JP6690982B2 - Vacuum cooling device - Google Patents

Vacuum cooling device Download PDF

Info

Publication number
JP6690982B2
JP6690982B2 JP2016078372A JP2016078372A JP6690982B2 JP 6690982 B2 JP6690982 B2 JP 6690982B2 JP 2016078372 A JP2016078372 A JP 2016078372A JP 2016078372 A JP2016078372 A JP 2016078372A JP 6690982 B2 JP6690982 B2 JP 6690982B2
Authority
JP
Japan
Prior art keywords
vacuum
vacuum pump
processing tank
drying
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016078372A
Other languages
Japanese (ja)
Other versions
JP2017187258A (en
Inventor
伸基 明尾
伸基 明尾
康晶 前田
康晶 前田
西山 将人
将人 西山
Original Assignee
株式会社サムソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サムソン filed Critical 株式会社サムソン
Priority to JP2016078372A priority Critical patent/JP6690982B2/en
Publication of JP2017187258A publication Critical patent/JP2017187258A/en
Application granted granted Critical
Publication of JP6690982B2 publication Critical patent/JP6690982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)

Description

本発明は処理槽内を真空化し、処理槽内の被冷却物から水分を蒸発させた際に発生する気化熱を利用して被冷却物を冷却する真空冷却装置に関するものである。   TECHNICAL FIELD The present invention relates to a vacuum cooling device that cools an object to be cooled by utilizing heat of vaporization generated when the inside of the processing tank is evacuated and moisture is evaporated from the object to be cooled in the processing tank.

処理槽内に加熱調理した食品などの被冷却物を収容しておき、処理槽内を減圧することで被冷却物を冷却する真空冷却装置がある。被冷却物を収容している処理槽内を減圧すると、処理槽内での飽和蒸気温度が低下し、飽和蒸気温度を被冷却物の温度よりも低下させると、被冷却物中の水分が蒸発する。その際に被冷却物から気化熱を奪うため、被冷却物を短時間で冷却することができる。真空冷却装置に使用する真空発生装置としては、水又は蒸気によるエジェクタや水封式又はドライ式の真空ポンプが使用されている。ドライ式の真空ポンプを使用した場合、蒸気の供給や水の循環が必要ないために装置の構成としては単純なものとすることができる。   BACKGROUND ART There is a vacuum cooling device in which an object to be cooled such as cooked food is stored in a processing tank and the object to be cooled is cooled by reducing the pressure in the processing tank. When the pressure inside the processing tank containing the object to be cooled is reduced, the saturated steam temperature in the processing tank decreases, and when the saturated steam temperature becomes lower than the temperature of the object to be cooled, the moisture in the object to be cooled evaporates. To do. At that time, since the heat of vaporization is taken from the object to be cooled, the object to be cooled can be cooled in a short time. As a vacuum generator used for the vacuum cooling device, an ejector using water or steam and a water-sealed or dry-type vacuum pump are used. When a dry-type vacuum pump is used, the supply of steam and the circulation of water are not required, so that the structure of the device can be simplified.

真空発生装置にて処理槽内の気体を吸引する場合、気体と同時に被冷却物から発生した蒸気も吸引することになる。しかし、水は液体から気体に変わると体積が大幅に増大するため、蒸気をそのまま真空発生装置に吸引させたのでは、真空発生装置で排出しなければならない気体量が多くなる。そしてその場合には、処理槽内の減圧に要する時間が長くなるため、冷却工程時間が長くなってしまう。そのため、特開2014−159931号公報に記載があるように、処理槽内の気体を真空発生装置へ送る真空経路の途中に、真空発生装置が吸引している気体を冷却する熱交換器を設け、真空経路の途中で気体を冷却することを行っている。熱交換器によって気体の冷却を行うと、気体の体積が縮小する。特に蒸気を冷却し液体に戻すと体積は大幅に小さくなるため、真空発生装置が吸引しなければならない気体の体積が小さくなり、真空冷却の効率を高めることができる。 When the gas in the processing tank is sucked by the vacuum generator, the vapor generated from the object to be cooled is sucked together with the gas. However, since the volume of water increases significantly when it changes from liquid to gas, the amount of gas that must be discharged by the vacuum generator increases if the vapor is sucked into the vacuum generator as it is. In that case, the time required for depressurizing the inside of the processing tank becomes long, so that the cooling process time becomes long. Therefore, as described in JP-A-2014-159931, a heat exchanger for cooling the gas sucked by the vacuum generator is provided in the middle of the vacuum path for sending the gas in the processing tank to the vacuum generator. The gas is cooled in the middle of the vacuum path. When the gas is cooled by the heat exchanger, the volume of the gas is reduced. Particularly, when the vapor is cooled and returned to the liquid, the volume is significantly reduced, so that the volume of the gas that the vacuum generator has to suck is reduced, and the efficiency of vacuum cooling can be improved.

特開2014−159931号公報に記載の発明では、蒸気の冷却によって発生した凝縮水は熱交換器の下方に設置しているドレンタンクにためておき、ドレンとして排出するようにしている。真空発生装置がドライ式の真空ポンプの場合、真空ポンプが水滴を吸い込んでしまうと、排気能力が低下することになる。そのため、真空経路内で発生した水滴はドレンとしてドレンタンクにためておき、真空ポンプにはできるだけ送られないようにしている。しかし、一部の水蒸気は真空ポンプまで送られ、真空ポンプ内で発生したドレンが真空ポンプ内に残留するということがあるため、特開2014−66384号公報に記載の発明では、冷却運転を行った後に真空ポンプの乾燥運転を行うようにしている。 In the invention described in JP-A-2014-159931, the condensed water generated by cooling the steam is stored in a drain tank installed below the heat exchanger and discharged as a drain. In the case where the vacuum generator is a dry type vacuum pump, if the vacuum pump sucks in water droplets, the exhaust capability will be reduced. Therefore, water drops generated in the vacuum path are stored as drain in a drain tank so that they are not sent to the vacuum pump as much as possible. However, some of the water vapor is sent to the vacuum pump, and the drain generated in the vacuum pump may remain in the vacuum pump. Therefore, in the invention described in JP-A-2014-66384, the cooling operation is performed. After that, the vacuum pump is dried.

真空ポンプは、内部の羽根車を回転させることでポンプ内部の空気を搬送し、ポンプ外へ押し出すことで内部の圧力を低下させ、圧力の低下によって処理槽内の空気が真空ポンプ内へ流れ込むということで処理槽内を減圧化するものである。真空ポンプ内に水分が入っても、排気とともに排出されるのであれば問題はないが、真空ポンプ内にドレンがたまると、真空ポンプの能力を低下させることになる。真空ポンプにドレンがたまることで真空経路部から空気の吸引量が少なくなると、被冷却物の冷却時間が長くなることになる。そのため、特開2014−66384号公報に記載の発明では、真空ポンプの乾燥運転を行うようにしている。ここにも記載しているように、真空ポンプの乾燥運転を行っている間は真空冷却運転を行うことができない。そのため、真空冷却のバッチ運転を連続して行っており、バッチ運転の間に乾燥運転を行うようにしている真空冷却装置では、乾燥運転の時間が長くなると真空冷却運転の開始が遅れることになった。そのために真空ポンプの乾燥をより効率良く効果的に行う必要がある。 The vacuum pump conveys the air inside the pump by rotating the internal impeller, and lowers the internal pressure by pushing it out of the pump, and the air in the processing tank flows into the vacuum pump due to the decrease in pressure. This reduces the pressure inside the processing tank. Even if water enters the vacuum pump, there is no problem as long as it is discharged together with the exhaust, but when drainage is accumulated in the vacuum pump, the capacity of the vacuum pump is reduced. When the amount of air sucked from the vacuum passage portion decreases due to the accumulation of drain in the vacuum pump, the cooling time of the object to be cooled becomes longer. Therefore, in the invention described in Japanese Patent Laid-Open No. 2014-66384, the drying operation of the vacuum pump is performed. As also described here, the vacuum cooling operation cannot be performed during the drying operation of the vacuum pump. Therefore, the batch operation of vacuum cooling is continuously performed, and in the vacuum cooling device that performs the drying operation during the batch operation, if the time of the drying operation becomes long, the start of the vacuum cooling operation will be delayed. It was Therefore, it is necessary to dry the vacuum pump more efficiently and effectively.

特開2014−66384号公報JP, 2014-66384, A

本発明が解決しようとする課題は、真空ポンプの乾燥運転をより効率よく、効果的に行うことのできる真空冷却装置を提供することにある。   The problem to be solved by the present invention is to provide a vacuum cooling device capable of more efficiently and effectively performing a drying operation of a vacuum pump.

請求項1に記載の発明は、被冷却物を収容する処理槽、処理槽と真空経路によって接続しており処理槽内の気体を吸引する真空ポンプ、前記処理槽と真空ポンプを繋ぐ真空経路の途中で真空経路を遮断する真空弁、前記の真空経路の真空弁と真空ポンプの間へ外気を導入するための真空ポンプ空気導入弁、前記の真空ポンプや真空弁、真空ポンプ空気導入弁の作動を制御する運転制御装置を持ち、処理槽内を真空化することで処理槽内に収容している被冷却物の冷却を行うようにしている真空冷却装置において、前記運転制御装置では、真空冷却終了後に、真空弁を閉じた状態で真空ポンプの作動を行う真空ポンプ乾燥運転を行うようにしており、真空ポンプ乾燥運転では、真空ポンプ空気導入弁を間欠的に開閉する間欠通気乾燥を行った後で真空ポンプ空気導入弁を開いた状態を維持する連続通気乾燥を行いその後に、真空ポンプへの空気導入を停止して真空ポンプ内を減圧する減圧乾燥を行うようにしているものであることを特徴とする。 The invention according to claim 1 includes a processing tank for accommodating an object to be cooled, a vacuum pump connected to the processing tank by a vacuum path for sucking gas in the processing tank, and a vacuum path connecting the processing tank and the vacuum pump. Vacuum valve that shuts off the vacuum path on the way, vacuum pump air introduction valve for introducing outside air between the vacuum valve of the vacuum path and the vacuum pump, operation of the vacuum pump or vacuum valve, vacuum pump air introduction valve In the vacuum cooling device, which has an operation control device for controlling the cooling of the object to be cooled contained in the processing tank by evacuating the inside of the processing tank, the operation control device includes a vacuum cooling device. After the end, the vacuum pump drying operation is performed to operate the vacuum pump with the vacuum valve closed.In the vacuum pump drying operation, intermittent ventilation drying is performed by intermittently opening and closing the vacuum pump air introduction valve. rear Thereafter have line continuous throughdrying to remain open the vacuum pump air inlet valve, that is one that is to perform the drying under reduced pressure for reducing the pressure within the vacuum pump is stopped the air introduction into the vacuum pump Characterize.

請求項に記載の発明は、前記の真空冷却装置において、次バッチの真空冷却運転をすぐに行う場合用の最短乾燥運転時間と、次バッチの真空冷却運転までに間隔がある場合用の最長乾燥時間を設定しておき、次バッチの真空冷却をすぐに行う場合には最短乾燥運転時間の乾燥運転を行うと乾燥運転を終了とし、次バッチの真空冷却運転までに間隔がある場合には最長乾燥時間の乾燥運転を行うと乾燥運転を終了するようにしているものであることを特徴とする。 According to the invention of claim 2 , in the vacuum cooling device, the shortest drying operation time for immediately performing the vacuum cooling operation of the next batch and the longest for the case where there is an interval before the vacuum cooling operation of the next batch. When the drying time is set and the vacuum cooling of the next batch is performed immediately, the drying operation is terminated when the drying operation of the shortest drying operation time is performed, and when there is an interval before the vacuum cooling operation of the next batch, It is characterized in that the drying operation is terminated when the drying operation for the longest drying time is performed.

本発明を実施した場合、真空ポンプの乾燥運転をより効率よく、効果的に行うことができるようになる。   When the present invention is implemented, the drying operation of the vacuum pump can be performed more efficiently and effectively.

本発明の一実施例における真空冷却装置のフロー図Flow chart of the vacuum cooling device in one embodiment of the present invention 本発明の一実施例における真空冷却運転時のタイムチャートTime chart during vacuum cooling operation in one embodiment of the present invention 本発明の他の実施例における真空冷却運転時のタイムチャートTime chart during vacuum cooling operation in another embodiment of the present invention

本発明の一実施例を図面を用いて説明する。図1は本発明の一実施例における真空冷却装置のフロー図、図2と図3は本発明の一実施例における真空冷却運転時のタイムチャートである。真空冷却装置は、処理槽2、真空ポンプ1、熱交換器4、冷水ユニット3、ドレンタンク6、運転制御装置5などからなっている。真空冷却装置は、処理槽2の内部を減圧することによって、処理槽2に収容した被冷却物から水分を蒸発させ、その際に発生する気化熱の作用によって冷却を行う。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart of a vacuum cooling device in one embodiment of the present invention, and FIGS. 2 and 3 are time charts during vacuum cooling operation in one embodiment of the present invention. The vacuum cooling device includes a processing tank 2, a vacuum pump 1, a heat exchanger 4, a cold water unit 3, a drain tank 6, an operation control device 5, and the like. The vacuum cooling device depressurizes the inside of the processing tank 2 to evaporate moisture from the object to be cooled housed in the processing tank 2 and cools it by the action of heat of vaporization generated at that time.

処理槽2と真空ポンプ1の間は、真空経路9によって接続しておき、真空ポンプ1を作動することによって処理槽2内の気体を排出する。このとき、処理槽2内の気体とともに被冷却物から発生した蒸気も真空ポンプ1で吸引するようにしていると、真空ポンプ1が吸引しなければならない気体の体積が大きくなり、処理槽2内の減圧に時間が掛かることになるため、冷却時間が長くなる。そのため真空経路9には途中に熱交換器4を設けておき、真空ポンプ1が吸引している気体や蒸気を熱交換器4によって冷却することで、吸引しなければならない気体の体積を縮小している。 The processing tank 2 and the vacuum pump 1 are connected by a vacuum path 9, and the gas in the processing tank 2 is discharged by operating the vacuum pump 1. At this time, if the vacuum pump 1 sucks the vapor generated from the object to be cooled together with the gas in the processing tank 2, the volume of the gas that the vacuum pump 1 has to suck becomes large, and the inside of the processing tank 2 becomes large. Since it takes time to reduce the pressure, the cooling time becomes long. Therefore, the heat exchanger 4 is provided in the vacuum path 9 and the gas or vapor sucked by the vacuum pump 1 is cooled by the heat exchanger 4 to reduce the volume of gas to be sucked. ing.

熱交換器4は冷水ユニット3と接続しておき、冷水ユニット3で発生させた冷水を熱交換器4が持つタンクにためるようにしている。熱交換器4では、冷水をためているタンクを貫通するようにした複数の伝熱管を設置し、伝熱管内に処理槽2から吸引してきた気体を分散して流すことによって、吸引気体の冷却を行う。熱交換器4の下部には、吸引気体を冷却することで発生した凝縮水をドレンとして集合させるためのドレン集合室12を設ける。ドレンはドレン集合室12に集合させた後に熱交換器4の下方に接続しているドレンタンク6にドレン排出経路を通して送るようにしており、ドレン排出経路にあるドレンタンク6内にためられる。 The heat exchanger 4 is connected to the cold water unit 3 so that the cold water generated in the cold water unit 3 is stored in the tank of the heat exchanger 4. In the heat exchanger 4, a plurality of heat transfer tubes are installed so as to penetrate through a tank for storing cold water, and the gas sucked from the processing tank 2 is dispersed in the heat transfer tubes so that the sucked gas is cooled. I do. A drain collecting chamber 12 for collecting condensed water generated by cooling the suction gas as a drain is provided below the heat exchanger 4. The drain is collected in the drain collecting chamber 12 and then sent to the drain tank 6 connected to the lower side of the heat exchanger 4 through the drain discharge path, and is stored in the drain tank 6 in the drain discharge path.

処理槽2は、内部に被冷却物を収容して密閉することができるようにしており、処理槽2には内部の圧力を検出する槽内圧力検出装置7と、処理槽2内に収容した被冷却物の温度を検出する品温検出装置8を設けている。そして処理槽2内にも真空冷却の終了後に処理槽2内へ大気導入するための処理槽真空解除弁10を設置している。処理槽真空解除弁10での大気導入は、真空冷却で処理槽内を減圧した状態では、処理槽の扉を開くことはできず、処理槽内から被冷却物を取り出すことができないため、真空冷却の処理が終了すると処理槽真空解除弁10を通して処理槽内に大気を導入し、その後に冷却の終わった被冷却物を取り出すようにしている。 The processing tank 2 is configured such that an object to be cooled can be housed and hermetically sealed therein. The processing tank 2 is housed in the processing tank 2 and a tank pressure detection device 7 for detecting the internal pressure. An article temperature detection device 8 for detecting the temperature of the object to be cooled is provided. A processing chamber vacuum release valve 10 for introducing air into the processing tank 2 after the completion of vacuum cooling is also installed in the processing tank 2. When the atmosphere in the processing tank vacuum release valve 10 is introduced, the door of the processing tank cannot be opened and the object to be cooled cannot be taken out from the processing tank when the inside of the processing tank is depressurized by vacuum cooling. When the cooling process is completed, the atmosphere is introduced into the process tank through the process tank vacuum release valve 10, and then the cooled object is taken out.

真空経路9の熱交換器4と真空ポンプ1の間には真空弁11を設置し、真空弁11より真空経路9の下流側に真空ポンプ吸気温度センサ15と真空配管圧力センサ13を設置する。また、真空経路9の真空弁11と真空配管圧力センサ13及び真空ポンプ吸気温度センサ15の間に大気を導入するために真空ポンプ用空気導入手段を設け、真空ポンプ用空気導入手段に設けた真空ポンプ空気導入弁14を開くことで真空ポンプ1の吸引側へ外気が供給されるようにしておく。それぞれの検出装置や操作弁などは、各部の作動を制御する運転制御装置5と接続しておく。運転制御装置5は運転制御のプログラムと、センサ類で検出している各計測値に基づいて真空冷却装置の各機器の作動を制御する。 A vacuum valve 11 is installed between the heat exchanger 4 and the vacuum pump 1 in the vacuum path 9, and a vacuum pump intake air temperature sensor 15 and a vacuum pipe pressure sensor 13 are installed downstream of the vacuum valve 11 in the vacuum path 9. Further, a vacuum pump air introduction unit is provided for introducing the atmosphere between the vacuum valve 11 of the vacuum path 9, the vacuum pipe pressure sensor 13, and the vacuum pump intake air temperature sensor 15, and a vacuum provided in the vacuum pump air introduction unit. The open air is supplied to the suction side of the vacuum pump 1 by opening the pump air introduction valve 14. The respective detection devices and operation valves are connected to the operation control device 5 that controls the operation of each part. The operation control device 5 controls the operation of each device of the vacuum cooling device based on the operation control program and each measurement value detected by the sensors.

実施例での真空冷却運転動作を図2及び図3に基づいて説明する。図2及び図3に記載しているように、運転制御装置5で行う真空冷却の工程は、冷却の準備を行う冷却準備工程、処理槽2内を減圧する真空冷却工程、冷却終了後に処理槽2内を復圧させる真空解除工程からなる。そして真空冷却のバッチ運転を連続して行う場合には、真空解除工程後に次バッチ分の冷却準備工程を開始する。 The vacuum cooling operation in the embodiment will be described based on FIGS. 2 and 3. As shown in FIGS. 2 and 3, the vacuum cooling process performed by the operation control device 5 includes a cooling preparation process for preparing cooling, a vacuum cooling process for depressurizing the inside of the processing tank 2, and a processing tank after completion of cooling. It is composed of a vacuum releasing step for returning the pressure inside 2. When the batch operation of vacuum cooling is continuously performed, the cooling preparation process for the next batch is started after the vacuum releasing process.

運転制御装置5では、連続的に冷却運転を行う場合用の最短乾燥運転時間と、1日の運転終了後等の次バッチ冷却運転までの間隔がある場合用の最長乾燥運転時間を設定しておき、連続して冷却運転を行う場合には、最短乾燥運転時間分の乾燥運転を行っていることを条件に次バッチの冷却運転を可能とし、次バッチ冷却運転までの間隔がある場合は、最長乾燥運転時間を経過するまで乾燥運転を行ってから乾燥運転を終了するようにしておく。図2は真空冷却運転の終了後にすぐ次バッチの真空冷却運転を行う場合、図3は真空冷却運転の終了後は運転を停止するもので、真空ポンプを完全に乾燥させるための乾燥運転を行う場合のものである。 The operation control device 5 sets the shortest drying operation time for continuous cooling operation and the longest drying operation time for when there is an interval until the next batch cooling operation such as after one day of operation. If the cooling operation is continuously performed, the cooling operation of the next batch is enabled on the condition that the drying operation for the shortest drying operation time is performed, and if there is an interval until the next batch cooling operation, Perform the drying operation until the longest drying operation time has elapsed, and then finish the drying operation. 2 shows the case where the vacuum cooling operation of the next batch is carried out immediately after the completion of the vacuum cooling operation, and FIG. 3 shows the operation which is stopped after the completion of the vacuum cooling operation, and the drying operation for completely drying the vacuum pump is carried out. This is the case.

まず真空冷却のバッチ運転を連続的に行っている図2に基づいて説明する。冷却準備の工程では、処理槽2内に被冷却物の収容を行い、処理槽2の扉を閉じることで処理槽2を密閉する。また冷水ユニット3を作動して熱交換器4の冷却用水タンクに冷却用水をためておく。 First, a batch operation of vacuum cooling will be described with reference to FIG. In the cooling preparation step, the object to be cooled is housed in the processing tank 2 and the processing tank 2 is closed by closing the door of the processing tank 2. Further, the cold water unit 3 is operated to store the cooling water in the cooling water tank of the heat exchanger 4.

冷却工程では、真空弁11は開いており、処理槽真空解除弁10と真空ポンプ空気導入弁14は閉じている。真空ポンプ1の作動を行うと、真空ポンプ1は真空経路9を通して処理槽2内の気体を吸引して排出するため、処理槽2内の圧力が低下していく。処理槽2内の圧力が低下し、処理槽2内の飽和蒸気温度が被冷却物温度よりも低くなると、処理槽2内に収容している被冷却物から水分が蒸発する。水分が蒸発する際には周囲から気化熱を奪うため、被冷却物の温度は急激に低下していく。処理槽2内の被冷却物が持っていた熱は、真空ポンプ1が吸引している空気とともに真空経路9内を送られ、真空ポンプ1を通した後に系外へ排出される。 In the cooling process, the vacuum valve 11 is open, and the processing tank vacuum release valve 10 and the vacuum pump air introduction valve 14 are closed. When the vacuum pump 1 is operated, the vacuum pump 1 sucks and discharges the gas in the processing tank 2 through the vacuum path 9, so that the pressure in the processing tank 2 decreases. When the pressure in the processing tank 2 decreases and the saturated vapor temperature in the processing tank 2 becomes lower than the temperature of the object to be cooled, water is evaporated from the object to be cooled contained in the processing tank 2. When water evaporates, the heat of vaporization is taken from the surroundings, so that the temperature of the object to be cooled rapidly drops. The heat of the object to be cooled in the processing tank 2 is sent through the vacuum path 9 together with the air sucked by the vacuum pump 1, passes through the vacuum pump 1, and is then discharged to the outside of the system.

運転制御装置5では、品温検出装置8で検出している処理槽2内の被冷却物温度が目標温度になることを目指して冷却運転を行う。このときに冷却速度を調節する徐冷を行う場合には、処理槽真空解除弁10の開度を調節し、空気を導入しながら減圧を行うことで、処理槽2内の圧力低下速度を調節する。被冷却物を目標温度まで冷却して冷却工程を終了すると、処理槽2内に外気を導入して処理槽内の圧力を大気圧まで復圧する真空解除の工程を行う。運転制御装置5は真空弁11を閉じ、処理槽真空解除弁10を開くことで処理槽内の圧力を上昇させる。この場合も復圧速度を調節する徐戻しを行う場合には、処理槽真空解除弁10の開度を調節して処理槽2内の圧力上昇速度を調節する。 The operation control device 5 performs the cooling operation so that the temperature of the object to be cooled in the processing tank 2 detected by the product temperature detection device 8 reaches the target temperature. At this time, when performing gradual cooling for adjusting the cooling rate, the opening degree of the processing tank vacuum release valve 10 is adjusted and the pressure is reduced while introducing air, thereby adjusting the pressure decrease rate in the processing tank 2. To do. When the object to be cooled is cooled to the target temperature and the cooling process is completed, the process of releasing the vacuum is performed in which the outside air is introduced into the processing tank 2 to restore the pressure in the processing tank to the atmospheric pressure. The operation control device 5 closes the vacuum valve 11 and opens the processing tank vacuum release valve 10 to increase the pressure in the processing tank. Also in this case, when performing the gradual return for adjusting the pressure-regaining speed, the opening rate of the processing tank vacuum release valve 10 is adjusted to adjust the pressure rising speed in the processing tank 2.

槽内圧力検出装置7にて検出している処理槽2内の圧力が大気圧まで戻ると、真空解除の工程を終了する。真空解除が終了すると、処理槽2の扉を開くことができ、処理槽2内からの被冷却物の取り出しを行う。また真空解除と並行して同時に真空ポンプの乾燥運転を行う。続けて次バッチの真空冷却を行うのであれば、真空ポンプの乾燥運転は真空解除工程の間に行う必要がある。真空ポンプの乾燥は、真空弁11を閉じて真空ポンプを作動することで行う。真空弁11を閉じたことで真空ポンプ1の部分は処理槽2とは切り離されるため、処理槽での真空解除と真空ポンプでの乾燥運転は並行して行うことができる。 When the pressure in the processing bath 2 detected by the in-vessel pressure detection device 7 returns to atmospheric pressure, the vacuum releasing process is terminated. When the vacuum is released, the door of the processing tank 2 can be opened, and the object to be cooled is taken out of the processing tank 2. In addition, the vacuum pump is dried at the same time as the vacuum is released. If the subsequent batch is to be vacuum cooled, the vacuum pump must be dried during the vacuum releasing step. The vacuum pump is dried by closing the vacuum valve 11 and operating the vacuum pump. By closing the vacuum valve 11, the part of the vacuum pump 1 is separated from the processing tank 2, so that the vacuum release in the processing tank and the drying operation in the vacuum pump can be performed in parallel.

真空ポンプの乾燥運転時には、真空ポンプ空気導入弁14の開閉を制御することで真空ポンプ1内への空気導入量を調節する。真空ポンプ空気導入弁14の開閉制御は真空ポンプ1内の水分量に基づいて決定しておく。真空冷却装置の冷却運転時、真空ポンプ1は水蒸気を含んだ空気を吸引するために真空ポンプ1内に水分が入り、真空ポンプの表面に水滴が付着する。そのため、乾燥運転を行うことで真空ポンプ内の水滴を除去する。運転制御装置5では、乾燥運転時の工程として、真空ポンプ空気導入弁14を間欠的の開閉する間欠通気乾燥、真空ポンプ空気導入弁14を開いた状態で維持する連続通気乾燥、真空ポンプ空気導入弁14を閉じた状態で維持する減圧乾燥を設定しておき、これらの工程を組み合わせることで乾燥運転を行う。 During the drying operation of the vacuum pump, the opening / closing of the vacuum pump air introduction valve 14 is controlled to adjust the amount of air introduced into the vacuum pump 1. The opening / closing control of the vacuum pump air introduction valve 14 is determined based on the amount of water in the vacuum pump 1. During the cooling operation of the vacuum cooling device, the vacuum pump 1 sucks air containing water vapor, so that water enters the vacuum pump 1 and water drops adhere to the surface of the vacuum pump. Therefore, the water droplets in the vacuum pump are removed by performing the drying operation. In the operation control device 5, as a step during the drying operation, intermittent ventilation drying for intermittently opening and closing the vacuum pump air introduction valve 14, continuous ventilation drying for maintaining the vacuum pump air introduction valve 14 in an open state, vacuum pump air introduction The reduced pressure drying for keeping the valve 14 closed is set, and the drying operation is performed by combining these steps.

図2での乾燥運転は、真空冷却のバッチ運転を連続して行っている場合のものであるため、真空解除の時間のみの短時間で行うものであり、間欠通気乾燥と連続通気乾燥によって真空ポンプ内の乾燥を行っている。真空ポンプを作動している状態で真空ポンプ空気導入弁14を開くと、真空ポンプ内に空気の流れができ、空気流によって真空ポンプ内表面に付着している水滴を押し流すことができる。しかし真空ポンプ内表面の水滴が小さい場合には、多くの空気が流れている間は、真空ポンプ1内の水滴は空気流によって真空ポンプの壁面に押さえつけられることになり、水滴は真空ポンプ内の壁面に薄く広がるようになる。このようになると空気流が水滴を押す作用が少なくなり、水滴は押し出されにくくなる。このような状態となっている場合には、真空ポンプ1の運転は継続したままで真空ポンプ空気導入弁14を開閉することが有効となる。真空ポンプ空気導入弁14を閉じると、空気の供給がなくなるため、真空弁11より下流側の真空配管内は圧力が低下する。すると、真空ポンプ内を流れる空気流によって水滴を壁面へ押さえつけていた力は弱くなり、水滴は表面張力によって集まってかたまりとなるため、厚みを増すことになる。その状態で真空ポンプ空気導入弁14を開き、空気流量を増加させると、水滴が空気流を受ける面積が大きくなっているため、空気流が水滴を押す作用が大きくなり、水滴を出口の方へと大きく押し出すことができる。 The drying operation shown in FIG. 2 is performed in a batch operation of vacuum cooling continuously, and therefore is performed only in a short time of releasing the vacuum. The inside of the pump is being dried. When the vacuum pump air introduction valve 14 is opened while the vacuum pump is operating, a flow of air is created in the vacuum pump, and water drops adhering to the inner surface of the vacuum pump can be pushed away by the air flow. However, when the water droplets on the inner surface of the vacuum pump are small, the water droplets inside the vacuum pump 1 will be pressed against the wall surface of the vacuum pump by the air flow while a large amount of air is flowing, and the water droplets inside the vacuum pump will be suppressed. It spreads thinly on the wall. In this case, the action of the air flow pushing the water droplets is reduced, and the water droplets are less likely to be pushed out. In such a state, it is effective to open and close the vacuum pump air introduction valve 14 while continuing the operation of the vacuum pump 1. When the vacuum pump air introduction valve 14 is closed, the supply of air is stopped, so that the pressure in the vacuum pipe downstream of the vacuum valve 11 decreases. Then, the force that presses the water droplets against the wall surface by the air flow flowing in the vacuum pump becomes weaker, and the water droplets are gathered and aggregated by the surface tension, which increases the thickness. When the vacuum pump air introduction valve 14 is opened in this state and the air flow rate is increased, the area in which the water droplet receives the air flow is increased, so that the action of the air flow pushing the water drop is increased, and the water drop is directed toward the outlet. It can be pushed out greatly.

真空ポンプ空気導入弁14を開閉する間欠通気乾燥は、真空ポンプ内表面に押し流すことのできる大きさの水滴が付いている場合には効果的であるが、押し流すことのできる水滴がなくなった以降の真空ポンプ内面に薄い膜状となっている水滴に対しては、空気を間欠的に流しても空気流によって水滴を押し出すことはできなくなる。その場合には連続的に空気を流し、風の力によって水滴の蒸発を促進させる連続通気乾燥を行う。運転制御装置は、真空ポンプ空気導入弁14の間欠開閉を所定時間行うと、真空ポンプ空気導入弁14を開放で固定する。真空ポンプ空気導入弁14を開放していると真空ポンプ内では空気が常に流れることになり、真空ポンプ内表面の水分を風の力によって蒸発させることができる。 Intermittent aeration drying for opening and closing the vacuum pump air introduction valve 14 is effective when water droplets of a size that can be swept off are attached to the inner surface of the vacuum pump, but after running out of water drops that can be swept away. Even if the air is intermittently flown, it becomes impossible to push out the water drop having a thin film on the inner surface of the vacuum pump by the air flow. In that case, continuous aeration drying is performed in which air is continuously flowed and the force of the wind accelerates the evaporation of water droplets. The operation control device fixes the vacuum pump air introduction valve 14 in an open state after intermittently opening and closing the vacuum pump air introduction valve 14 for a predetermined time. When the vacuum pump air introduction valve 14 is opened, air always flows in the vacuum pump, and the moisture on the inner surface of the vacuum pump can be evaporated by the force of the wind.

真空冷却のバッチ運転を連続で行っており、冷却終了後に次バッチをすぐに行う場合は、真空ポンプ乾燥運転によって次バッチの開始が遅れることを防止するため、30秒など所定の時間もしくは真空解除工程が終了するまでで乾燥運転を終了する。運転制御装置5では、最短乾燥運転時間の乾燥運転が終了した後で、次バッチの真空冷却を行う。真空ポンプ1の乾燥運転を行っておくことで、次回の真空冷却時に真空ポンプは必要な能力を発揮することができる。 If the batch operation of vacuum cooling is continuously performed and the next batch is to be performed immediately after the cooling is completed, in order to prevent the start of the next batch from being delayed by the vacuum pump drying operation, a predetermined time such as 30 seconds or vacuum release The drying operation is completed until the process is completed. The operation control device 5 vacuum-cools the next batch after the drying operation for the shortest drying operation time is completed. By performing the drying operation of the vacuum pump 1, the vacuum pump can exhibit the required capacity at the next vacuum cooling.

図3は、1日の最終の真空冷却運転を行ってその後は停止としている場合のタイムチャートである。冷却の工程を終了して真空解除の工程を行い、真空解除と並行して真空ポンプの乾燥運転を行うところまでは、図2の場合と同じある。しかし図3での真空冷却工程後に行う乾燥運転は、長い時間をかけて真空ポンプ内を完全に乾燥させるようにしている。 FIG. 3 is a time chart when the final vacuum cooling operation is performed for one day and then stopped. The process up to the end of the cooling process, the vacuum release process, and the drying operation of the vacuum pump in parallel with the vacuum release is the same as in the case of FIG. However, in the drying operation performed after the vacuum cooling step in FIG. 3, the inside of the vacuum pump is completely dried over a long time.

先に記載したように真空ポンプ空気導入弁14を間欠的に開閉する間欠通気乾燥を行うと、真空ポンプ内の水滴を空気流によって真空ポンプ内から排出することができる。さらに設定時間分の間欠通風乾燥を行った後で、真空ポンプ空気導入弁14を開放したままとする連続通気乾燥を行う。この連続通気乾燥は、真空ポンプ内の表面に薄く付着している水滴を風の力で蒸発させる効果を狙って、真空ポンプ1内に空気の流れを作るものである。 By performing intermittent aeration drying in which the vacuum pump air introduction valve 14 is intermittently opened and closed as described above, water droplets in the vacuum pump can be discharged from the vacuum pump by an air flow. Furthermore, after performing intermittent ventilation drying for a set time, continuous aeration drying with the vacuum pump air introduction valve 14 left open is performed. This continuous aeration drying creates an air flow in the vacuum pump 1 aiming at the effect of evaporating water droplets thinly attached to the surface inside the vacuum pump by the force of the wind.

最長乾燥運転では、この連続通気乾燥の後に真空ポンプ空気導入弁14を閉止しての減圧乾燥にて真空ポンプ内の乾燥を行う。真空ポンプ空気導入弁14を閉じると外気の流入がなくなるために真空ポンプ内の圧力は低下する。真空ポンプの乾燥運転時には真空弁11を閉じているため、真空ポンプが減圧する範囲は狭く、真空ポンプ内ではすぐに圧力が低下する。真空ポンプ内の圧力が真空ポンプ内水滴の飽和蒸気圧力より低くなると、真空ポンプ内の水滴は蒸発するため減圧することでも真空ポンプ内を乾燥することができる。例えば水滴が溝の中に入っていた場合、その水滴は風の作用だけでは蒸発させ難いが、真空ポンプ内の圧力を飽和蒸気圧力よりも低くすると、真空ポンプ内の水滴は沸騰によって蒸発するため、風の力では蒸発させにくい溝に入った水滴も蒸発させることができる。乾燥運転の時間を長くとれる場合には最長乾燥運転時間の乾燥を行い、真空ポンプ内は完全に乾燥させる。 In the longest drying operation, the vacuum pump air introduction valve 14 is closed and the vacuum pump is dried after the continuous aeration drying to dry the inside of the vacuum pump. When the vacuum pump air introduction valve 14 is closed, the inflow of outside air is stopped, so that the pressure inside the vacuum pump decreases. Since the vacuum valve 11 is closed during the drying operation of the vacuum pump, the range in which the vacuum pump depressurizes is narrow, and the pressure immediately drops in the vacuum pump. When the pressure inside the vacuum pump becomes lower than the saturated vapor pressure of the water droplets inside the vacuum pump, the water droplets inside the vacuum pump evaporate, so the inside of the vacuum pump can also be dried by reducing the pressure. For example, if water drops enter the groove, it is difficult to evaporate them only by the action of wind, but if the pressure inside the vacuum pump is made lower than the saturated vapor pressure, the water drops inside the vacuum pump will evaporate due to boiling. It is possible to evaporate water droplets that enter the groove, which is difficult to evaporate by the force of wind. When the drying operation time can be extended, the drying is performed for the longest drying operation time, and the vacuum pump is completely dried.

なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 The present invention is not limited to the above-described embodiments, and many modifications can be made by a person having ordinary skill in the art within the technical idea of the present invention.

1 真空ポンプ
2 処理槽
3 冷水ユニット
4 熱交換器
5 運転制御装置
6 ドレンタンク
7 槽内圧力検出装置
8 品温検出装置
9 真空経路
10 処理槽真空解除弁
11 真空弁
12 ドレン集合室
13 真空配管圧力センサ
14 真空ポンプ空気導入弁
15 真空ポンプ吸気温度センサ
1 vacuum pump
2 processing tanks
3 Cold water unit
4 heat exchanger
5 Operation control device 6 Drain tank
7 Tank pressure detection device
8 Product temperature detector
9 Vacuum path
10 Processing tank vacuum release valve
11 Vacuum valve
12 drain meeting room
13 Vacuum piping pressure sensor 14 Vacuum pump air introduction valve 15 Vacuum pump intake air temperature sensor

Claims (2)

被冷却物を収容する処理槽、処理槽と真空経路によって接続しており処理槽内の気体を吸引する真空ポンプ、前記処理槽と真空ポンプを繋ぐ真空経路の途中で真空経路を遮断する真空弁、前記の真空経路の真空弁と真空ポンプの間へ外気を導入するための真空ポンプ空気導入弁、前記の真空ポンプや真空弁、真空ポンプ空気導入弁の作動を制御する運転制御装置を持ち、処理槽内を真空化することで処理槽内に収容している被冷却物の冷却を行うようにしている真空冷却装置において、前記運転制御装置では、真空冷却終了後に、真空弁を閉じた状態で真空ポンプの作動を行う真空ポンプ乾燥運転を行うようにしており、真空ポンプ乾燥運転では、真空ポンプ空気導入弁を間欠的に開閉する間欠通気乾燥を行った後で真空ポンプ空気導入弁を開いた状態を維持する連続通気乾燥を行いその後に、真空ポンプへの空気導入を停止して真空ポンプ内を減圧する減圧乾燥を行うようにしているものであることを特徴とする真空冷却装置。 A processing tank that contains the object to be cooled, a vacuum pump that is connected to the processing tank by a vacuum path to suck gas in the processing tank, and a vacuum valve that shuts off the vacuum path in the middle of the vacuum path that connects the processing tank and the vacuum pump. A vacuum pump air introduction valve for introducing outside air between the vacuum valve and the vacuum pump of the vacuum path, an operation control device for controlling the operation of the vacuum pump and the vacuum valve, and the vacuum pump air introduction valve, In a vacuum cooling device configured to cool an object to be cooled contained in the processing tank by evacuating the inside of the processing tank, in the operation control device, a state in which a vacuum valve is closed after completion of vacuum cooling. The vacuum pump drying operation is performed by operating the vacuum pump with the vacuum pump drying operation.In the vacuum pump drying operation, the vacuum pump air introduction valve is opened after intermittent ventilation drying in which the vacuum pump air introduction valve is opened and closed intermittently. Thereafter have line continuous throughdrying maintaining gastric state, vacuum cooling apparatus, characterized in that the air inlet stop is one that is to perform the drying under reduced pressure for reducing the pressure within the vacuum pump to the vacuum pump. 請求項1に記載の真空冷却装置において、次バッチの真空冷却運転をすぐに行う場合用の最短乾燥運転時間と、次バッチの真空冷却運転までに間隔がある場合用の最長乾燥時間を設定しておき、次バッチの真空冷却をすぐに行う場合には最短乾燥運転時間の乾燥運転を行うと乾燥運転を終了とし、次バッチの真空冷却運転までに間隔がある場合には最長乾燥時間の乾燥運転を行うと乾燥運転を終了するにしているものであることを特徴とする真空冷却装置。   The vacuum cooling device according to claim 1, wherein a minimum drying operation time for immediately performing a vacuum cooling operation of the next batch and a maximum drying time for an interval between vacuum cooling operations of the next batch are set. If vacuum cooling of the next batch is to be performed immediately, the drying operation will be terminated when the drying operation of the shortest drying operation time is performed, and if there is an interval before the vacuum cooling operation of the next batch, the drying of the longest drying time will be completed. The vacuum cooling device is characterized in that the drying operation is terminated when the operation is performed.
JP2016078372A 2016-04-08 2016-04-08 Vacuum cooling device Active JP6690982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016078372A JP6690982B2 (en) 2016-04-08 2016-04-08 Vacuum cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016078372A JP6690982B2 (en) 2016-04-08 2016-04-08 Vacuum cooling device

Publications (2)

Publication Number Publication Date
JP2017187258A JP2017187258A (en) 2017-10-12
JP6690982B2 true JP6690982B2 (en) 2020-04-28

Family

ID=60044767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016078372A Active JP6690982B2 (en) 2016-04-08 2016-04-08 Vacuum cooling device

Country Status (1)

Country Link
JP (1) JP6690982B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344221B (en) * 2017-12-22 2024-05-28 佛山精迅能冷链科技有限公司 Vacuum precooler capable of regulating pressure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254299B2 (en) * 2003-03-27 2009-04-15 株式会社日立プラントテクノロジー Full water device
JP2010148541A (en) * 2008-12-24 2010-07-08 Panasonic Corp Dishwasher
JP2014066384A (en) * 2012-09-25 2014-04-17 Samson Co Ltd Vacuum cooling apparatus
JP6196824B2 (en) * 2013-07-01 2017-09-13 株式会社サムソン Vacuum cooling device
JP2016090200A (en) * 2014-11-11 2016-05-23 株式会社サムソン Vacuum cooling apparatus

Also Published As

Publication number Publication date
JP2017187258A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
CN104081063B (en) Steam sterilization device
JP5669259B2 (en) Vacuum cooling device
JP7079353B2 (en) A heat pump with an external gas recovery space, a method of operating the heat pump, and a method of manufacturing the heat pump.
JP2011183196A (en) Method for sterilizing object
JP6196824B2 (en) Vacuum cooling device
JP6690982B2 (en) Vacuum cooling device
JP6748456B2 (en) Vacuum cooling device
KR101187918B1 (en) Apparatus for supplying steam
JP5754263B2 (en) Vacuum cooling device
JP6116282B2 (en) Vacuum cooling device
JP5036480B2 (en) Concentration apparatus and concentration method
JP2014066384A (en) Vacuum cooling apparatus
KR950009993Y1 (en) Evaporating apparatus for vapour compression
JP5607505B2 (en) Vacuum cooling device
CN105962004B (en) Heating control method of heat pump vacuum freeze drying combined equipment
JP6429661B2 (en) Vacuum cooling device
JP2019507311A (en) Heat pump having gas trap, method of operating gas trap, and method of manufacturing heat pump having gas trap
RU2403517C1 (en) Installation for gas line drying
JP6433323B2 (en) Vacuum cooling device
JP6138013B2 (en) Vacuum cooling device
JP6647095B2 (en) Vacuum cooling device
KR100601350B1 (en) vacuum evaporator
JP7328682B2 (en) How to operate a vacuum dryer
JP2015052409A (en) Vacuum cooling device
JP2015010812A (en) Vacuum cooling equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200409

R150 Certificate of patent or registration of utility model

Ref document number: 6690982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150