JPH0558591B2 - - Google Patents

Info

Publication number
JPH0558591B2
JPH0558591B2 JP60128487A JP12848785A JPH0558591B2 JP H0558591 B2 JPH0558591 B2 JP H0558591B2 JP 60128487 A JP60128487 A JP 60128487A JP 12848785 A JP12848785 A JP 12848785A JP H0558591 B2 JPH0558591 B2 JP H0558591B2
Authority
JP
Japan
Prior art keywords
thin film
current
josephson
vortex
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60128487A
Other languages
Japanese (ja)
Other versions
JPS61287182A (en
Inventor
Choshin Sai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60128487A priority Critical patent/JPS61287182A/en
Publication of JPS61287182A publication Critical patent/JPS61287182A/en
Publication of JPH0558591B2 publication Critical patent/JPH0558591B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ジヨセフソン集積回路及びジヨセフ
ソン集積回路内にトラツプ(捕捉)された磁束を
取り除くための初期化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to Josephson integrated circuits and initialization methods for removing magnetic flux trapped within Josephson integrated circuits.

(従来の技術及びその問題点) ジヨセフソン集積回路は基板上に超伝導薄膜を
形成してなり、その超伝導薄膜は接地薄膜とこの
接地薄膜上に設けたジヨセフソン回路薄膜とから
なる。このジヨセフソン回路薄膜はジヨセフソン
接合、干渉計ループ、配線等からなつている。
(Prior Art and its Problems) A Josephson integrated circuit is formed by forming a superconducting thin film on a substrate, and the superconducting thin film consists of a ground thin film and a Josephson circuit thin film provided on the ground thin film. This Josephson circuit thin film consists of Josephson junctions, interferometer loops, wiring, etc.

超伝導薄膜によつて作られるジヨセフソン集積
回路の正常動作をさまたげる障害のひとつとし
て、従来から超伝導薄膜における磁束のトラツプ
という現象が問題になつていた。臨界温度Tcを
もつ完全な超伝導薄膜の温度がT>TcからT<
Tcまで下がることにより、始め超伝導薄膜を貫
いていた磁場はマイスナー効果によつてすべて超
伝導薄膜から排除される。しかし、もしこの超伝
導薄膜の超伝導性が多少たりとも不純物、格子欠
陥などによつてそこなわれると、T<Tcの状態
において磁場は超伝導膜内から完全には排出され
ず、トラツプされた磁束として薄膜内に残る。磁
場の十分弱い状態では、トラツプされる磁束はボ
ルテツクスとよばれる量子化された磁束である
(磁束量子Φ0=2×10-7G/cm2)通常の方法で製
作される超伝導薄膜はいずれも完全なものではな
く、アイ・イー・イー・イー・トランズアクシヨ
ンズ・オン・マグネテイツク(IEEE
Transactions on Magnetics)Vol.MAG−19、
No.3、1983に述べられているような、磁束量子の
トラツプ現象が起きる事が知られている。実際の
ジヨセフソン集積回路は各ゲート間、ライン間の
磁気的結合を小さくするために接地薄膜上に作ら
れている。しかし、この接地薄膜内に磁束量子が
トラツプされていて(即ち、ボルテツクスが存在
して)、そしてそのトラツプされた磁束が干渉計
ループ又はジヨセフソン接合自身に結合している
とすると、ジヨセフソン集積回路は誤動作を起
す。第5図に上記のような状態を示す。
The phenomenon of magnetic flux traps in superconducting thin films has long been a problem that hinders the normal operation of Josephson integrated circuits made of superconducting thin films. The temperature of a perfect superconducting thin film with critical temperature Tc changes from T>Tc to T<
By lowering the temperature to Tc, the magnetic field that initially penetrated the superconducting thin film is completely removed from the superconducting thin film by the Meissner effect. However, if the superconductivity of this superconducting thin film is impaired to some extent by impurities, lattice defects, etc., the magnetic field will not be completely exhausted from within the superconducting film in the state of T<Tc, but will be trapped. The remaining magnetic flux remains within the thin film. When the magnetic field is sufficiently weak, the trapped magnetic flux is a quantized magnetic flux called vortex (magnetic flux quantum Φ 0 = 2×10 -7 G/cm 2 ). None of these are complete, and the IEEE
Transactions on Magnetics) Vol.MAG−19,
No. 3, 1983, it is known that a magnetic flux quantum trap phenomenon occurs. Actual Josephson integrated circuits are built on a grounded thin film to reduce magnetic coupling between each gate and between lines. However, if flux quanta are trapped in this grounded film (i.e., a vortex exists), and the trapped flux is coupled to the interferometer loop or the Josephson junction itself, then the Josephson integrated circuit Causes malfunction. FIG. 5 shows the above state.

第5図は磁束量子をトラツプした超伝導薄膜の
模式的な断面図である。図中、1は接地薄膜、2
は干渉計ループ、3はジヨセフソン接合、4はボ
ルテツクス(トラツプされた磁束量子)、5は磁
力線を示す。ボルテツクス4の径は約50nm、磁
場が貫ぬく接合の断面は約300nm×5000nm、干
渉計の径は約10000nm、膜厚はすべて約300nm
である。第5図のようにトラツプされた磁束が、
ジヨセフソン接合3と結合していると、その接合
3のジヨセフソン電流が小さくなるし、またそれ
が干渉計ループ2と結合していると干渉計ゲート
の制御特性に変化をもたらす。いずれの場合も磁
気的結合の度合によつてはその磁気的結合がゲー
トの誤動作を誘発する原因となる。通常ジヨセフ
ソン集積回路の動作は磁気遮蔽の中の非常に低い
磁場中で行なわれる。この種の磁気遮蔽内の磁場
は約10μGほどであるが、この磁場は例えば10cm
×10cmのチツプ総面積を持つ複数のジヨセフソン
集積回路チツプからなるジヨセフソンコンピユー
タ内に約5000個の磁束量子をトラツプさせコンピ
ユータの誤動作の原因となる。実際にはジヨセフ
ソンコンピユータを冷却する時に熱起電力によつ
て誘起される電流によつて、上記のようなサイズ
を持つコンピユータはさらに多くの(数万個乃至
数十万個の)磁束量子をトラツプするであろうと
推測されていて、このような環境下での正常な演
算動作はほとんど不可能である。
FIG. 5 is a schematic cross-sectional view of a superconducting thin film in which magnetic flux quanta are trapped. In the figure, 1 is a ground thin film, 2
is an interferometer loop, 3 is a Josephson junction, 4 is a vortex (trapped magnetic flux quantum), and 5 is a magnetic field line. The diameter of vortex 4 is approximately 50 nm, the cross section of the junction through which the magnetic field penetrates is approximately 300 nm x 5000 nm, the diameter of the interferometer is approximately 10000 nm, and the thickness of all films is approximately 300 nm.
It is. As shown in Figure 5, the trapped magnetic flux is
If it is coupled to Josephson junction 3, the Josephson current in that junction 3 will be small, and if it is coupled to interferometer loop 2, it will change the control characteristics of the interferometer gate. In either case, depending on the degree of magnetic coupling, the magnetic coupling may induce malfunction of the gate. Normally, Josephson integrated circuits operate in very low magnetic fields within a magnetic shield. The magnetic field within this type of magnetic shield is about 10 μG;
This traps about 5,000 magnetic flux quanta in the Josephson computer, which consists of multiple Josephson integrated circuit chips with a total chip area of 10cm x 10cm, causing the computer to malfunction. In reality, a computer with the above size can generate even more magnetic flux quanta (tens to hundreds of thousands) due to the current induced by thermoelectromotive force when cooling the Josephson computer. It is assumed that this will trap the data, and normal operation of the calculation under such an environment is almost impossible.

そこで、本発明の目的は、接地薄膜にトラツプ
された磁束による影響が避けられるジヨセフソン
集積回路及びその影響を取り除く方法を提供する
事にある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a Josephson integrated circuit which avoids the effects of magnetic flux trapped in a ground thin film, and a method for eliminating the effects.

(問題点を解決するための手段) 前述の問題点を解決するために本願の第1の発
明が提供する手段は、超伝導薄膜が接地薄膜とこ
の接地薄膜上に設けられたジヨセフソン回路薄膜
とからなるジヨセフソン集積回路であつて、前記
接地薄膜の相対する縁辺にボルテツクス駆動電流
供給端子が設けてあることを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the first invention of the present application provides means in which the superconducting thin film is a ground thin film and a Josephson circuit thin film provided on the ground thin film. The Josephson integrated circuit is characterized in that vortex drive current supply terminals are provided on opposing edges of the ground thin film.

また、前述の問題点を解決するために本願の第
2の発明が提供する手段は、超伝導薄膜が接地薄
膜とこの接地薄膜上に設けられたジヨセフソン回
路薄膜とからなるジヨセフソン集積回路の初期化
方法であつて、前記接地薄膜は超伝導状態に保つ
たまま前記ジヨセフソン回路薄膜に第1の電流を
流してこのジヨセフソン回路薄膜を常伝導状態に
し、前記接地薄膜にこの膜の広平面に平行な方向
の直流又は脈流の第2の電流を流した後にこの第
2の電流を零にし、次に前記第1の電流を零にす
ることを特徴とする。
Further, in order to solve the above-mentioned problems, the second invention of the present application provides means for initializing a Josephson integrated circuit in which the superconducting thin film is composed of a grounded thin film and a Josephson circuit thin film provided on the grounded thin film. The method includes applying a first current to the Josephson circuit thin film while keeping the ground thin film in a superconducting state to bring the Josephson circuit thin film into a normal conducting state, and applying a current to the ground thin film parallel to a wide plane of the film. The method is characterized in that after a second current of direct current or pulsating current is passed in the direction, the second current is made zero, and then the first current is made zero.

(実施例) 次に実施例を挙げ本願発明を一層詳しく説明す
る。
(Example) Next, the present invention will be described in more detail with reference to Examples.

第1図は本願の第1の発明の一実施例を示す模
式的な平面図、第2図は第1図実施例の模式的な
断面図である。以下に、これら図を参照して本願
の第1の発明の一実施例及び本願の第2の発明の
第1及び第2の実施例を説明する。
FIG. 1 is a schematic plan view showing an embodiment of the first invention of the present application, and FIG. 2 is a schematic cross-sectional view of the embodiment shown in FIG. An embodiment of the first invention of the present application and first and second embodiments of the second invention of the present application will be described below with reference to these figures.

図において、1〜5は第5図と同じものであ
り、6は接地薄膜1を流れる電流、7は電流6に
よりボルテツクスに加わるローレンツ力F(F=
J×Φ0)、ここでJは電流6の電流密度、Φ0は磁
束量子のベクトルである(F、J、Φ0はベクト
ル量である)。9は電流供給線、10は電源、1
1はボルテツクス駆動電流供給端子である。ボル
テツクス駆動電流供給端子11は接地薄膜1の相
対す縁辺に設けてあり、電流供給線9に接続して
ある。
In the figure, 1 to 5 are the same as in FIG. 5, 6 is the current flowing through the grounding thin film 1, and 7 is the Lorentz force F (F=
J×Φ 0 ), where J is the current density of the current 6 and Φ 0 is the vector of magnetic flux quanta (F, J, Φ 0 are vector quantities). 9 is a current supply line, 10 is a power supply, 1
1 is a vortex drive current supply terminal. The vortex drive current supply terminals 11 are provided on opposite edges of the ground thin film 1 and are connected to the current supply line 9.

第1図実施例にはボルテツクス駆動電流供給端
子11が備えてあり、この端子から接地薄膜1に
電流6を流す事が可能になる。この電流6により
各ボルテツクス4に対して符号7で示すローレン
ツ力F=J×Φ0が生じ、ボルテツクス4を接地
薄膜1の辺部へ追いやる事が出来る。電流密度J
にはそれにより接地薄膜1の表面に誘起される磁
界が接地薄膜1の臨界磁界Hc(もし材料が第2種
超伝導体ならば下部臨界磁界Hc1)を超えてはな
らないという上限があるので、ボルテツクス駆動
電流供給端子11の数や形は出来るだけ均等な電
流分布が実現出来るように考慮して設計するのが
望ましい。
The embodiment shown in FIG. 1 is provided with a vortex drive current supply terminal 11 from which a current 6 can be passed through the ground thin film 1. This current 6 generates a Lorentz force F=J×Φ 0 indicated by 7 on each vortex 4, which can drive the vortex 4 to the side of the ground thin film 1. current density J
There is an upper limit that the magnetic field induced on the surface of the ground thin film 1 must not exceed the critical magnetic field Hc of the ground thin film 1 (lower critical magnetic field Hc 1 if the material is a type 2 superconductor). It is desirable that the number and shape of the vortex drive current supply terminals 11 be designed in such a way that a current distribution as uniform as possible can be realized.

なお、上記ボルテツクス駆動電流供給端子11
は、トラツプされた磁束の影響を無くした初期化
後の本実施例の動作中には、接地薄膜1と実装基
板上の接地面とを電気的に接続する端子として機
能させることも可能である。
Note that the vortex drive current supply terminal 11
It is also possible to function as a terminal for electrically connecting the ground thin film 1 and the ground plane on the mounting board during operation of this embodiment after initialization to eliminate the influence of the trapped magnetic flux. .

本願の第2の発明は接地面内に存在するボルテ
ツクスがジヨセフソン集積回路に及ぼす影響を排
除する方法である。この第2の発明の第1の実施
例は以下の手順で行なわれる。まず超伝導状態に
ある超伝導薄膜において、干渉計ループ配線やジ
ヨセフソン接合を形成している上下電極や配線等
を構成するジヨセフソン回路薄膜に超伝導臨界電
流を超える第1の電流を流し、上記のジヨセフソ
ン回路薄膜を常伝導状態にする。次に電源10か
ら直流の第2の電流6を接地薄膜1に流す。この
とき、第1図及び第2図で示されるようにローレ
ンツ力F=J×Φ0がボルテツクス4にかかり、
ボルテツクス4を接地薄膜1内で電流6と垂直の
方向に移動させる。また、ボルテツクス4と逆方
向の磁束をトラツプしている反ボルテツクス4′
は第1図及び第2図で示されるようにボルテツク
ス4と正反対の方向に向かつて移動する。ジヨセ
フソン回路を構成している薄膜はすでに常伝導状
態に転移されているので、ボルテツクス4(以下
の説明では特に記す場合のほか反ボルテツクス
4′を含む)は接地薄膜1上部のジヨセフソン回
路薄膜からの磁気的抵抗をうけずにすみやかに接
地薄膜1内を移動出来る。この過程で注意するべ
きことは、電流6及び第1の電流によつて接地薄
膜1表面に誘起される磁界Hは決して接地薄膜1
を構成している材料の臨界磁界Hc(もし材料が第
2種超伝導ならば下部臨界磁界Hc1)を超えては
ならないことである。さもなければ新しいボルテ
ツクスが接地薄膜1に生じてしまう。したがつ
て、電流密度Jには上限JMaxが存在する。ボルテ
ツクスには通常ピン留め力FPという、磁束のト
ラツプされた位置からこれがほかに動かないよう
に現時点にとどめる力があるから、電流6を流し
作り出したローレンツ力FはF>FPでなければ
ならない。
The second invention of the present application is a method for eliminating the influence of vortices existing in a ground plane on Josephson integrated circuits. The first embodiment of this second invention is carried out in the following steps. First, in a superconducting thin film in a superconducting state, a first current exceeding the superconducting critical current is passed through the Josephson circuit thin film that constitutes the upper and lower electrodes and wiring forming the interferometer loop wiring and the Josephson junction. The Josephson circuit thin film is brought into a normal conducting state. Next, a second DC current 6 is applied to the ground thin film 1 from the power source 10 . At this time, as shown in FIGS. 1 and 2, a Lorentz force F=J×Φ 0 is applied to the vortex 4,
A vortex 4 is moved within the ground membrane 1 in a direction perpendicular to the current 6. In addition, there is an anti-vortex 4' that traps the magnetic flux in the opposite direction to the vortex 4.
moves in the opposite direction to the vortex 4, as shown in FIGS. 1 and 2. Since the thin film constituting the Josephson circuit has already been transferred to a normal conduction state, the vortex 4 (in the following explanation, the anti-vortex 4' is included unless otherwise specified) is generated from the Josephson circuit thin film on top of the ground thin film 1. It can quickly move within the ground thin film 1 without being subjected to magnetic resistance. What should be noted in this process is that the magnetic field H induced on the surface of the ground thin film 1 by the current 6 and the first current never exceeds the ground thin film 1 surface.
must not exceed the critical magnetic field Hc of the material constituting the material (or the lower critical magnetic field Hc 1 if the material is a type II superconductor). Otherwise, new vortices would occur in the ground membrane 1. Therefore, the current density J has an upper limit J Max . Since a vortex normally has a pinning force F P that holds the magnetic flux at the current moment so that it does not move from the trapped position, the Lorentz force F created by flowing current 6 must be F > F P. It won't happen.

ボルテツクス4と反ボルテツクス4′はローレ
ンツ力にしたがつて移動し、第1図でしめされる
ように接地薄膜1の周辺部で磁気的反発力により
止まる。この状態で外部から加えられた第2の電
流6を零にする。電流6がなくなつてもボルテツ
クス4と反ボルテツクス4′はピン留め力FPによ
つて接地薄膜1の周辺部にピン留めされそこにと
どまる。次に第1の電流を零にする。これで超伝
導薄膜は通常の起伝導の動作状態になり、同時に
接地薄膜1のボルテツクスとジヨセフソン回路薄
膜とは磁気的には結合しなくなる。以上のような
過程を行なうことにより接地薄膜1内のボルテツ
クスの影響が排除出来る。更に加えて、最後の第
1の電流を零にする過程でジヨセフソン回路薄膜
が超伝導状態に移行する時に、外部磁界は以上説
明したように接地薄膜1の周辺部に集中している
ので、ジヨセフソン回路薄膜近辺の磁場は極めて
弱くジヨセフソン回路薄膜自体への磁束のトラツ
プも非常に起りにくい。
The vortex 4 and the anti-vortex 4' move according to the Lorentz force, and stop at the periphery of the ground thin film 1 due to magnetic repulsion, as shown in FIG. In this state, the second current 6 applied from the outside is made zero. Even when the current 6 is removed, the vortex 4 and anti-vortex 4' are pinned to the periphery of the ground membrane 1 by the pinning force F P and remain there. Next, the first current is made zero. The superconducting thin film is now in a normal conductive operating state, and at the same time the vortex of the ground thin film 1 and the Josephson circuit thin film are no longer magnetically coupled. By carrying out the above process, the influence of vortex within the ground thin film 1 can be eliminated. In addition, when the Josephson circuit thin film transitions to a superconducting state in the process of reducing the first and final current to zero, the external magnetic field is concentrated around the ground thin film 1 as explained above. The magnetic field near the circuit thin film is extremely weak, and trapping of magnetic flux into the Josephson circuit thin film itself is extremely unlikely.

次に本願の第2の発明の第2の実施例を説明す
る。前に述べたように、第2の電流6がボルテツ
クス4に及ぼすローレンツ力Fはピン留め力FP
より大きくなければならない。他方、第2の電流
6と第1の電流とにより接地薄膜1の表面に作ら
れる磁界Hは接地薄膜1の臨界磁界を超えてはな
らないから、第2の電流6の大きさには制限があ
る。そこで、FP>|FMnax|=|JMnax×Φ0|とい
うような大きいピン留めFPが働いている場合に
は前述の第1の実施例ではボルテツクスを移動す
る事は出来ない。ボルテツクスはピン留めセンタ
ー近傍で単振動を起す特性周波数を持つている。
この特性周波数はピン留め力とボルテツクスが超
伝導薄膜内を移動するときの摩擦力によつて決め
られていて、通常約0.1MHz〜50MHzぐらいであ
る。したがつて、この特性周波数でボルテツクス
を外部から駆動してやると、共振現象によりボル
テツクスはピン留めセンターから簡単にはずれ
る。つまりピン留め力FPが実効的にFP〜0とな
る。上記の理由で、直流電流に少量のボルテツク
スの特性周波数と同じ周波数の交流電流を重ねて
なる脈流を外部電源10から流す事により、ボル
テツクスを簡単に移動させる事が出来る。この脈
流により接地薄膜1上に誘起される磁界は接地薄
膜1の臨界磁界以下でなくてはならない。このよ
うに、第2の実施例では第2の電流を脈流にして
ボルテツクスの移動を容易にした。その他は第1
の実施例と同様である。
Next, a second embodiment of the second invention of the present application will be described. As mentioned earlier, the Lorentz force F exerted by the second current 6 on the vortex 4 is the pinning force F P
Must be bigger. On the other hand, since the magnetic field H created on the surface of the ground thin film 1 by the second current 6 and the first current must not exceed the critical magnetic field of the ground thin film 1, there is no limit to the magnitude of the second current 6. be. Therefore, when a large pinning F P such as F P > |F Mnax |=|J Mnax ×Φ 0 | is in effect, the vortex cannot be moved in the first embodiment described above. Vortex has a characteristic frequency that causes simple harmonic motion near the pinning center.
This characteristic frequency is determined by the pinning force and the frictional force when the vortex moves through the superconducting thin film, and is usually around 0.1MHz to 50MHz. Therefore, if the vortex is driven externally at this characteristic frequency, the vortex will easily dislodge from the pinning center due to the resonance phenomenon. In other words, the pinning force F P effectively becomes F P ~0. For the above reasons, the vortex can be easily moved by supplying from the external power supply 10 a pulsating current made by superimposing a small amount of alternating current having the same frequency as the characteristic frequency of the vortex on a direct current. The magnetic field induced on the ground thin film 1 by this pulsating flow must be less than the critical magnetic field of the ground thin film 1. In this way, in the second embodiment, the second current is made into a pulsating flow to facilitate the movement of the vortex. Others are 1st
This is similar to the embodiment.

次に本願の第2の発明の第3の実施例を第3図
及び第4図を参照して説明する。第3図は本願の
第1の発明の前述の一実施例を示す模式的な平面
図であり、第1図と同様である。また、第4図は
その第3図の実施例の模式的な断面図であり、第
2図と同様である。但し、本願の第2の発明の第
3の実施例では、第3図及び第4図に符号8で示
すように、接地薄膜1の表面(広平面)に平行に
交流磁界Hを加える。この交流磁界Hの周波数は
ボルテツクス4の特性周波数とする。交流磁界H
は、第2の電流6を流している期間内にかける。
そして、第2の電流6は直流とする。このように
ボルテツクス4の特性周波数の交流磁界Hを接地
薄膜1にかけることにより、ボルテツクス4が共
振現象を起し、ボルテツクス4はピン留めセンタ
ーから簡単に外れる。すなわち、ピン留め力FP
が実効的に零になる。そこで、この第3の実施例
によれば、前述の第2の実施例と同様に、小さい
第2の電流でボルテツクス4を接地薄膜1の縁辺
へ追いやることができる。第2の電流6を流すの
に並行して交流磁界Hをかけること以外は前述の
第1の実施例と同様である。尚、本実施例でも、
接地薄膜1表面上の全磁界は接地薄膜1の臨界磁
界以下でなくてはならない。
Next, a third embodiment of the second invention of the present application will be described with reference to FIGS. 3 and 4. FIG. 3 is a schematic plan view showing the above-described embodiment of the first invention of the present application, and is similar to FIG. 1. 4 is a schematic cross-sectional view of the embodiment shown in FIG. 3, and is similar to FIG. 2. However, in the third embodiment of the second invention of the present application, as shown by reference numeral 8 in FIGS. 3 and 4, an alternating current magnetic field H is applied parallel to the surface (wide plane) of the ground thin film 1. The frequency of this alternating magnetic field H is assumed to be the characteristic frequency of the vortex 4. AC magnetic field H
is applied during the period when the second current 6 is flowing.
The second current 6 is a direct current. By applying an alternating magnetic field H having a characteristic frequency of the vortex 4 to the ground thin film 1 in this manner, the vortex 4 causes a resonance phenomenon, and the vortex 4 easily comes off the pinning center. That is, the pinning force F P
effectively becomes zero. Therefore, according to the third embodiment, the vortex 4 can be driven to the edge of the ground thin film 1 with a small second current, similar to the second embodiment described above. This embodiment is the same as the first embodiment described above, except that the alternating current magnetic field H is applied in parallel to the flow of the second current 6. In addition, in this example as well,
The total magnetic field on the surface of the ground thin film 1 must be less than the critical magnetic field of the ground thin film 1.

次に本願の第2の発明の第4の実施例を第3図
及び第4図を参照して説明する。この実施例で、
第2の電流6として脈流を流し、しかも接地薄膜
1の表面に平行な交流磁界Hをかける。その脈流
の脈動周波数と交流磁界Hの周波数は同じで、ボ
ルテツクスの特性周波数である。そして、脈流と
交流磁界Hとは同期している。このように、本実
施例では、第2の電流6の主要成分である直流の
他に、第2の電流6に交流成分を重畳して第2の
電流6を脈流とするとともに、この脈流を流して
いる期間内に交流磁界Hを加えている。そこで、
接地薄膜1内のボルテツクス4は、共振現象によ
りピン留めセンターから簡単に外れ、第2の電流
6との間のローレンツ力により接地薄膜1の縁辺
に追いやられる。第2の電流6に交流成分を含む
こと及び交流磁界Hをかけること以外は第1の実
施例と同様である。また、接地薄膜1の方面にお
ける全磁界が接地薄膜1の臨界磁界以下でなくて
はならないことは、他の実施例と同様である。
Next, a fourth embodiment of the second invention of the present application will be described with reference to FIGS. 3 and 4. In this example,
A pulsating current is passed as the second current 6, and an alternating current magnetic field H is applied parallel to the surface of the ground thin film 1. The pulsating frequency of the pulsating flow and the frequency of the alternating current magnetic field H are the same, which is the characteristic frequency of the vortex. The pulsating flow and the alternating current magnetic field H are synchronized. In this way, in this embodiment, in addition to the direct current that is the main component of the second current 6, an alternating current component is superimposed on the second current 6 to make the second current 6 a pulsating current. An alternating current magnetic field H is applied during the period when the current is flowing. Therefore,
The vortices 4 in the ground membrane 1 easily dislodge from the pinning center due to resonance phenomena and are driven to the edges of the ground membrane 1 by the Lorentz forces with the second current 6. This embodiment is the same as the first embodiment except that the second current 6 includes an alternating current component and that an alternating magnetic field H is applied. Also, as in the other embodiments, the total magnetic field in the direction of the ground thin film 1 must be less than the critical magnetic field of the ground thin film 1.

(発明の効果) 以上説明したように、本銀の第1の発明によれ
ば接地薄膜にトラツプされた磁束による影響が避
けられるジヨセフソン集積回路が提供でき、本願
の第2の発明によればその影響を取り除く方法が
提供できる。また、本願の第2の発明の方法で
は、ジヨセフソン回路薄膜が常伝導状態から超伝
導状態に転移する時に周辺の外部磁場が小さいの
で、ジヨセフソン回路薄膜には磁束トラツプが起
こりにくい。
(Effects of the Invention) As explained above, according to the first invention of the present invention, a Josephson integrated circuit that can avoid the influence of magnetic flux trapped in the ground thin film can be provided, and according to the second invention of the present application, the Josephson integrated circuit can be provided. A method can be provided to remove the effects. Furthermore, in the method of the second invention of the present application, since the surrounding external magnetic field is small when the Josephson circuit thin film transitions from the normal conducting state to the superconducting state, magnetic flux traps are less likely to occur in the Josephson circuit thin film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本願の第1の発明の一実施
例を示す模式的な平面図及び断面図であるととも
に、本願の第2の発明の第1乃至第2の実施例を
説明する図である。第3図及び第4図は第1図に
示した本願の第1の発明の一実施例に適用する本
願の第2の発明の第3乃至第4の実施例を説明す
る図である。第5図は接地薄膜に磁束量子がトラ
ツプされている状態にあるジヨセフソン集積回路
の超伝導薄膜を示す模式的な断面図である。 1……接地薄膜、2……干渉計ループ、3……
ジヨセフソン接合、4……トラツプされた磁束
(ボルテツクス)、5……磁力線、6……接地薄膜
を流れる電流、7……ローレンツ力、8……交流
磁界、9……電流供給線、10……電源、11…
…ボルテツクス駆動電流供給端子。
FIG. 1 and FIG. 2 are a schematic plan view and a cross-sectional view showing an embodiment of the first invention of the present application, and also explain the first and second embodiments of the second invention of the present application. It is a diagram. 3 and 4 are diagrams for explaining third and fourth embodiments of the second invention of the present application, which are applied to the embodiment of the first invention of the present application shown in FIG. FIG. 5 is a schematic cross-sectional view showing a superconducting thin film of a Josephson integrated circuit in which magnetic flux quanta are trapped in a grounded thin film. 1...Ground thin film, 2...Interferometer loop, 3...
Josephson junction, 4... Trapped magnetic flux (vortex), 5... Lines of magnetic force, 6... Current flowing through the ground thin film, 7... Lorentz force, 8... Alternating magnetic field, 9... Current supply line, 10... Power supply, 11...
...Vortex drive current supply terminal.

Claims (1)

【特許請求の範囲】 1 超伝導薄膜が接地薄膜とこの接地薄膜上に設
けられたジヨセフソン回路薄膜とからなるジヨセ
フソン集積回路において、前記接地薄膜の相対す
る縁辺にボルテツクス駆動電流供給端子が設けて
あることを特徴とするジヨセフソン集積回路。 2 超伝導薄膜が接地薄膜とこの接地薄膜上に設
けられたジヨセフソン回路薄膜とからなるジヨセ
フソン集積回路の初期化方法において、前記接地
薄膜は超伝導状態に保つたまま前記ジヨセフソン
回路薄膜に第1の電流を流してこのジヨセフソン
回路薄膜を常伝導状態にし、前記接地薄膜にこの
膜の広平面に平行な方向の直流又は脈流の第2の
電流を流した後にこの第2の電流を零にし、次に
前記第1の電流を零にすることを特徴とするジヨ
セフソン集積回路の初期化方法。 3 前記第2の電流を流す期間内に、前記広平面
に平行な方向の交流磁界を加えることを特徴とす
る特許請求の範囲第2項記載のジヨセフソン集積
回路の初期化方法。
[Claims] 1. A Josephson integrated circuit in which the superconducting thin film is composed of a grounding thin film and a Josephson circuit thin film provided on the grounding thin film, in which vortex drive current supply terminals are provided on opposite edges of the grounding thin film. A Josephson integrated circuit characterized by: 2. In a method for initializing a Josephson integrated circuit in which the superconducting thin film comprises a grounding thin film and a Josephson circuit thin film provided on the grounding thin film, a first step is applied to the Josephson circuit thin film while the grounding thin film is maintained in a superconducting state. A current is passed through the Josephson circuit thin film to bring it into a normal conduction state, and a second current of direct current or pulsating current is passed through the ground thin film in a direction parallel to the wide plane of the film, and then the second current is made zero; A method for initializing a Josephson integrated circuit, the method comprising: setting the first current to zero; 3. The method for initializing a Josephson integrated circuit according to claim 2, characterized in that an alternating current magnetic field is applied in a direction parallel to the wide plane during the period in which the second current is applied.
JP60128487A 1985-06-13 1985-06-13 Josephson integrated circuit and initiating method thereof Granted JPS61287182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60128487A JPS61287182A (en) 1985-06-13 1985-06-13 Josephson integrated circuit and initiating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128487A JPS61287182A (en) 1985-06-13 1985-06-13 Josephson integrated circuit and initiating method thereof

Publications (2)

Publication Number Publication Date
JPS61287182A JPS61287182A (en) 1986-12-17
JPH0558591B2 true JPH0558591B2 (en) 1993-08-26

Family

ID=14985964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128487A Granted JPS61287182A (en) 1985-06-13 1985-06-13 Josephson integrated circuit and initiating method thereof

Country Status (1)

Country Link
JP (1) JPS61287182A (en)

Also Published As

Publication number Publication date
JPS61287182A (en) 1986-12-17

Similar Documents

Publication Publication Date Title
Brown et al. Effect of magnetic-field-induced frustration on the superconducting transition of proximity-coupled arrays
US5462762A (en) Fabrication method of superconducting quantum interference device constructed from short weak links with ultrafine metallic wires
Schönborg Hysteresis losses in a thin high-temperature superconductor strip exposed to ac transport currents and magnetic fields
JPH0558591B2 (en)
Barnes et al. Low AC loss structures in YBCO coated conductors with filamentary current sharing
JPH0558589B2 (en)
Selders et al. Observation of and noise reduction by vortex lattice matching in YBa2Cu3O7 thin films and rf SQUIDs with regular arrays of antidots
Kromann et al. Integrated high‐transition temperature magnetometer with only two superconducting layers
SOUTOME et al. HTS surface-modified junctions with integrated ground-planes for SFQ circuits
JPH0558590B2 (en)
JPH0455543B2 (en)
JPH0455354B2 (en)
JPH0525191B2 (en)
JPH0525190B2 (en)
Insinga et al. Lift-factor analysis of multifilamentary coated conductor produced using two level undercut-profile substrates
JP2838979B2 (en) Superconducting circuit
WO1996009654A1 (en) A method and device for improving the performance of thin-film josephson devices in magnetic fields
Harada et al. Quantum flux parametron
Kiryu et al. Effects of parasitic capacitance in a magnetically-coupled voltage multiplier
Okamoto et al. Critical currents of ion‐beam sputtered amorphous beryllium thin films and their application to an Abrikosov vortex memory
JP2856463B2 (en) Magnetic flux trap release device in superconducting circuit
Geng et al. Flux trapping in superconducting thin films in weak magnetic fields
Aomine et al. STATIC CHARACTERISTICS OF TRIANGULAR LOOP WITH NONIDENTICAL JOSEPHSON JUNCTIONS
Holgaard Multi Terminal Josephson Junctions
JPH0378675A (en) Squid element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees