JPS62176179A - Josephson integrated circuit - Google Patents

Josephson integrated circuit

Info

Publication number
JPS62176179A
JPS62176179A JP61018784A JP1878486A JPS62176179A JP S62176179 A JPS62176179 A JP S62176179A JP 61018784 A JP61018784 A JP 61018784A JP 1878486 A JP1878486 A JP 1878486A JP S62176179 A JPS62176179 A JP S62176179A
Authority
JP
Japan
Prior art keywords
thin film
vortex
josephson
grounding
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61018784A
Other languages
Japanese (ja)
Other versions
JPH0455354B2 (en
Inventor
Chiyoushin Sai
兆申 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61018784A priority Critical patent/JPS62176179A/en
Publication of JPS62176179A publication Critical patent/JPS62176179A/en
Publication of JPH0455354B2 publication Critical patent/JPH0455354B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To increase the upper limit of a vortex driving current flowing in a grounding thin film and to remove vortexes from the central part of the grounding thin film, by providing a superconductive thin film comprising a material different from the grounding thin film in a region, in which a circuit is provided at least one part of the grounding thin film in a region, where a Josephson circuit is not provided. CONSTITUTION:In a grounding thin film 1 in a region 11 wherein Josephson circuits are distributed, it is ideal to have a pinning forces 10 as follows: a weak pinning force in the Josephson circuit so that vortexes can be removed as easily as possible; and a large pinning force at the peripheral part of the grounding thin film 1 so that the newly formed vortexes are not moved. In order to realize these factors, the central part of the grounding thin film and its peripheral part are constituted with different superconductive metal materials. In general, when a current density is increased too much, a magnetic field higher than a superconductive critical magnetic field is generated at the peripheral part of a superconductive thin film, which is in parallel with a current in the thin film. Therefore an ideal vortex driving current J becomes JC>J> JF. When the grounding thin film having such a structure is used, the vortex can be normally removed from the central part of the grounding thin film even at a current density of JPE>J>JC>JP or JPE>J>HP>JC (a).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、接地薄膜内にトラップ(捕捉)された磁束を
取り除く手段を有するジョセフソン集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to Josephson integrated circuits having means for removing magnetic flux trapped within a ground film.

(従来の技術) ジョセフソン集積回路は基板上に超伝導薄膜を形成して
なり、その超伝導薄膜は接地薄膜とこの接地薄膜上に設
けたジョセフソン回路薄膜とからなる。このジョセフソ
ン回路薄膜がジョセフソン接合、干渉計ループ等のジョ
セフソン回路をなしている。
(Prior Art) A Josephson integrated circuit is formed by forming a superconducting thin film on a substrate, and the superconducting thin film consists of a grounded thin film and a Josephson circuit thin film provided on the grounded thin film. This Josephson circuit thin film forms Josephson circuits such as Josephson junctions and interferometer loops.

超伝導薄膜によって作られるジョセフソン集積回路の正
常動作をさまたげる障害のひとつとして、従来から超伝
導薄膜における磁束のトラップという現象が問題になっ
ていた。臨界温度Tcをもつ完全な超伝導薄膜の温度T
がT>TcからT<Tcまで下がることにより、始め超
伝導薄膜を貫ぬいていた弱い磁場はマイスナー効果によ
ってすべて超伝導薄膜から排除される。しかし、もしこ
の超伝導薄膜の超伝導性が多少たりとも不純物、格子欠
陥などによってそこなわれると、T<Tcの状態におい
て磁場は超伝導膜内から完全には排出されず、トラップ
された磁束として薄膜内に残る。磁場の十分弱い状態で
は、トラップされる磁束はボルテックスとよばれる量子
化された磁束である(磁束量子Φ。= 2 X 10−
7G/cm2)通常の方法で製作される超伝導薄膜はい
ずれも完全なものではなく、アイ・イー・イー・イー・
トランズアクションズ・オン・マグネティクス(IEE
E Transactions on Magneti
cs)Vol、MAG−19゜No、3.1983に述
べられているような、磁束量子のトラップ現象が起きる
事が知られている。実際のジョセフソン回路は各ゲート
間、ライン間の磁気的結合を小さくするために接地薄膜
上に作られている。しかし、この接地薄膜内に磁束量子
がトラップされていて(即ち、ボルテックスが存在して
)、そしてそのトラップされた磁束が干渉計ループ又は
ジョセフソン接合自身に結合しているとすると、ジョセ
フソン集積回路は誤動作を起す。第2図に上記のような
状態を示す。
The phenomenon of magnetic flux trapping in superconducting thin films has long been a problem that hinders the normal operation of Josephson integrated circuits made of superconducting thin films. Temperature T of a perfect superconducting thin film with critical temperature Tc
When T falls from T>Tc to T<Tc, the weak magnetic field that initially penetrated the superconducting thin film is completely eliminated from the superconducting thin film by the Meissner effect. However, if the superconductivity of this superconducting thin film is impaired to some extent by impurities, lattice defects, etc., the magnetic field will not be completely exhausted from within the superconducting film in the state of T<Tc, and the trapped magnetic flux will remain. remains in the thin film as When the magnetic field is sufficiently weak, the trapped magnetic flux is a quantized magnetic flux called a vortex (magnetic flux quantum Φ. = 2 × 10−
7G/cm2) None of the superconducting thin films produced by conventional methods are perfect;
Transactions on Magnetics (IEE)
E Transactions on Magneti
It is known that a trapping phenomenon of magnetic flux quanta occurs as described in Vol. MAG-19° No. 3.1983. Actual Josephson circuits are built on a grounded thin film to reduce magnetic coupling between each gate and between lines. However, if flux quanta are trapped within this grounded film (i.e., a vortex exists), and the trapped flux is coupled to the interferometer loop or to the Josephson junction itself, then the Josephson integration The circuit will malfunction. FIG. 2 shows the above state.

第2図は磁束量子をトラップした超伝導薄膜の模式的な
断面図である。図中、1は接地薄膜、2は干渉計ループ
、3はジョセフソン接合、4はボルテックス(トラップ
された磁束量子)、5は磁力線を示す。ボルテックス4
の径は約50nm、磁場が貫ぬく接合の断面は約300
nmX5000nm、干渉計の径は約110000n、
膜厚はすべて約300nmである。第2図のようにトラ
ップされた磁束が、ジョセフソン接合3と結合している
と、その接合3のジョセフソン電流が小さくなるし、ま
たそれが干渉計ループ2と結合していると干渉計ゲート
の制御特性に変化をもたらす。いずれの場合も磁気的結
合の度合によってはその磁気的結合がゲートの誤動作を
誘発する原因となる。通常ジョセフソン集積回路の動作
は磁気遮蔽の中の非常に低い磁場中で行なわれる。
FIG. 2 is a schematic cross-sectional view of a superconducting thin film that traps magnetic flux quanta. In the figure, 1 is a ground thin film, 2 is an interferometer loop, 3 is a Josephson junction, 4 is a vortex (trapped magnetic flux quantum), and 5 is a magnetic field line. vortex 4
The diameter of the junction is approximately 50 nm, and the cross section of the junction through which the magnetic field penetrates is approximately 300 nm.
nmX5000nm, the diameter of the interferometer is approximately 110000n,
All film thicknesses are approximately 300 nm. If the trapped magnetic flux is coupled to the Josephson junction 3 as shown in Figure 2, the Josephson current in that junction 3 becomes small, and if it is coupled to the interferometer loop 2, the interferometer Changes the control characteristics of the gate. In either case, depending on the degree of magnetic coupling, the magnetic coupling may induce malfunction of the gate. Josephson integrated circuits typically operate in very low magnetic fields within a magnetic shield.

この種の磁気遮蔽内の磁場は約101IGはどであるが
、この磁場は例えば10cmX10cmのチップ総面積
を持つ複数のジョセフソン集積回路チップからなるジョ
セフソンコンピュータ内に約5000個の磁束量子をト
ラップさせコンピュータの誤動作の原因となる。実際に
はジョセフソンコンピュータを冷却する時に熱起電力に
よって誘起される電流によって、上記のようなサイズを
持つコンピュータはさらに多くの(数万個乃至数十万個
の)磁束量子をトラップするであろうと推測されていて
、このような環境下での正常な演算動作はほとんど不可
能である。
The magnetic field within this type of magnetic shield is about 101 IG, which traps about 5000 magnetic flux quanta in a Josephson computer consisting of several Josephson integrated circuit chips with a total chip area of 10 cm x 10 cm, for example. This may cause the computer to malfunction. In reality, a computer of the above size would trap even more (tens to hundreds of thousands) of magnetic flux quanta due to the current induced by thermoelectromotive force when cooling the Josephson computer. Normal operation under such an environment is almost impossible.

従来ではこのように接地薄膜にトラップされた磁束の影
響が避けられるように回路初期化するには、以下のよう
な方法があった。そのその方法ではまず接地薄膜以外の
超伝導薄膜、即ちジョセフソン回路薄膜が常伝導状態に
なるようにする。こうすることにより接地薄膜中にトラ
ップされた磁束ボルテックスは、ジョセフソン回路薄膜
の影響を受けずに超伝導状態にある接地薄膜中を移動出
来る。上記のような接地薄膜を超伝導状態に保ち同時に
それ以外の超伝導薄膜(ジョセフソン回路薄膜)を常伝
導状態にする方式として、たとえば接地薄膜以外の超伝
導薄膜にその薄膜の超伝導臨界電流以上の電流を注入す
る方式、または接地薄膜以外の超伝導薄膜の材料として
その超伝導臨界温度TCJが接地薄膜の材料の超伝導臨
界温度T。。よりも低い材料を選びT  <T<T。0
という温度Tに環境温J 度を設定する方式などがある。この状態で、接地薄膜内
に電流密度Jを持つ電流(ボルテックス駆動電流)を流
すとローレンツ力F=JXΦ0がボルテックスに対して
作用する(Φ。は磁束量子であり、F、J、Φ。はベク
トル量である)。このローレンツ力によってボルテック
スは接地薄膜内をボルテックス駆動電流に垂直な方向に
向って駆動される。
Conventionally, the following methods have been used to initialize the circuit so as to avoid the influence of the magnetic flux trapped in the ground thin film. In this method, first, the superconducting thin film other than the ground thin film, that is, the Josephson circuit thin film, is brought into a normal conducting state. By doing this, the magnetic flux vortex trapped in the ground thin film can move through the ground thin film in a superconducting state without being affected by the Josephson circuit thin film. As a method for keeping the grounded thin film as described above in a superconducting state and at the same time making other superconducting thin films (Josephson circuit thin films) in a normal conducting state, for example, a superconducting thin film other than the grounded thin film is charged with the superconducting critical current of that thin film. The method of injecting the above current, or the superconducting critical temperature TCJ of the material of the superconducting thin film other than the grounding thin film, is the superconducting critical temperature T of the material of the grounding thin film. . Choose a material with a lower value than T < T < T. 0
There is a method of setting the environmental temperature J degrees to the temperature T. In this state, when a current with a current density J (vortex driving current) is passed through the ground thin film, a Lorentz force F=JXΦ0 acts on the vortex (Φ. is a magnetic flux quantum, and F, J, and Φ. are is a vector quantity). This Lorentz force drives the vortex within the ground thin film in a direction perpendicular to the vortex drive current.

超伝導薄膜内では、ピン留めセンターを呼ばれるボルテ
ックスの初期の位置からボルテックスが脱出するのを防
ぐピン留め力F、が存在する事が知られている。このピ
ン留め力F、大きさは、薄膜の材料、膜質、膜厚などに
よって左右される。したがってローレンツ力Fによって
薄膜内のボルテックスを駆動するにはF>FPという条
件が満足しなければならない。つまりある一定の電流密
度JP=FP/Φ。以上の電流を薄膜内に流さないとボ
ルテックスは駆動出来ない。
It is known that a pinning force F exists in a superconducting thin film that prevents the vortex from escaping from its initial position, called the pinning center. The pinning force F and its magnitude depend on the material, film quality, film thickness, etc. of the thin film. Therefore, in order to drive the vortex in the thin film by the Lorentz force F, the condition F>FP must be satisfied. In other words, a certain current density JP=FP/Φ. The vortex cannot be driven unless more current is passed through the thin film.

第3図はJ>JPという電流密度Jを超伝導接地薄膜に
流した時の接地薄膜の模式断面図である。第3図中1は
接地薄膜、4はボルテックス、6は反ボルテックス、7
は接地薄膜を流れる電流、8はローレンツ力である。反
ボルテックスにはボルテックスの反対の方向に磁束がト
ラップされている。第3図かられかるように、このよう
な場合接地薄膜の中心部からボルテックスまたは反ボル
テックスはとり除かれている。
FIG. 3 is a schematic cross-sectional view of the superconducting ground thin film when a current density J of J>JP is applied to the superconducting ground thin film. In Figure 3, 1 is the ground thin film, 4 is the vortex, 6 is the anti-vortex, and 7
is the current flowing through the grounded thin film, and 8 is the Lorentz force. The anti-vortex has magnetic flux trapped in the opposite direction of the vortex. As can be seen from FIG. 3, in such a case the vortex or anti-vortex is removed from the center of the ground membrane.

(発明が解決しようとする問題点) しかし電流密度を上げ過ぎると、薄膜内電流に平行した
超伝導薄膜の辺部に超伝導臨界磁場H6(第2種超伝導
導体であればH61)以上の磁場が生じてしまい、新し
いボルテックスが薄膜内に生じてしまう。このような状
態の臨界電流をJ。:KHoとすると(Kは定数)、理
想的なボルテックス駆動電流JはJ >J>J、となる
。実際には超伝導薄膜内の電流密度は、膜辺部で高く、
中心部で低くなっているが、本特許の論議にはさしされ
りないので、電流密度はすべて均一なJとする。
(Problem to be solved by the invention) However, if the current density is increased too much, the superconducting critical magnetic field H6 (H61 in the case of a type 2 superconducting conductor) or more will be generated at the side of the superconducting thin film parallel to the current in the thin film. A magnetic field is generated and a new vortex is generated within the thin film. The critical current in this state is J. :KHo (K is a constant), the ideal vortex drive current J is J>J>J. In reality, the current density in a superconducting thin film is high at the edges of the film;
Although the current density is lower in the center, it is not discussed in this patent, so the current density is assumed to be uniform J.

言うまでもなく、薄膜のピン留め力F、は小さければ小
さいほど有利であるが、薄膜により例えばJ、> Jo
というような極端な条件を持つものもある。
Needless to say, the smaller the pinning force F of the thin film is, the more advantageous it is.
Some have extreme conditions.

上記のように極端ではなくとも、ピン留め力が大きいと
J、とJ。の差が縮まり、JP<J<J。という条件を
満たすJの動作領域が狭くなる。
Even if it is not extreme as mentioned above, if the pinning force is large, J, and J. The difference between JP and J is reduced, and JP<J<J. The operating range of J that satisfies this condition becomes narrower.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、接地薄膜上の一定の領域にジョセフソン回路を設けて
なるジョセフソン集積回路であって、前記接地薄膜のボ
ルテックスにローレンツ力を作用してそのボルテックス
を移動させる電流が供給される端子が前記接地薄膜の相
対する縁辺に設けてあり、前記ジョセフソン回路が設け
てない領域の前記接地薄膜の少なくとも一部分に前記ジ
ョセフソン回路が設けてある領域の前記接地薄膜と材料
の異なる超伝導薄膜をもうけた事を特徴とするジョセフ
ソン集積回路である。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems is a Josephson integrated circuit in which a Josephson circuit is provided in a certain area on a ground thin film, Terminals to which a current is supplied to apply a Lorentz force to the vortex of the ground thin film to move the vortex are provided on opposing edges of the ground thin film, and terminals of the ground thin film in areas where the Josephson circuit is not provided are provided. The Josephson integrated circuit is characterized in that a superconducting thin film made of a different material from the ground thin film in the region where the Josephson circuit is provided is provided in at least a portion thereof.

(作用) 前記のボルテックス駆動電流密度Jの狭い動作領域を広
くするために、本発明では薄膜内電流に平行した超伝導
薄膜の辺部に、ピン留め力の特別に強い材料で作られた
領域をもうける。この辺部のピン留め力をFPgとする
と、電流密度Jがたとえ多少J。以上であってもJPE
 ” FPE’Φ。以上であれば薄膜辺部から侵入した
ボルテックスは、辺部の大きなピン留め力FPEにより
薄膜辺部に固定され、薄膜の中心部へ向ってローレンツ
力によって移動する事が出来ない。
(Function) In order to widen the narrow operating region of the vortex driving current density J, in the present invention, a region made of a material with a particularly strong pinning force is provided on the side of the superconducting thin film parallel to the current in the thin film. make a profit. If the pinning force on this side is FPg, the current density J is J even if it is a little. Even if it is above, JPE
” FPE'Φ. If this is the case, the vortex that entered from the edge of the thin film will be fixed to the edge of the thin film due to the large pinning force FPE on the edge, and will not be able to move toward the center of the thin film due to the Lorentz force. .

第4図及び第5図に上記の各状況を図解して示す。これ
らの図はいずれで超伝導接地薄膜の断面図であり、図中
1は接地薄膜、4はボルテックス、6は反ボルテックス
、7は接地薄膜を流れる電流、8はローレンツ力、9は
大きなピン留め力を持つ材料で作られた接地薄膜の部分
であり、10はピン留め力である。反ボルテックスには
ボルテックスの反対の方向に磁束がトラップされている
FIGS. 4 and 5 illustrate each of the above situations. Each of these figures is a cross-sectional view of a superconducting ground thin film, where 1 is the ground thin film, 4 is the vortex, 6 is the anti-vortex, 7 is the current flowing through the ground thin film, 8 is the Lorentz force, and 9 is the large pinning. 10 is the pinning force. The anti-vortex has magnetic flux trapped in the opposite direction of the vortex.

第4図は電流密度が増えJ>J >J又はJ>J、> 
  P Joどなった場合のボルテックスの分布である。これは
ボルテックスと反ボルテックスが絶えず接地薄膜の辺部
より膜内に侵入し、ローレンツ力によって膜中各部へと
駆動され、膜のほぼ中心部でお互いに衝突して消滅する
ボルテックスの定常的に流動する状態である。第5図は
接地薄膜の辺部にピン留め力の強い材料で作られた部分
9を配置し、第4図のように電流密度であっても、膜辺
部のピン留め力F、E=ΦOJPEが、J、E>J>J
、〉Jo又はJPE >J>Jo>J、であれば、ボル
テックスの定常的に流動する状態はまのがれる事が出来
、薄膜中心部にはボルテックスが存在しない状態を示し
た。
Figure 4 shows that as the current density increases, J>J>J or J>J,>
This is the vortex distribution in the case of P Jo. This is due to the constant flow of vortices and anti-vortexes that constantly invade the membrane from the edges of the ground thin membrane, are driven to various parts of the membrane by the Lorentz force, and collide with each other in the center of the membrane and disappear. It is a state of In Fig. 5, a part 9 made of a material with strong pinning force is placed on the side of the ground thin film, and even at the current density as shown in Fig. 4, the pinning force F, E = ΦOJPE is J, E>J>J
,>Jo or JPE>J>Jo>J, the state in which the vortex constantly flows can be avoided, and a state in which no vortex exists at the center of the thin film is shown.

(実施例) 第1図(a)及び第1図(b)に本発明の実施例を示す
(Example) An example of the present invention is shown in FIG. 1(a) and FIG. 1(b).

第1図(a)は本実施例の上面図、第1図(b)はその
断面図である。両図中1は接地薄膜、9はピン留め力の
強い超伝導材料例えば超伝導マグネット用材料で作られ
た接地薄膜の部分である。11はジョセフソン回路が分
布している領域、12は電源、13は電流供給線、14
はボルテックス駆動電流供給端子。分布している領域1
1の接地薄膜は、出来るだけボルテックスの取り除きや
すいようにジョセフソン回路の弱いピン留め力、そして
接地薄膜1の辺部では新たに塑成されたボルテックスが
動かないように大きなピン留め力を有する事が理想的で
ある。これらの要求を実現するために、接地薄膜の中心
部と辺部でを異なった超伝導金属材料で構成する事に本
発明の特徴がある。
FIG. 1(a) is a top view of this embodiment, and FIG. 1(b) is a sectional view thereof. In both figures, 1 is a grounding thin film, and 9 is a part of the grounding thin film made of a superconducting material with a strong pinning force, such as a material for superconducting magnets. 11 is the area where the Josephson circuit is distributed, 12 is the power supply, 13 is the current supply line, 14
is the vortex drive current supply terminal. Distribution area 1
The grounding thin film 1 has a weak pinning force of the Josephson circuit so that the vortex can be removed as easily as possible, and a large pinning force on the sides of the grounding thin film 1 so that the newly formed vortex does not move. is ideal. In order to meet these requirements, the present invention is characterized in that the center and side parts of the ground thin film are made of different superconducting metal materials.

このような構造を持つ接地薄膜を使用すると、第5図で
示したようなJ、。> J > Jo> J、又はJ、
F、> J >JP>Joといったような電流密度でも
正常にボルテックスを□接地薄膜の中心部がら取り除く
事が出来る。
If a ground thin film with such a structure is used, J as shown in FIG. > J > Jo > J, or J,
Even at current densities such as F, > J > JP > Jo, the vortex can be successfully removed from the center of the ground thin film.

(発明の効果) 以上説明したように、本発明を使用する事により、ジョ
セフソン回路中のボルテックスを取り除くために接地薄
膜中に流すボルテックス駆動電流の上限を増す事が出来
る。したがってボルテックス駆動電流の動作マージンが
より大きくなり、ローレンツ力に対して比較的ピン留め
力の強い膜質を持った接地薄膜中央部がらもボルテック
スを取り除く事が出来る。
(Effects of the Invention) As explained above, by using the present invention, it is possible to increase the upper limit of the vortex drive current that is passed through the ground thin film in order to remove the vortex in the Josephson circuit. Therefore, the operating margin of the vortex drive current becomes larger, and vortex can be removed even from the central part of the ground thin film, which has a film quality that has a relatively strong pinning force against the Lorentz force.

【図面の簡単な説明】 第1図(a)は本発明の実施例の模式的な上面図、第1
図(b)はその段面図、第2図は接地薄膜に磁束量子が
トラップされている状態にあるジョセフソン集積回路の
超伝導薄膜を示す模式的な1折面図、第3図はピン留め
力量上のローレンツ力を発生させるボルテックス駆動電
流によりボルテックスを膜中0部より取り除いた状態を
示す模式的断面図、第4図はボルテックスが定常的に流
動している状態を示す模式的断面図、第5図は接地薄膜
辺部にピン留め力の強い部分を配置した状態の模式的断
面図。 1接地薄膜 2干渉計ループ 3ジョセフソン接合 4ポルテツクス 5磁力線 6反ボルテックス 7接地薄膜を流れる電流 80−レンツ力 9大きなピン留め力を持つ材料で作られた接地薄膜の部
分 10ピン留め力 11ジョセフソン回路が分布している領域12電源 13電流供給線 14ボルテックス駆動電流供給端子 亭  3   飼 Jに>J>Jp 半  4  図 J>J(、>Jp5!はJ > JP>JC7擾地漠腫
1瓶れ)@ξ氏 亭  5   画
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1(a) is a schematic top view of an embodiment of the present invention.
Figure (b) is a step view, Figure 2 is a schematic cross-sectional view showing the superconducting thin film of a Josephson integrated circuit in which magnetic flux quanta are trapped in the grounded thin film, and Figure 3 is a pin-up diagram. A schematic cross-sectional view showing the state in which the vortex is removed from the zero part of the film by the vortex drive current that generates the Lorentz force on the retaining force. Figure 4 is a schematic cross-sectional view showing the state in which the vortex is constantly flowing. , FIG. 5 is a schematic cross-sectional view of a state in which a portion with strong pinning force is arranged on the side of the ground thin film. 1 Ground thin film 2 Interferometer loop 3 Josephson junction 4 Portex 5 Magnetic field lines 6 Anti-vortex 7 Current flowing through the ground thin film 80 - Lenz force 9 Part of ground thin film made of material with large pinning force 10 Pinning force 11 Joseph Area where the son circuit is distributed 12 Power supply 13 Current supply line 14 Vortex drive current supply terminal 1 bottle) @ξjitei 5 pictures

Claims (1)

【特許請求の範囲】[Claims]  接地薄膜上の一定の領域にジョセフソン回路を設けて
なるジョセフソン集積回路において、前記接地薄膜のボ
ルテックスにローレンツ力を作用してそのボルテックス
を移動させる電流が供給される端子が前記接地薄膜の相
対する縁辺に設けてあり、前記ジョセフソン回路が設け
てない領域の前記接地薄膜の少なくとも一部分に前記ジ
ョセフソン回路が設けてある領域の前記接地薄膜と材料
の異なる超伝導薄膜をもうけた事を特徴とするジョセフ
ソン集積回路。
In a Josephson integrated circuit in which a Josephson circuit is provided in a certain area on a ground thin film, a terminal to which a current is supplied that applies a Lorentz force to the vortex of the ground thin film to move the vortex is connected to the ground thin film relative to the ground thin film. A superconducting thin film is provided on the edge of the ground where the Josephson circuit is not provided, and at least a portion of the ground thin film in the area where the Josephson circuit is not provided is provided with a superconducting thin film made of a different material from the ground thin film in the area where the Josephson circuit is provided. Josephson integrated circuit.
JP61018784A 1986-01-29 1986-01-29 Josephson integrated circuit Granted JPS62176179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61018784A JPS62176179A (en) 1986-01-29 1986-01-29 Josephson integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61018784A JPS62176179A (en) 1986-01-29 1986-01-29 Josephson integrated circuit

Publications (2)

Publication Number Publication Date
JPS62176179A true JPS62176179A (en) 1987-08-01
JPH0455354B2 JPH0455354B2 (en) 1992-09-03

Family

ID=11981243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61018784A Granted JPS62176179A (en) 1986-01-29 1986-01-29 Josephson integrated circuit

Country Status (1)

Country Link
JP (1) JPS62176179A (en)

Also Published As

Publication number Publication date
JPH0455354B2 (en) 1992-09-03

Similar Documents

Publication Publication Date Title
US5026682A (en) Devices using high Tc superconductors
Schneider et al. Nanobridges of optimized YBa2Cu3O7 thin films for superconducting flux‐flow type devices
Washington et al. Observation of flux trapping threshold in narrow superconducting thin films
US4392148A (en) Moat-guarded Josephson devices
JPS62176179A (en) Josephson integrated circuit
Pedyash et al. Superconducting quantum interference devices based on YBaCuO nanobridges
JPS62179181A (en) Josephson integrated circuit
Assink et al. Critical currents in submicron YBa/sub 2/Cu/sub 3/O/sub 7/lines
Jones et al. Changing the Critical Current Density and Magnetic Properties of YBa $ _2 $ Cu $ _3 $ O $ _7 $ by Using Large Antidots
SOUTOME et al. HTS surface-modified junctions with integrated ground-planes for SFQ circuits
JP2812060B2 (en) SQUID
JPH0558590B2 (en)
US3697826A (en) Josephson junction having an intermediate layer of a hard superconducting material
JPH0525190B2 (en)
JPH0558591B2 (en)
JPH0525191B2 (en)
JPS61287178A (en) Josephson integrated circuit and initiating method thereof
WO1996009654A1 (en) A method and device for improving the performance of thin-film josephson devices in magnetic fields
RU2181517C2 (en) Superconductor switching member
Okamoto et al. Critical currents of ion‐beam sputtered amorphous beryllium thin films and their application to an Abrikosov vortex memory
JP3125816B2 (en) Flux quantum flow device and method of manufacturing the same
Fruin et al. A new crossed-film cryotron structure with superimposed controls
JPS6415988A (en) Superconducting device
Sarnelli et al. Fabrication and characterization of Fe (Se, Te) Josephson devices and nanostrips
Nevirkovets et al. Investigation of the Critical Currents in Thin-Film MoGe Devices

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees