JPS61285974A - Thawing of frozen material - Google Patents
Thawing of frozen materialInfo
- Publication number
- JPS61285974A JPS61285974A JP13026385A JP13026385A JPS61285974A JP S61285974 A JPS61285974 A JP S61285974A JP 13026385 A JP13026385 A JP 13026385A JP 13026385 A JP13026385 A JP 13026385A JP S61285974 A JPS61285974 A JP S61285974A
- Authority
- JP
- Japan
- Prior art keywords
- water
- temperature
- frozen
- steam
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Freezing, Cooling And Drying Of Foods (AREA)
Abstract
Description
【発明の詳細な説明】
く既存技術〉
真空解凍とは凍結体の解凍に必要な融解熱?真空下にお
ける水蒸気の低温面への凝縮潜熱によって供給させる解
凍方法であり、真空工学において水蒸気凝縮機に捕集さ
れた凝結水の解凍法として円軸/7”l原種ttr−R
−イど家のでネスヘ一般に凝縮熱伝達とは、水蒸気がそ
の飽和温度よりも低い温度の固体などの表面に接触した
際、気相から液相への状態変化に伴って潜熱全放出する
ことを言い、理想状態においてはおよそ107Kcal
/m h’cのオーダーになり、極めて高い熱伝達率全
示す。しかしながら、この理想凝縮は実際には殆ど起こ
らないとされて込る。その理由としては、第一に凝縮に
よって生じた液体膜、あるいは水滴が固体と蒸気の間に
介在し断熱作用奮起こすこと、第二に空気などの非凝縮
気体が混在してい友場合、液膜の付近で非凝縮気体が蓄
積され相対的に蒸気の分圧が下が9、蒸気の液膜への到
達に気体分子内の拡散全必要とすることなどが上げられ
る。[Detailed Description of the Invention] Existing Technology> Is vacuum thawing the heat of fusion necessary to thaw a frozen object? This is a thawing method in which the latent heat of condensation of water vapor is supplied to a low-temperature surface in a vacuum.
In general, condensation heat transfer refers to the fact that when water vapor comes into contact with a surface such as a solid whose temperature is lower than its saturation temperature, it releases all of its latent heat as the state changes from the gas phase to the liquid phase. In an ideal state, it is approximately 107Kcal.
/m h'c, indicating an extremely high heat transfer coefficient. However, it is believed that this ideal condensation rarely occurs in reality. The reasons for this are: firstly, a liquid film formed by condensation or water droplets intervenes between the solid and the vapor, exerting an adiabatic effect, and secondly, if a non-condensable gas such as air is present, the liquid film Non-condensable gas accumulates near the point where the partial pressure of the vapor is relatively low.9, and all the diffusion within the gas molecules is required for the vapor to reach the liquid film.
真空解凍は、容器内の絶対圧?下げることで上記した蒸
気の飽和温度金工げ、室温ま文はそれ以下の温度で凝縮
熱伝達を達成しようと言うものであるので、上記した二
つの問題点全潜在的に持っていると言える。現在真空解
凍に関して、提案されている様々な手法の大部分は上記
二点に焦点?当てたものである0
タトえば、真空引きの吸引口を多段になった凍結体の間
に置き、非凝縮気体である空気全効率的に排気する方法
や、真空引きの際に、上記の供給源である水を真空槽の
外に配置し、ある程度の真空度が得られてから、脱気し
た水を供給する事で、空気の排気全促進する方法が有る
(例えば、特公昭52−4614号公報参照)。しかし
ながら、これらの方法は業務用のような規模の大きい真
空解凍装置に適用する場合Vr−は、全体を真空排気す
る労力が水を脱気する労力に比べて遥かに大きいため、
効果的であると言えるが、規模が小さくなればなるほど
その効果は小さくなっていく。Is vacuum thawing based on the absolute pressure inside the container? By lowering the saturation temperature of the steam mentioned above, metalwork and room temperature are intended to achieve condensation heat transfer at a temperature below that temperature, so it can be said that the two problems mentioned above are potentially present. Currently, most of the various methods proposed for vacuum thawing focus on the above two points? If you guessed it, there is a method to place the vacuum suction port between the multi-stage frozen bodies and exhaust the air, which is a non-condensable gas, efficiently. There is a method of placing the water source outside the vacuum chamber and supplying deaerated water after a certain degree of vacuum has been obtained to promote complete air exhaust (for example, Japanese Patent Publication No. 52-4614 (see publication). However, when these methods are applied to large-scale vacuum thawing equipment such as those for commercial use, the effort required to evacuate the entire system is much greater than the effort required to degas the water.
It can be said to be effective, but the smaller the scale, the smaller the effect.
ま几、上の手法は凍結体表面に凝縮しt水滴に関しては
何等言及しておらず、この点に於いても問題を残してい
ると言える0
〈発明の目的〉
本発明は上記した、凝縮熱伝達の阻害要因を排除するこ
と全目的としており、特に残存空気の排除と凝縮水滴に
よる断熱効果全緩和させる事で、真空解凍の優位性を最
大限に引き出すこと全目的としている。However, the above method does not mention anything about water droplets that condense on the surface of a frozen object, and it can be said that there are still problems in this respect. The entire purpose is to eliminate factors that inhibit heat transfer, and in particular, to maximize the advantages of vacuum thawing by eliminating residual air and completely alleviating the insulation effect of condensed water droplets.
〈具体的実施例〉
以後、本発明の具体的実施例全図によって説明する。第
1図は本発明全もとに試作された真空解凍システムの概
略図である。lは気密容器、2は凍結体全果せる架台、
3は凍結体(被解凍物)である。気密容器l内には初期
には凍結体のみが配置されており、真空ポンプ6により
排気管5を介して排気される。気密容器内が所定の真空
度に達し几ら、排気バルブ7が閉鎖され気密容器は完全
に外部と遮蔽される。その後貯水槽9から給水管lOt
介して解凍に必要な水が供給される訳であるが、この時
給水管9は所定温度に設定された加熱ヒータ−11全通
過し水の温度を所定値まで引き上げる。この時の水温は
気密容器1内の圧力における水の沸点以上に設定される
必要があり、気密容器内に水が侵入した瞬間に気化する
ことが必要である。前記した手順によって所定温度に設
定され几水が給水バルブ8の開閉に伴って間欠的に噴射
ノズル4から噴出されると前記した水は低温のスチーム
ガスとなって凍結体3の上部に噴射される。相対的に見
れば、凍結体表面の方が低温スチームガスよジもはるか
に温度が低い几め、低温スチームガスは凍結体3表面で
凝縮する。また気密容器内における水の沸点は低温スチ
ームガスよりも相対的に温度が低いため低温スチームガ
スは気密容器内に瞬間的に拡散し、噴射ノズル4からみ
て凍結体の陰になる凍結体表面にも満遍無く凝縮する。<Specific Embodiments> Hereinafter, specific embodiments of the present invention will be explained with reference to all drawings. FIG. 1 is a schematic diagram of a vacuum thawing system prototyped based on the present invention. 1 is an airtight container, 2 is a pedestal on which the whole frozen object can be frozen,
3 is a frozen object (an object to be thawed). Initially, only the frozen body is placed in the airtight container 1, and is evacuated via the exhaust pipe 5 by the vacuum pump 6. When the inside of the airtight container reaches a predetermined degree of vacuum, the exhaust valve 7 is closed and the airtight container is completely shielded from the outside. After that, the water supply pipe lOt from the water storage tank 9
At this time, the water supply pipe 9 completely passes through a heater 11 set at a predetermined temperature to raise the temperature of the water to a predetermined value. The water temperature at this time needs to be set higher than the boiling point of water at the pressure inside the airtight container 1, and it is necessary that the water vaporizes the moment it enters the airtight container. When the temperature is set to a predetermined temperature by the above-described procedure and the water is intermittently jetted from the injection nozzle 4 as the water supply valve 8 is opened and closed, the water turns into low-temperature steam gas and is jetted onto the top of the frozen body 3. Ru. Relatively speaking, the temperature of the surface of the frozen body is much lower than that of the low-temperature steam gas, and the low-temperature steam gas condenses on the surface of the frozen body 3. In addition, since the boiling point of water in the airtight container is relatively lower than that of low-temperature steam gas, the low-temperature steam gas instantly diffuses into the airtight container and reaches the surface of the frozen object, which is in the shadow of the frozen object when viewed from the injection nozzle 4. It also condenses evenly.
このようにして低温スチームが凝縮するとき凝縮潜熱が
放出され凍結体全解凍するが、同時に凝縮水が凍結体表
面に多数付着し、凍結体への熱伝導速度は徐々に低下し
ていく。これは凝縮水が蒸気との間に介在している事が
主な原因であり、これらの凝縮水を効果的に排除するこ
とが解凍速度の向上には不可欠である。凍結体の側面あ
るいは底部に付着した凝縮水は重力の働きで自然に落下
するが、凍結体上部に凝縮した水滴はそのまま放置され
る。本装置ではこの点に注目し凍結体上部の凝縮水全前
期噴射ノズルから間欠的に噴出する低温スチームガスの
噴出力を利用して、凍結体上部に堆積し几凝縮水を吹き
飛ばすことで凝縮水の効果的排除を行っている。When the low-temperature steam condenses in this way, the latent heat of condensation is released and the entire frozen body is thawed, but at the same time, a large amount of condensed water adheres to the surface of the frozen body, and the rate of heat conduction to the frozen body gradually decreases. This is mainly due to the presence of condensed water between the steam and the steam, and it is essential to effectively eliminate this condensed water to improve the thawing speed. Condensed water that adheres to the sides or bottom of the frozen body falls naturally due to gravity, but water droplets that condense on the top of the frozen body are left alone. This device focuses on this point and utilizes the power of low-temperature steam gas that is intermittently ejected from the condensate water injection nozzle on the top of the frozen body to blow away the condensed water that accumulates on the top of the frozen body. are being effectively eliminated.
ここまでの過程金、第2図の気密容器内の圧力変化曲線
および第3図の気密容器内の状態温度変化曲線を用いて
再度説明する。The process up to this point will be explained again using the pressure change curve inside the airtight container shown in FIG. 2 and the state temperature change curve inside the airtight container shown in FIG. 3.
第2図のa点は気密容器l内に凍結体3を設置しf−直
後、大気圧下にある状態である。ここから真空ポンプ6
により排気が開始され、気密容器1内の絶対圧は徐々に
低下しおよそ1〜5torr近辺まで低下しb点まで米
たところで排気バルブ7が閉鎖され真空ポンプ6が停止
する。その後給水バルブ8が開き温水がノズル4全介し
て気密容器1内に導入され、温水の温度が容器内圧力に
おける水の沸点よりも高−ため急速に気化し気密容器1
円の圧力も急速に上昇して0点に至る。Point a in FIG. 2 is a state in which the frozen body 3 is placed in the airtight container l and is under atmospheric pressure immediately after f-. From here vacuum pump 6
Evacuation is started, and the absolute pressure inside the airtight container 1 gradually decreases to around 1 to 5 torr, and when it reaches point b, the exhaust valve 7 is closed and the vacuum pump 6 is stopped. After that, the water supply valve 8 is opened and the hot water is introduced into the airtight container 1 through all the nozzles 4, and because the temperature of the hot water is higher than the boiling point of water at the pressure inside the container, it is rapidly vaporized.
The pressure on the yen also rises rapidly and reaches the zero point.
この後給水バルブ8が閉鎖され、かつ凍結体表面に水蒸
気が凝縮し始めるので気密容器1内の圧力は再び徐々に
低下しd点に至る。ここまでの過程における気密容器内
の温度の変化は、第3図のa −dのように汝る。即ち
、a−bにおける排気過程においては気密容器内の残存
気体が見掛は上断熱膨張し、温度が低下していく。b
= eにおいてはスチームが噴出しているため見掛は上
の断熱圧縮、及びスチームの持つ潜熱により急激に上昇
する。c−dでは凍結体表面へのスチームの凝縮に伴い
徐々に温度が低下する。このようにして再び気密容器内
の圧力が所定値まで低下すると、再度給水パルプ8全開
きスチームを噴出させる。以上の過程全数回に渡り繰り
返すことで凍結体を解凍する訳であるが、前記したスチ
ームガスによる凍結体表面の水滴の除去を行わなかった
場合に容器内の各状態値は第2図及び第3図の破線で示
したような変動?見せるのに対し、本発明に従って凍結
体表面の水滴の除去全行った場合には同図の実線のよう
になり、水蒸気の凍結体表面への凝縮量が大きくなる。Thereafter, the water supply valve 8 is closed and water vapor begins to condense on the surface of the frozen body, so that the pressure inside the airtight container 1 gradually decreases again and reaches point d. The temperature changes within the airtight container during the process up to this point are as shown in a to d of FIG. That is, in the evacuation process a-b, the remaining gas in the airtight container apparently expands adiabatically, and the temperature decreases. b
= Since steam is ejected at e, the appearance increases rapidly due to the above adiabatic compression and the latent heat of the steam. In c-d, the temperature gradually decreases as steam condenses on the surface of the frozen body. In this manner, when the pressure inside the airtight container is reduced to a predetermined value again, the water supply pulp 8 is fully opened and steam is ejected again. The frozen object is thawed by repeating the above process several times, but if the water droplets on the surface of the frozen object are not removed by the steam gas mentioned above, each state value inside the container is as shown in Figures 2 and 2. Fluctuations like the one shown by the broken line in Figure 3? On the other hand, if all the water droplets on the surface of the frozen body are removed according to the present invention, the result will be as shown by the solid line in the figure, and the amount of water vapor condensed on the surface of the frozen body will be large.
〈発明の効果〉
本発明は、以上の如く気密容器の外部より低温スチーム
を供給し、そのときのスチームの噴射力全利用すること
で、真空解凍時における、凍結体表面に付着した余分な
凝縮水の除去全効果的に行なうことができ、その結果真
空解凍法の最大の特徴である凝縮熱伝達による凍結体の
解凍の機会が多くなり、全体としての解凍時間全大巾に
短縮することができるという顕著な効果金奏し得るもの
である。<Effects of the Invention> As described above, the present invention supplies low-temperature steam from the outside of an airtight container and utilizes the full jetting power of the steam to eliminate excess condensation adhering to the surface of frozen objects during vacuum thawing. Water can be removed completely effectively, and as a result, there are more opportunities for the frozen body to thaw due to condensation heat transfer, which is the most important feature of vacuum thawing, and the overall thawing time can be shortened by a wide range. It is possible to achieve remarkable effects.
第1図は本発明に用いる真空解凍装置の概略構成図、第
2図は気密容器内の圧力変化状態説明図、第3図は気密
容器内の温度変化状態説明図を示すOl:気密容器、3
:凍結体、4:噴射ノズル、6:真空ポンプ、11:加
熱ヒーター。
代理人 弁理士 福 士 愛 彦 (他2名)鴫や(p
)Fig. 1 is a schematic configuration diagram of a vacuum thawing device used in the present invention, Fig. 2 is an explanatory diagram of pressure changes in an airtight container, and Fig. 3 is an explanatory diagram of temperature changes in an airtight container. 3
: Frozen body, 4: Injection nozzle, 6: Vacuum pump, 11: Heater. Agent Patent attorney Aihiko Fukushi (and 2 others) Shiguya (p
)
Claims (1)
して真空状態とし、蒸気の飽和温度を低く保つことで該
容器内の水蒸気分圧を上げ、凍結体の解凍に必要な熱の
供給を凝縮熱伝達が支配的となるように操作する解凍方
法に於いて、前記気密容器内に低温度スチームを供給し
、該スチームの噴射力によって凍結体表面に付着した凝
縮水を排除する事を特徴とする凍結体の解凍方法。1. The frozen object is sealed in an airtight container, the air inside the container is removed to create a vacuum state, and the steam saturation temperature is kept low to increase the partial pressure of water vapor in the container, which is necessary to thaw the frozen object. In a thawing method in which heat supply is controlled so that condensation heat transfer is dominant, low-temperature steam is supplied into the airtight container, and condensed water adhering to the surface of the frozen body is removed by the jetting force of the steam. A method for thawing a frozen body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13026385A JPS61285974A (en) | 1985-06-13 | 1985-06-13 | Thawing of frozen material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13026385A JPS61285974A (en) | 1985-06-13 | 1985-06-13 | Thawing of frozen material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61285974A true JPS61285974A (en) | 1986-12-16 |
Family
ID=15030090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13026385A Pending JPS61285974A (en) | 1985-06-13 | 1985-06-13 | Thawing of frozen material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61285974A (en) |
-
1985
- 1985-06-13 JP JP13026385A patent/JPS61285974A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1160041A (en) | Apparatus for heating and drying articles | |
JPS6449882A (en) | Freezing drier | |
WO2020187294A1 (en) | Cooking apparatus and cooking method | |
JP3983617B2 (en) | Multi-sealing type cleaning and vacuum drying method and apparatus | |
JPS61285974A (en) | Thawing of frozen material | |
JP2004061080A (en) | Manufacturing method for heat pipe | |
JPS62502276A (en) | Cryogenic pump regeneration method and device | |
JPS61282062A (en) | Method of thawing frozen material | |
JP6690982B2 (en) | Vacuum cooling device | |
JP2737378B2 (en) | Refrigerant degassing equipment | |
JPS5592678A (en) | Rapid cooling of high-temperature wet food and its device | |
JPS5794425A (en) | Eliminating method for surface strain of thin-plate structure | |
US4095605A (en) | Recovery system for use with a batch process for increasing the filling capacity of tobacco | |
RU2313049C2 (en) | Method for filling steam-compression heat pump plant with water (variants) | |
JP2004202374A (en) | Method and apparatus for vaporizing/concentrating spumous liquid | |
JPH11337693A (en) | Vacuum drying device of spent nuclear fuel containment vessel | |
JPS56124424A (en) | Water making apparatus | |
JPS54147557A (en) | Narrow section cleaning method | |
GB917733A (en) | Apparatus for removing condensable vapours and a method of operating such apparatus | |
JPH0154630B2 (en) | ||
JP4683773B2 (en) | Method for evaporating and concentrating effervescent liquid | |
JPH0669180A (en) | Vacuum drier | |
JPS5554885A (en) | Vacuum thawing device | |
SU1432308A1 (en) | Method of filling vessel with cryogenic liquid | |
JP2969209B2 (en) | Decompression evaporative cooling equipment |