JP2856463B2 - Magnetic flux trap release device in superconducting circuit - Google Patents

Magnetic flux trap release device in superconducting circuit

Info

Publication number
JP2856463B2
JP2856463B2 JP1325308A JP32530889A JP2856463B2 JP 2856463 B2 JP2856463 B2 JP 2856463B2 JP 1325308 A JP1325308 A JP 1325308A JP 32530889 A JP32530889 A JP 32530889A JP 2856463 B2 JP2856463 B2 JP 2856463B2
Authority
JP
Japan
Prior art keywords
circuit
resistance
superconducting
magnetic flux
superconducting circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1325308A
Other languages
Japanese (ja)
Other versions
JPH03185883A (en
Inventor
則夫 藤巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1325308A priority Critical patent/JP2856463B2/en
Priority to US07/627,033 priority patent/US5173620A/en
Priority to DE69020515T priority patent/DE69020515T2/en
Priority to EP90403618A priority patent/EP0433180B1/en
Publication of JPH03185883A publication Critical patent/JPH03185883A/en
Application granted granted Critical
Publication of JP2856463B2 publication Critical patent/JP2856463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 〔発明の概要〕 SQUID(超伝導量子干渉素子)やジョセフソン回路な
どの超伝導回路にトラップされる磁束を解除するための
超伝導回路内磁束トラップ解除装置に関し、 抵抗体を超伝導回路に近接して配置するが、超伝導回
路の形状を個別に検討する必要はなく、一通りの抵抗体
の配置で,どんな超伝導回路でも、磁束トラップを解除
できる、比較的簡単な構成の装置を提供することを目的
とし、 超伝導体または超伝導体とジョセフソン接合を含む超
伝導回路に近接して抵抗回路を配置し、該抵抗回路に複
数の抵抗単位を含ませ、該抵抗単位は2個以上が近接し
て並んで延びるようにし、これら近接抵抗単位に流れる
電流の和が零であるように電源を該抵抗単位に接続した
構成とする。
DETAILED DESCRIPTION OF THE INVENTION [Summary of the Invention] The present invention relates to a magnetic flux trap release device in a superconducting circuit for releasing magnetic flux trapped in a superconducting circuit such as a SQUID (superconducting quantum interference device) or a Josephson circuit. The body is placed in close proximity to the superconducting circuit, but there is no need to consider the shape of the superconducting circuit individually. With a single resistor arrangement, any superconducting circuit can release the magnetic flux trap. An object of the present invention is to provide a device having a simple configuration, in which a resistor circuit is arranged close to a superconductor or a superconductor circuit including a superconductor and a Josephson junction, and the resistor circuit includes a plurality of resistance units. The resistance units are arranged so that two or more resistance units extend in close proximity to each other, and a power source is connected to the resistance units so that the sum of the currents flowing through the adjacent resistance units is zero.

〔産業上の利用分野〕[Industrial applications]

本発明は、SQUID(超伝導量子干渉素子)やジョセフ
ソン回路などの超伝導回路にトラップされる磁束を解除
するための超伝導回路内磁束トラップ解除装置に関す
る。
The present invention relates to a magnetic flux trap release device in a superconducting circuit for releasing a magnetic flux trapped in a superconducting circuit such as a SQUID (superconducting quantum interference device) or a Josephson circuit.

超伝導体は、臨界温度と呼ばれる温度以下に冷却する
ことにより、常伝導状態から超伝導状態に状態が変化す
る。この際、地磁気などの磁界の中で冷却されると、超
伝導体に磁束が鎖交した状態で閉じ込められることが起
きる。これは、磁束トラップと呼ばれる。超伝導体を薄
膜とし、この薄膜を一端から他端まで厳密に順次超伝導
状態にして行くなら、磁束トラップは生じないはずであ
るが、冷却が均一に行なわれず、超伝導部分が常伝導部
分を囲んでしまう状態が発生すると、該常伝導部分を通
っていた地磁気などの外部磁束が該超伝導部分に囲まれ
てしまい、超伝導ループから磁束が自然に出ることはで
きないから、そのまゝトラップされてしまう。このトラ
ップされた磁束は、SQUID磁界センサやジョセフソン論
理/記憶回路などの超伝導回路の動作を不良にする。こ
のため磁束トラップをなくす必要がある。
The superconductor changes its state from a normal conduction state to a superconducting state by cooling to a temperature lower than a critical temperature. At this time, when cooled in a magnetic field such as geomagnetism, the magnetic flux is confined to the superconductor in a state of interlinking. This is called a magnetic flux trap. If the superconductor is made into a thin film and the thin film is made to be in a superconducting state strictly from one end to the other end, a magnetic flux trap should not occur, but the cooling is not performed uniformly and the superconducting part is a normal conducting part. When a state occurs that surrounds the superconducting portion, external magnetic flux such as geomagnetism that has passed through the normal conducting portion is surrounded by the superconducting portion. You will be trapped. This trapped magnetic flux causes the operation of superconducting circuits such as SQUID magnetic field sensors and Josephson logic / memory circuits to malfunction. Therefore, it is necessary to eliminate the magnetic flux trap.

〔従来の技術〕[Conventional technology]

磁束トラップが生じないようにする従来方法として
は、パーマロイなどの材料からなる磁気シールドや超
伝導シールドを用いて、超伝導化しようとする超伝導回
路の周囲の地磁気を減らす方法、超伝導回路内の超伝
導グランドプレーンの特定の場所に穴をあける(いわゆ
るモート)方法、抵抗体に電流を流すなどにより、超
伝導回路の温度を一時的に臨界温度以上に上げ、再び温
度を下げる方法などが行われていた。のモード法で
は、磁束トラップが生じて欲しくない回路部の周囲のグ
ランドプレーンに穴をあけ、回路部の面積をS、磁束密
度をBとしてS×B<φ0/2にして回路部には磁束が残
留できず(超伝導ループ内の磁束は磁束量子φ0の整数
倍に限る)、周囲の穴に出てしまう(穴内に磁束をトラ
ップしてしまう)ようにする。では温度の上げ、下げ
で確率現象であるトラップが発生しないことを期待す
る。
Conventional methods for preventing magnetic flux traps include using a magnetic shield or a superconducting shield made of a material such as permalloy to reduce the terrestrial magnetism around the superconducting circuit to be superconducted, A method of drilling a hole in a specific place in the superconducting ground plane (so-called mote), passing current through a resistor, temporarily raising the temperature of the superconducting circuit above the critical temperature, and then lowering the temperature again. It was done. In mode method, a hole in the ground plane surrounding the circuit portion which flux traps not want occurs, the area of the circuit portion S, the circuit unit in the S × B <φ 0/2 the flux density as B is The magnetic flux is not allowed to remain (the magnetic flux in the superconducting loop is limited to an integral multiple of the magnetic flux quantum φ 0 ), and the magnetic flux exits to the surrounding holes (the magnetic flux is trapped in the holes). We expect that trapping, which is a stochastic phenomenon, will not occur when the temperature is increased or decreased.

しかしとの方法ないしこの2つを組み合わせた方
法では、しゃへい可能な限界が存在し、例えばマルチタ
ーンの入力コイルと結合する磁界センサとして用いられ
るSQUIDなどの大きな超伝導回路では、磁束トラップを
なくすことはできない。またでは、抵抗体に流す電流
が作る磁界が再び磁束トラップの原因となるため、抵抗
体を超伝導回路から十分離すか、あるいは、超伝導回路
に近接配置する場合は、超伝導回路に対称の位置に配置
して発生する磁界が超伝導回路に鎖交する全磁束を零に
する必要がある。前者では、抵抗体を近接する場合に比
べ、超伝導回路上に温度分布を与えることは容易ではな
く、超伝導回路は空間的に均一に近い状態で温められ
る。従って、再び冷却される際、超伝導回路全体がほぼ
同時に超伝導に遷移し、従って磁束トラップを引き起こ
す確率は高い。後者では超伝導回路毎にその形を見て、
抵抗体の配置を決めなければならず、不便である。
However, in the former method or the method combining the two, there is a limit that can be shielded. For example, in a large superconducting circuit such as a SQUID used as a magnetic field sensor coupled with a multi-turn input coil, eliminating a flux trap Can not. In addition, since the magnetic field generated by the current flowing through the resistor again causes a magnetic flux trap, if the resistor is sufficiently separated from the superconducting circuit, or if the resistor is placed in close proximity to the superconducting circuit, it is symmetrical to the superconducting circuit. It is necessary to reduce the total magnetic flux linked to the superconducting circuit by the magnetic field generated in the position to zero. In the former case, it is not easy to give a temperature distribution on the superconducting circuit as compared with the case where the resistors are close to each other, and the superconducting circuit is warmed in a spatially uniform state. Thus, when cooled again, there is a high probability that the entire superconducting circuit transitions to superconducting almost simultaneously, thus causing a flux trap. In the latter, look at the shape of each superconducting circuit,
The arrangement of the resistors must be determined, which is inconvenient.

超伝導薄膜の残留量子磁束の除去については、特公
平1−42512に開示されている方法もある。これは現在
のヒートフラッシュ法では残留量子磁束を完全には除去
できないので、冷却している超伝導薄膜の微小領域をレ
ーザ光で加熱して常伝導化し、この加熱領域を薄膜の端
に、向って移動し、加熱領域に含まれている。量子磁束
を薄膜から排出する、というものである。
Regarding the removal of the residual quantum magnetic flux from the superconducting thin film, there is a method disclosed in Japanese Patent Publication No. 1-451212. Since the residual quantum flux cannot be completely removed by the current heat flash method, a small area of the superconducting thin film being cooled is heated to normal conductivity by heating with a laser beam, and the heated area is directed to the edge of the thin film. Moved and included in the heating area. Quantum magnetic flux is discharged from the thin film.

この実施例では、円筒状の超伝導薄膜に対して回転及
び上下動する走査装置を設け、該走査装置に取付けたSQ
UIDにより該薄膜のどこに磁束トラップがあるかを予め
検出し、記憶しておき、磁束トラップのある領域を、該
走査装置に取付けたレーザ光照射部で照射して加熱し、
常伝導化し、該領域を円筒開放端まで誘導する。SQUID
で磁束トラップを検査し、それがなくなるまで上記処理
を繰り返す。
In this embodiment, a scanning device that rotates and moves up and down with respect to a cylindrical superconducting thin film is provided, and an SQ attached to the scanning device is provided.
The UID detects in advance where the magnetic flux trap is on the thin film, stores it, and irradiates an area with the magnetic flux trap with a laser beam irradiation unit attached to the scanning device and heats it.
It becomes normal conducting and guides the region to the open end of the cylinder. SQUID
Inspection of the magnetic flux trap is carried out, and the above processing is repeated until it disappears.

しかしこの方法では走査機構、レーザ照射機構などが
必要であり、回転と直進による走査では超伝導薄膜の形
状が限られてしまう。
However, this method requires a scanning mechanism, a laser irradiation mechanism, and the like, and the shape of the superconducting thin film is limited by rotation and linear scanning.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

磁束トラップを除去する従来法では、上記では確実
な除去は困難、上記では超伝導回路の大きさ(S)に
関係して大きな超伝導回路では除去困難,上記では抵
抗体に流す電流が磁束を発生して磁束トラップの原因に
なり、そこで離すと磁束トラップの排除が難しく、接近
させるなら超伝導回路で合成磁界が零になるようにする
のが厄介,上記では機構複雑などの問題がある。
According to the conventional method of removing the magnetic flux trap, it is difficult to reliably remove the magnetic flux in the above case. In the above method, it is difficult to remove the large superconducting circuit in relation to the size (S) of the superconducting circuit. This causes a magnetic flux trap, and if it is separated therefrom, it is difficult to eliminate the magnetic flux trap. If the magnetic flux trap is brought close, it is troublesome to reduce the combined magnetic field to zero in a superconducting circuit.

本発明はかゝる点を改善すべくなされたもので、抵抗
体を超伝導回路に近接して配置するが、超伝導回路の形
状を個別に検討する必要はなく、一通りの抵抗体の配置
で,どんな超伝導回路でも、磁束トラップを解除でき
る、比較的簡単な構成の装置を提供することを目的とす
るものである。
The present invention has been made in order to improve such a point, and the resistor is arranged close to the superconducting circuit. However, it is not necessary to individually examine the shape of the superconducting circuit. It is an object of the present invention to provide a device having a relatively simple configuration that can release a magnetic flux trap in any superconducting circuit in an arrangement.

〔課題を解決するための手段〕[Means for solving the problem]

第1図に示すように本発明では超伝導回路10に近接し
て抵抗回路20を設け、抵抗回路により超伝導回路を加熱
して超伝導→常伝導→超伝導に変化させる。
As shown in FIG. 1, in the present invention, a resistance circuit 20 is provided near the superconducting circuit 10, and the superconducting circuit is heated by the resistance circuit to change from superconducting to normal conducting to superconducting.

超伝導回路10は超伝導体またはジョセフソン接合を含
む任意のものでよく、図では2つのジョセフソン接合
と、超伝導インダクタ14、これらを接続する超伝導線か
らなるSQUIDを示している。16は抵抗で、出力はこれに
生じた電圧降下とする。
The superconducting circuit 10 may be any including a superconductor or Josephson junction, and the figure shows a SQUID consisting of two Josephson junctions, a superconducting inductor 14, and a superconducting wire connecting them. Reference numeral 16 denotes a resistor, and the output is a voltage drop generated in the resistor.

抵抗回路20は複数の抵抗単位22a,22b,……を含む。抵
抗単位は2個以上が近接して並んで延びるように配設す
る。これらの抵抗単位は電源へ接続して電流を流し、発
熱させるが、近接抵抗単位に流れる電流の和は零である
ようにする。例えば抵抗単位22aと22bは近接し、並んで
延びるが、これらは一端を電源24aへ接続し、他端は超
伝導線26で接続して閉回路とし、抵抗22bの一端より電
流を流し、抵抗22aの一端より該電流を引出す。即ち、I
21+I22=0とする。また抵抗22c,22d,……22iは近接し
並んで延びるが、これらへ電源24bを接続して電流I11
I12,……Iigを流すが、I11+I12+……Iig=0とす
る。
The resistance circuit 20 includes a plurality of resistance units 22a, 22b,... The resistance units are arranged so that two or more resistance units extend in close proximity. These resistance units are connected to a power supply to supply a current and generate heat, but the sum of the currents flowing through the adjacent resistance units is zero. For example, the resistance units 22a and 22b are adjacent and extend side by side, but they are connected at one end to a power supply 24a, and the other end is connected by a superconducting wire 26 to form a closed circuit. The current is drawn from one end of 22a. That is, I
21 + I 22 = 0. The resistor 22c, 22 d, ...... 22i is extending alongside close, current I 11 and connect the power 24b to these,
I 12 ,..., I ig flow, but I 11 + I 12, ..., I ig = 0.

抵抗単位の接続は直列、並列、直並列のいずれでもよ
い。抵抗単位22aと22bは直列、抵抗単位22c〜22iは並列
である。
The connection in units of resistance may be any of series, parallel, and series-parallel. The resistance units 22a and 22b are in series, and the resistance units 22c to 22i are in parallel.

抵抗単位は不均一に分布させて、または流す電流を不
均一にして、抵抗回路により加熱される超伝導回路の温
度分布が1個または複数個のピーク、バレーを持つよう
にする。複数個のピーク、バレーを持たせる場合は、こ
れらの位置が時間的に変って、超伝導回路の一端なら他
端へ移動するように、各抵抗単位へ流す電流を変える。
The resistance units are unevenly distributed or the current flowing is uneven so that the temperature distribution of the superconducting circuit heated by the resistance circuit has one or more peaks and valleys. When a plurality of peaks and valleys are provided, the current flowing through each resistance unit is changed so that these positions change with time and move from one end to the other end of the superconducting circuit.

〔作用〕[Action]

このように本発明では抵抗回路に通電して発熱させ、
近接配置した超伝導回路を加熱する。超伝導回路は液体
Heなどで冷却され、超伝導状態にあるが、上記加熱で昇
温し、臨界温度を越すと、超伝導体は常伝導に遷移す
る。その後電流を減らすと、温度が下がり、臨界温度以
下になると再び超伝導に遷移する。電流は、空間的な電
流ベクトルの和がほぼ零となるように流すので,抵抗回
路から遠ざかるほど、各抵抗単位を流れる電流が作る臨
界は相殺するから、近接はするけれどしかるべき距離隔
たった超伝導回路は、抵抗回路が作る磁界を殆ど感ずる
ことなく、超伝導に遷移することになり、従って磁束ト
ラップをよけいに発生せずに常伝導と超伝導間の遷移を
行わせることができる。
As described above, in the present invention, the resistor circuit is energized to generate heat,
Heating a superconducting circuit placed in close proximity. Superconducting circuit is liquid
It is cooled by He or the like and is in a superconducting state. However, when the temperature rises by the above-mentioned heating and exceeds a critical temperature, the superconductor transits to normal conduction. Thereafter, when the current is reduced, the temperature decreases, and when the temperature becomes lower than the critical temperature, the state transits to superconductivity again. Since the current flows so that the sum of the spatial current vectors becomes almost zero, the further away from the resistance circuit, the more the criticality created by the current flowing through each resistance unit cancels out. The conducting circuit will transition to superconducting with little or no perception of the magnetic field created by the resistive circuit, thus allowing the transition between normal and superconducting to occur without any additional flux trapping.

超伝導回路が小さい場合は、この様に抵抗体の加熱に
よる、常伝導−超伝導間の遷移を行うことにより、磁束
トラップが解除される。しかし、超伝導回路が大きい場
合、常伝導−超伝導間の遷移を行っても、どこかには磁
束トラップが残る確率が高くなる。これに対しては不均
一加熱を行なう。
When the superconducting circuit is small, the transition between normal conduction and superconductivity is performed by heating the resistor in this way, thereby releasing the magnetic flux trap. However, when the superconducting circuit is large, even if transition between normal conduction and superconductivity is performed, the probability that a magnetic flux trap remains somewhere increases. For this, non-uniform heating is performed.

第2図(a)に示すように抵抗回路20はその抵抗単位
22a,22b,……を一端で密、他端へ向けて粗に配設する
と、各抵抗単位は同じ値の電流を流しても昇温状態が変
わり、第2図(b)に示すように超伝導回路の温度Tは
一端で高く,他端へ行くほど低くなる。このような不均
一加熱を行なって一旦は第2図(b)のように超伝導回
路の全域で臨界温度Tc以上にして常伝導状態にし、その
後電流を減少させて行くと第2図(c),(d),
(e)の如くなり,他端から超伝導に復帰し始めてそれ
が一端へ拡がり、やがて一端も超伝導に復帰する。この
ようにすると磁束トラップや地磁気などは他端から一端
へ押しやられ、該一端から超伝導回路外へ排出されるこ
とになる。こうして大きな超伝導回路でも磁束トラップ
が発生しにくくなる。
As shown in FIG. 2 (a), the resistance circuit 20 has its resistance unit.
When the 22a, 22b,... Are densely arranged at one end and coarsely arranged toward the other end, the temperature rising state changes even when a current of the same value is applied to each resistance unit, as shown in FIG. 2 (b). The temperature T of the superconducting circuit is higher at one end and lowers toward the other end. By performing such non-uniform heating, once as shown in FIG. 2 (b), the entire region of the superconducting circuit is brought to a temperature higher than the critical temperature Tc so as to be in a normal conduction state. ), (D),
(E), it starts to return to superconductivity from the other end, spreads to one end, and eventually one end also returns to superconductivity. In this way, the magnetic flux trap and the geomagnetism are pushed from the other end to one end, and are discharged from the one end to the outside of the superconducting circuit. Thus, even in a large superconducting circuit, a magnetic flux trap is hardly generated.

さらにより大きな超伝導回路の場合は、1つのピー
ク、バレーでは十分な大きさの温度勾配が作れないよう
になるから、この場合は、第3図に示すように、温度勾
配を周期的にするなど、複数の温度勾配を作ればよい。
本例では抵抗回路20の各抵抗単位に流す電流の値を変え
て各3つのピーク、バレーを作る抵抗を2組用意し、そ
れぞれが作る温度分布のピーク、バレーの位置が半周期
ずれるようにしておく。最初に第1組め(φ1)の抵抗
の電流を増やし、((b)図)そして減らすと、(c)
図に示す位置にトラップ磁束が集まる。次に第2組(φ
2)に電流を流し、(d)図そして減らすと集められた
トラップ磁束は、左へ半周期移動する。以上の電流供給
φ1→φ2をくり返すことにより、トラップ磁束を全て左
端へ押しやることができる。
In the case of an even larger superconducting circuit, a single peak or valley will not create a sufficiently large temperature gradient, so in this case the temperature gradient is made periodic as shown in FIG. For example, a plurality of temperature gradients may be created.
In this example, two sets of resistors for forming three peaks and valleys are prepared by changing the value of the current flowing in each resistance unit of the resistance circuit 20 so that the positions of the peaks and valleys of the temperature distributions formed by the respective circuits are shifted by half a cycle. Keep it. First, the current of the first set (φ 1 ) of the resistor is increased (FIG. (B)) and then reduced, (c)
The trapped magnetic flux gathers at the position shown in the figure. Next, the second set (φ
2 ) A current is passed through (d), and the trapped magnetic flux collected as shown in FIG. By repeating the above current supply φ 1 → φ 2 , all trapped magnetic flux can be pushed to the left end.

磁束トラップや地磁気などφtは温度Tのピーク部分
に溜まり、バレーの超伝導部分から排出され、温度Tの
波形は左端へ進行するので、それにつれて磁束φtも左
方へ進行し、やがて左端から超伝導回路外へ排出されて
しまう。
Flux traps and geomagnetism such phi t accumulates the peak portion of the temperature T, is discharged from the superconducting part of the valley, since the waveform of the temperature T proceeds to left, also travels to the left it as the magnetic flux phi t, eventually left From the superconducting circuit.

電流波形は正弦波、台形波、その他例えば連続的に減
少する部分を持つ波形など、適宜のものでよく、周期波
形である必要もない。隣接抵抗素子に流れる電流はオー
バラップしていても、いなくてもよい。電源は2相、3
相、その他の多相であってよく、温度分布は第3図のよ
うな鋸歯状波の他に、第4図のような対称的な3角波な
どでもよい。この第4図では抵抗単位群を3相駆動して
いる。
The current waveform may be a sine wave, a trapezoidal wave, or any other appropriate waveform such as a waveform having a continuously decreasing portion, and need not be a periodic waveform. The currents flowing in adjacent resistance elements may or may not overlap. Power supply is 2 phase, 3
The temperature distribution may be a sawtooth wave as shown in FIG. 3 or a symmetrical triangular wave as shown in FIG. In FIG. 4, the resistance unit group is driven in three phases.

温度Tの分布を超伝導回路の一端から他端へ進行させ
る代りに、中央から周辺へ駆動させてもよい。
Instead of advancing the distribution of the temperature T from one end of the superconducting circuit to the other, it may be driven from the center to the periphery.

〔実施例〕〔Example〕

本発明の実施例を第5図に示す。超伝導回路10、抵抗
回路20はそれぞれ基板10a,20aに形成する。(a)では
基板20a上に基板10aを積み重ね抵抗回路20はこれらの基
板の間にあるようにするが、(b)では基板10a,20aを
背中合わせにして重ね、抵抗回路20がこれらの上面、超
伝導回路20がこれらの下面にあるようにする。
An embodiment of the present invention is shown in FIG. The superconducting circuit 10 and the resistance circuit 20 are formed on substrates 10a and 20a, respectively. In (a), the substrate 10a is stacked on the substrate 20a so that the resistance circuit 20 is located between these substrates. In (b), the substrates 10a and 20a are stacked back to back, and the resistance circuit 20 The superconducting circuit 20 is on these lower surfaces.

抵抗単位は基板20a上に薄膜で集積回路技術により配
置することができる。抵抗回路20は抵抗体だけからなっ
ていてもよいし、また抵抗体とこれを接続する超伝導体
あるいは抵抗体間を絶縁する絶縁体などを含むものであ
ってもよい。超伝導回路に作用する磁界を0にするとい
う観点からは、電流の行きと帰りの一方は超伝導体であ
ってもよい。抵抗回路に近接して、超伝導回路を含む基
板10aを配置する。抵抗体に流れる電流が作る磁界が十
分相殺されるための、しかるべき距離を離して配置する
のがよい。但し、導線1本では該導線に流れる電流が生
じる磁界は距離rの逆数に比例して減少するだけである
が、複数の導線に電流ベクトルの和が0になるように電
流を流すと、該電流が作る磁界は1/r3に比例して減少す
るから、離す距離は小さくてもよく、抵抗体の配置によ
っては、基板の厚み(例えば0.3mm)程度でもよい。従
って基板10aは、基板20aの上あるいは下に密着するよう
に配置してもよい。また適当な間隔を置いて配置するこ
とも可能である。第6図に示すように、一枚の基板10b
の表と裏に超伝導回路と抵抗回路を配置してもよい。抵
抗単位の配置としては、第7図(a)(b)に示すよう
に、2本の抵抗単位の並設あるいは、4本の抵抗単位の
並設、積重ねなど種々の組み合わせが可能である。第7
図(b)では磁界は1/r5に比例して減衰する。
The resistance units can be arranged in thin films on the substrate 20a by integrated circuit technology. The resistance circuit 20 may be composed of only a resistor, or may include a resistor and a superconductor connecting the resistor or an insulator for insulating between the resistors. From the viewpoint of reducing the magnetic field acting on the superconducting circuit to zero, one of the current going and the returning may be a superconductor. A substrate 10a including a superconducting circuit is arranged close to the resistance circuit. It is preferable to place them at an appropriate distance so that the magnetic field generated by the current flowing through the resistor is sufficiently canceled. However, with one conductor, the magnetic field generated by the current flowing through the conductor only decreases in proportion to the reciprocal of the distance r. Since the magnetic field generated by the current decreases in proportion to 1 / r 3 , the separation distance may be small, and depending on the arrangement of the resistors, may be about the thickness of the substrate (for example, about 0.3 mm). Therefore, the substrate 10a may be disposed so as to be in close contact with the substrate 20a. It is also possible to arrange them at appropriate intervals. As shown in FIG. 6, one substrate 10b
A superconducting circuit and a resistor circuit may be arranged on the front and back of the above. As the arrangement of the resistance units, various combinations such as juxtaposition of two resistance units, juxtaposition of four resistance units, and stacking are possible as shown in FIGS. 7 (a) and 7 (b). Seventh
Field in FIG. (B) is attenuated in proportion to 1 / r 5.

なお図では線間絶縁体、層間絶縁層、表面絶縁層など
は省略しているが、勿論これらは適宜設ける。
In the drawings, the line insulator, the interlayer insulating layer, the surface insulating layer, and the like are omitted, but they are of course provided as appropriate.

磁束トラップを除くと永久電流も除去される。外部磁
束が超伝導体に鎖交しようとするとそれを打消す電流が
流れるが、一般に超伝導回路はグランドプレーン上に設
けられ、上記打消し電流はグランドプレーンに流れる。
Removing the flux trap also removes the permanent current. When an external magnetic flux tries to interlink with the superconductor, a current flows to cancel it. Generally, a superconducting circuit is provided on a ground plane, and the canceling current flows to the ground plane.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、抵抗体に流れる
電流が発生する磁界を相殺でき、超伝導、常伝導の遷移
で超伝導回路の磁束トラップを解除できる。抵抗体の配
置で磁界を相殺するから、個別の超伝導回路形状によら
ず、どんな回路でも1つの抵抗回路で磁束トラップが解
除できる。
As described above, according to the present invention, the magnetic field generated by the current flowing through the resistor can be canceled, and the magnetic flux trap of the superconducting circuit can be released by the transition between superconductivity and normal conduction. Since the magnetic field is canceled by the arrangement of the resistors, the flux trap can be released by one resistor circuit in any circuit regardless of the shape of the individual superconducting circuit.

また超伝導回路上の温度分布を不均一にして上記遷移
を行なわせ、あるいは温度分布にピーク、バレーを持た
せてこれらを移動させるので、磁気トラップの確実な解
除が可能である。
Further, since the transition is performed by making the temperature distribution on the superconducting circuit non-uniform, or the temperature distribution is moved with a peak or valley, the magnetic trap can be reliably released.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理図、 第2図〜第4図は温度分布例1〜3の説明図、 第5図〜第7図は本発明の実施例1〜3を示す説明図で
ある。 第1図で10は超伝導回路、20は抵抗回路、22a,22b,……
は抵抗単位、24a,24bは電源である。
FIG. 1 is a principle diagram of the present invention, FIGS. 2 to 4 are explanatory diagrams of temperature distribution examples 1 to 3, and FIGS. 5 to 7 are explanatory diagrams showing first to third embodiments of the present invention. . In FIG. 1, 10 is a superconducting circuit, 20 is a resistance circuit, 22a, 22b,.
Is a resistance unit, and 24a and 24b are power supplies.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 39/00 H01L 39/02 - 39/04 H01L 39/22 - 39/24 H01L 39/14 - 39/16 G01R 33/035Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 39/00 H01L 39/02-39/04 H01L 39/22-39/24 H01L 39/14-39/16 G01R 33 / 035

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超伝導体または超伝導体とジョセフソン接
合を含む超伝導回路に近接して抵抗回路を配置し、 該抵抗回路に複数の抵抗単位を含ませ、該複数の抵抗単
位に流れる電流が前記超伝導回路に作用する磁界が零と
なるように、2個以上の抵抗単位が近接して並ぶように
し、これら近接抵抗単位に流れる電流の和が零であるよ
うに電源を該抵抗単位に接続したことを特徴とする超伝
導回路内磁束トラップ解除装置。
1. A resistance circuit is disposed in close proximity to a superconductor or a superconductor circuit including a superconductor and a Josephson junction. The resistance circuit includes a plurality of resistance units and flows through the plurality of resistance units. Two or more resistance units are arranged in close proximity so that a magnetic field acting on the superconducting circuit as a current is zero, and the power supply is connected so that the sum of the currents flowing through these close resistance units is zero. A magnetic flux trap release device in a superconducting circuit, which is connected to a unit.
【請求項2】超伝導回路に対する抵抗回路の抵抗単位の
配列密度を変え及び又は抵抗単位に流す電流の値を場所
により変えて、抵抗回路による超伝導回路の加熱時の温
度分布が、超伝導回路の一端で高く、それより他端へ向
って減少するようにしたことを特徴とする請求項1記載
の超伝導回路内磁束トラップ解除装置。
2. The temperature distribution at the time of heating the superconducting circuit by the resistance circuit by changing the arrangement density of the resistance unit of the resistance circuit with respect to the superconducting circuit and / or changing the value of the current flowing in the resistance unit depending on the location. 2. The device according to claim 1, wherein the temperature is higher at one end of the circuit and decreases toward the other end.
【請求項3】超伝導回路に対する抵抗回路の抵抗単位に
流す電流の値を場所によりまた時間により変えるように
電源を抵抗単位に近接し、抵抗回路による超伝導回路の
加熱時の温度分布が、超伝導回路の一端から他端までの
間に複数のピーク及びバレーを持ちかつこれらが他端へ
向かって移動するようにしたことを特徴とする請求項1
記載の超伝導回路内磁束トラップ解除装置。
3. A power supply is brought close to the resistance unit so that the value of the current flowing in the resistance unit of the resistance circuit with respect to the superconducting circuit varies depending on the location and time, and the temperature distribution when the superconducting circuit is heated by the resistance circuit is 2. A superconducting circuit having a plurality of peaks and valleys between one end and the other end thereof and moving toward the other end.
A device for releasing a magnetic flux trap in a superconducting circuit as described in the above.
【請求項4】抵抗回路を第1の基板上に、また超伝導回
路を第2の基板上に形成し、これら第1、第2の基板を
重ねて配置したことを特徴とする請求項1乃至3に記載
の超伝導回路内磁束トラップ解除装置。
4. The semiconductor device according to claim 1, wherein the resistor circuit is formed on a first substrate, and the superconducting circuit is formed on a second substrate, and the first and second substrates are arranged so as to overlap with each other. 4. The device for canceling a magnetic flux trap in a superconducting circuit according to any one of items 1 to 3.
【請求項5】抵抗回路を基板の一面に形成し、該基板の
他面に超伝導回路を形成したことを特徴とする請求項1
乃至3に記載の超伝導回路内磁束トラップ解除装置。
5. A circuit according to claim 1, wherein a resistance circuit is formed on one surface of the substrate, and a superconducting circuit is formed on the other surface of the substrate.
4. The device for canceling a magnetic flux trap in a superconducting circuit according to any one of items 1 to 3.
JP1325308A 1989-12-15 1989-12-15 Magnetic flux trap release device in superconducting circuit Expired - Fee Related JP2856463B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1325308A JP2856463B2 (en) 1989-12-15 1989-12-15 Magnetic flux trap release device in superconducting circuit
US07/627,033 US5173620A (en) 1989-12-15 1990-12-13 Device for eliminating trap of magnetic flux in a superconduction circuit
DE69020515T DE69020515T2 (en) 1989-12-15 1990-12-14 Device for eliminating the trapping of magnetic flux in a superconducting circuit.
EP90403618A EP0433180B1 (en) 1989-12-15 1990-12-14 Device for eliminating trap of magnetic flux in a superconduction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1325308A JP2856463B2 (en) 1989-12-15 1989-12-15 Magnetic flux trap release device in superconducting circuit

Publications (2)

Publication Number Publication Date
JPH03185883A JPH03185883A (en) 1991-08-13
JP2856463B2 true JP2856463B2 (en) 1999-02-10

Family

ID=18175369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1325308A Expired - Fee Related JP2856463B2 (en) 1989-12-15 1989-12-15 Magnetic flux trap release device in superconducting circuit

Country Status (1)

Country Link
JP (1) JP2856463B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405390B2 (en) 2007-06-27 2013-03-26 Myriam Pannetier-Lecoeur Device based on a magneto-resistive mixed sensor without low frequency noise and associated method

Also Published As

Publication number Publication date
JPH03185883A (en) 1991-08-13

Similar Documents

Publication Publication Date Title
EP0433180B1 (en) Device for eliminating trap of magnetic flux in a superconduction circuit
US8003410B2 (en) Method of operating quantum-mechanical memory and computational devices
Ravaioli et al. First implementation of the CLIQ quench protection system on a full-scale accelerator quadrupole magnet
RU2674063C1 (en) Superconductor in the nano-sized electronic devices logic elements from the super conducting condition to normal one transferring method
RU2694799C1 (en) Method of reducing critical current of transition of nanosized superconductor from superconducting state to normal
Voss et al. All‐Nb low‐noise dc SQUID with 1‐μm tunnel junctions
JP2856463B2 (en) Magnetic flux trap release device in superconducting circuit
US3277322A (en) Method and apparatus for magnetic flux accumulation and current generation
US5105098A (en) Superconducting power switch
JPS5810798B2 (en) magnetic domain device
Newhouse et al. The crossed-film cryotron and its application to digital computer circuits
JPS6288381A (en) Superconducting switching apparatus
JP2680098B2 (en) Permanent current release device in superconducting loop
EP4068311A1 (en) Method for charging and/or discharging and/or reversing the charge of a superconducting-switch-free superconductively closed circuit via direct current feeding, superconducting-switch-free superconductively closed circuit for use with said method, superconducting magnet and method for producing said superconducting circuit
Mawatari et al. Alternating current loss in coplanar arrays of superconducting strips with bidirectional currents
Mercereau et al. Thin film superconducting devices
JPH0828537B2 (en) Superconducting inductor
JPH06194434A (en) Squid magnetic flux meter
Ward et al. Electromagnetic field and ac loss enhancements in a layer of superconducting round wires
JP3669891B2 (en) Superconducting single flux quantum circuit
JPH01197677A (en) Superconducting magnetometer
Hinaus et al. Flux penetration in bicrystal-substrate thin-film YBa2Cu3O7− δ Josephson junctions
Schmidt et al. Linear Electrodynamics of Superconductors
Eckert et al. A computer program simulating the quench of superconducting magnet systems
JPH0435074A (en) Apparatus for releasing flux trap in superconducting circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees