pinning force is arranged on the side of the ground thin film. 1...Ground thin film, 2...Interferometer loop, 3...
Josefson junction, 4... Vortex, 5...
Magnetic field lines, 6... anti-vortex, 7... current flowing through the ground thin film, 8... Lorentz force, 9... portion of the ground thin film made of material with large pinning force, 10... pinning force, 11 ...Area where Josephson circuits are distributed, 12...Power supply, 13...
...Current supply line, 14...Vortex drive current supply terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 接地薄膜上の一定の領域にジヨセフソン回路
を設けてなるジヨセフソン集積回路において、前
記接地薄膜のボルテツクスにローレンツ力を作用
してそのボルテツクスを移動させる電流が供給さ
れる端子が前記接地薄膜の相対する縁辺に設けて
あり、前記ジヨセフソン回路が設けてない領域の
前記接地薄膜の少なくとも一部分に前記ジヨセフ
ソン回路が設けてある領域の前記接地薄膜と材料
の異なる超伝導薄膜をもうけた事を特徴とするジ
ヨセフソン集積回路。
1. In a Josephson integrated circuit in which a Josephson circuit is provided in a certain area on a ground thin film, a terminal to which a current is supplied that applies a Lorentz force to the vortex of the ground thin film to move the vortex is located opposite the ground thin film. A superconducting thin film, which is provided on the edge and is made of a different material from the ground thin film in an area where the Josephson circuit is provided, is provided on at least a portion of the ground thin film in an area where the Josephson circuit is not provided. integrated circuit.
JP61018784A 1986-01-29 1986-01-29 Josephson integrated circuit Granted JPS62176179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61018784A JPS62176179A (en) 1986-01-29 1986-01-29 Josephson integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61018784A JPS62176179A (en) 1986-01-29 1986-01-29 Josephson integrated circuit

Publications (2)

Publication Number Publication Date
JPS62176179A JPS62176179A (en) 1987-08-01
JPH0455354B2 true JPH0455354B2 (en) 1992-09-03

Family

ID=11981243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61018784A Granted JPS62176179A (en) 1986-01-29 1986-01-29 Josephson integrated circuit

Country Status (1)

Country Link
JP (1) JPS62176179A (en)

Also Published As

Publication number Publication date
JPS62176179A (en) 1987-08-01

Similar Documents

Publication Publication Date Title
US5026682A (en) Devices using high Tc superconductors
Greiner et al. Fabrication process for Josephson integrated circuits
KR20220069963A (en) Majorana fermion quantum computing devices fabricated with ion implantation methods
KR20220070240A (en) Double-sided Majorana Fermion Quantum Computing Devices Fabricated with Ion Implantation Methods
Washington et al. Observation of flux trapping threshold in narrow superconducting thin films
US4392148A (en) Moat-guarded Josephson devices
Gu et al. Properties of niobium superconducting bridges prepared by electron‐beam lithography and ion implantation
JPH0455543B2 (en)
JPH0455354B2 (en)
Forrester et al. Fabrication and characterization of YBa/sub 2/Cu/sub 3/O/sub 7//Au/YBa/sub 2/Cu/sub 3/O/sub 7/Josephson junctions
Pedyash et al. Superconducting quantum interference devices based on YBaCuO nanobridges
JPH0558590B2 (en)
SOUTOME et al. HTS surface-modified junctions with integrated ground-planes for SFQ circuits
Kuriki et al. Vortex behavior in Nb 3 Ge microbridges
Mannhart et al. Spatial distribution of the maximum Josephson current in superconducting tunnel junctions
JPH0525190B2 (en)
JPH0558589B2 (en)
US3697826A (en) Josephson junction having an intermediate layer of a hard superconducting material
JPH0558591B2 (en)
RU2181517C2 (en) Superconductor switching member
Numata et al. A vortex transitional memory cell for 1-Mbit/cm/sup 2/density Josephson RAMs
Sueyoshi et al. Angular behavior of Jc in GdBCO-coated conductors with crossed columnar defects around ab plane
Fuke et al. Fundamental operation of single‐flux‐quantum circuits using coplanar‐type high‐T c SQUIDs
WO1996009654A1 (en) A method and device for improving the performance of thin-film josephson devices in magnetic fields
Schmidt et al. Development of a thin-film high-temperature superconductor Hall magnetometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees