JPS61284559A - Surface treatment of titanium material - Google Patents

Surface treatment of titanium material

Info

Publication number
JPS61284559A
JPS61284559A JP12425485A JP12425485A JPS61284559A JP S61284559 A JPS61284559 A JP S61284559A JP 12425485 A JP12425485 A JP 12425485A JP 12425485 A JP12425485 A JP 12425485A JP S61284559 A JPS61284559 A JP S61284559A
Authority
JP
Japan
Prior art keywords
oxide film
vacuum
titanium
metallic luster
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12425485A
Other languages
Japanese (ja)
Inventor
Hirobumi Yoshimura
博文 吉村
Kinichi Kimura
木村 欽一
Naoaki Harada
原田 尚明
Masayuki Hayashi
正之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12425485A priority Critical patent/JPS61284559A/en
Publication of JPS61284559A publication Critical patent/JPS61284559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To improve the mechanical properties of a Ti material having an oxide film by the diffusion and penetration of O2 into the Ti material as well as to give metallic luster to the Ti material by the disappearance of the oxide film by heating the Ti material at a specified temp. in vacuum or in an inert gas. CONSTITUTION:A Ti material having an oxide film formed on the surface by heat treatment is heated at 600-790 deg.C for about 10min in vacuum or in an atmosphere of an inert gas such as Ar. O2 in the oxide film diffuses and penetrates into the Ti material to improve the bendability and mechanical strength of the Ti material. At the same time, the oxide film disappears, forming a surface having metallic luster.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チタン材(純チタンおよびチタン合金)の塊
・板管・棒或いは線材などに生成している表面酸化層を
、600℃〜790℃の温度範囲に加熱することによっ
て消失させ、金属光沢表面を得ると同時に機械的性質を
改善せしめる方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention removes the surface oxidation layer formed on titanium material (pure titanium and titanium alloy) lumps, plate tubes, rods, wires, etc. The present invention relates to a method in which the metallic luster is removed by heating to a temperature range of 790° C., thereby obtaining a metallic luster surface and improving mechanical properties at the same time.

(従来の技術) チタン材は、酸素との親和力の強い金属であることはよ
く知られている。従って、チタン打金、大気中など酸化
雰囲気中で加熱すると表面に酸化層が生成する。一般に
チタン材の工業製品は、外観的には酸化層のない金属光
沢をもった製品が好まれる。これらの製品を製造する場
合、熱間加工あるいは冷間加工を行った後、軟化焼鈍を
行うことが一般的である。
(Prior Art) It is well known that titanium material is a metal that has a strong affinity for oxygen. Therefore, when a titanium hammer is heated in an oxidizing atmosphere such as in the air, an oxide layer is formed on the surface. Generally, industrial products made of titanium are preferred to have a metallic luster without an oxidized layer in terms of appearance. When manufacturing these products, it is common to perform hot working or cold working and then softening annealing.

この時にこれら酸化皮膜を生成させないために、加熱の
最初から真空中又は不活性ガス雰囲気中で加熱している
(例えば特公昭57−47751号公報)。また大気中
など酸化雰囲気中で加熱して、表面に酸化皮膜が生成し
た場合には、これff:機械的に研削するか或いは化学
的に酸洗によって表面を溶剤する方法が工業的に採られ
ている。
In order to prevent the formation of these oxide films at this time, heating is performed in vacuum or in an inert gas atmosphere from the beginning (for example, Japanese Patent Publication No. 57-47751). In addition, if an oxide film is formed on the surface by heating in an oxidizing atmosphere such as the air, mechanically grinding or chemically pickling the surface with a solvent is an industrially adopted method. ing.

酸化層を生成させないためには、加熱する前から真空中
もしくは不活性ガス中に保持して、酸化防止に対して細
心の注意を払う必要があシ、また酸化層を除去すること
は、製造工程上複雑であり、またコスト的にも有利でな
い。
In order to prevent the formation of an oxidized layer, it is necessary to take great care to prevent oxidation by keeping it in a vacuum or inert gas before heating. The process is complicated and it is not advantageous in terms of cost.

一方酸素はチタンに対して機械的強度を高めるなど、機
械的性質を改善する役割を担っておシ、最終製品の機械
的強度の調整には、現在インゴット製造時に酸素含有量
の調整を行っている。近年率コツト製造が多くを占める
ようになシ、従来はインゴット製造工程以降での成分に
よる強度調整は不可能とされておシ、そのため小ロット
に対しても、成分調整は溶解から行わなければならず歩
留低下をきたしていた。
On the other hand, oxygen plays a role in improving the mechanical properties of titanium, such as increasing its mechanical strength.Currently, oxygen content is adjusted during ingot production to adjust the mechanical strength of the final product. There is. In recent years, small-scale manufacturing has become commonplace, and it has traditionally been thought that it was impossible to adjust the strength of ingots after the ingot manufacturing process. Therefore, even for small lots, the ingredients must be adjusted from the melting stage. This resulted in a decrease in yield.

また、従来酸化雰囲気中で加熱すれば、チタン中へ酸素
が浸入して強度を高めることは知られていたが(チタニ
ウム・ジルコニウムVo1.32 、 No。
Furthermore, it has been known that when heated in an oxidizing atmosphere, oxygen penetrates into titanium and increases its strength (Titanium/Zirconium Vol. 1.32, No.

1.17)、これでは表層部に濃度勾配を生じ、かつ表
面に濃い酸化スケールが生成し外観上好ましくない。
1.17), this causes a concentration gradient in the surface layer, and a thick oxide scale is formed on the surface, which is unfavorable in terms of appearance.

(発明が解決しようとする問題点) 従来、チタンの表面に外観上酸化皮膜が生成していると
、これを機械的或いは化学的に削除していたが、これら
の方法によると、まず削除という工程が一工程入ること
による手間、あるいはコスト上の不利が挙げられる。ま
たチタンのように、比較的高価な金属−表面を削除する
ことは、工業的生産上歩留的に有利ではなく、極力避け
たい工程である。
(Problem to be solved by the invention) Conventionally, when an oxide film was formed on the surface of titanium, it was removed mechanically or chemically. There are disadvantages in terms of labor and cost due to the addition of one step. Furthermore, removing the surface of a relatively expensive metal such as titanium is not advantageous in terms of yield in industrial production, and is a process that should be avoided as much as possible.

まだ、機械的な研削を行うと表面に凹凸を生じ、美観上
あまり好ましくないことが多く、また化学的溶剤でも酸
化皮膜の厚さの違いによって、溶剤の程度が異なシ、ピ
ッティングが生じて凹凸が激しくなることも多い。この
様に酸化皮膜を削除す   □る従来の方法は、工業的
生産上、コスト的また表面性状上においても問題が多い
However, mechanical grinding often creates unevenness on the surface, which is not aesthetically pleasing, and even with chemical solvents, different degrees of oxidation and pitting may occur depending on the thickness of the oxide film. It is often very uneven. The conventional method of removing the oxide film as described above has many problems in terms of industrial production, cost, and surface quality.

また、酸素の含有量にて機械的性質の異なるチタン材を
造シ分けている。その成分は、従来溶解時によって決ま
っておシ、それ以降の成分調整は不可能であった。さら
に近年小ロツト化が多くなるにつれ、工業的生産上歩留
低下をきたしていた。
In addition, titanium materials are made with different mechanical properties depending on the oxygen content. Conventionally, the components have been determined depending on the time of dissolution, and it has been impossible to adjust the components thereafter. Furthermore, as the number of small lots has increased in recent years, yields have been decreasing in industrial production.

(問題点を解決するための手段) 本発明者らは、表面上および機械的性質上の各問題点を
同時に解決する方法を見い出した。すなわちチタンの表
面に熱処理などによって酸化皮膜が生成した場合、或い
は成形時のロールとのスリ疵防止対策として、予め酸化
皮膜を生成せしめた場合、これを真空中又は不活性ガス
中にて、600℃以上790℃以下の温度範囲で加熱す
ると、表面部にある酸化皮膜中の酸素が金属内部に拡散
移動して、酸化皮膜が消失する結果、表面部は金属光沢
を呈し、また、金属内部に移動した酸素は均一化の傾向
を示す結果、曲げ加工性などと同時に、機械的性質が改
善されることを見い出した。
(Means for Solving the Problems) The present inventors have discovered a method for simultaneously solving the problems on the surface and mechanical properties. In other words, if an oxide film is formed on the surface of titanium by heat treatment or the like, or if an oxide film is formed in advance as a measure to prevent scratches with the roll during molding, it is heated for 600 minutes in a vacuum or in an inert gas. When heated in a temperature range from ℃ to 790℃, the oxygen in the oxide film on the surface diffuses into the metal, and the oxide film disappears, giving the surface a metallic luster. It has been found that as a result of the transferred oxygen showing a tendency to become homogenized, mechanical properties as well as bending workability are improved.

以下本発明の方法を詳細に説明する。The method of the present invention will be explained in detail below.

本発明は、表面に外観上酸化皮膜を生じているチタン材
の塊・板・管・棒或いは線材を不活性ガス中もしくは真
空中で、600℃以上790℃以下の温度範囲に加熱す
ることによシ、外観上表面酸化層をなくし金属光沢をも
たらすと同時に、機械的性質を改善する方法である。
The present invention involves heating a titanium lump, plate, tube, rod, or wire rod that has an oxide film on its surface to a temperature range of 600°C or more and 790°C or less in an inert gas or vacuum. This is a method that eliminates the surface oxidation layer in appearance and provides metallic luster, while at the same time improving mechanical properties.

この発明が、有効に適用できる一つの例は、熱間あるい
は冷間加工(例えば熱間圧延あるいは冷間圧延)後、軟
化焼鈍する場合である。しかし真空中又は不活性ガス中
での熱処理温度を高くしすぎると、機械的性質の面で問
題が生じる。つまり790℃を超えると、チタン材の結
晶粒が粗大化し、その結果曲げ加工、成形加工において
表面に肌荒れが生じたシ、また引張シ、伸びが低下し、
同様に曲げ加工などにおいて表面割れの原因となシ、材
質的に好ましくない。
One example where this invention can be effectively applied is when softening annealing is performed after hot or cold working (for example, hot rolling or cold rolling). However, if the heat treatment temperature in vacuum or inert gas is made too high, problems arise in terms of mechanical properties. In other words, when the temperature exceeds 790°C, the crystal grains of the titanium material become coarse, resulting in roughness on the surface during bending and forming processes, as well as a decrease in tensile strength and elongation.
Similarly, it does not cause surface cracks during bending, etc., and is therefore undesirable as a material.

また、600℃未満では金属光沢肌を得るためにはかな
りの長時間を要し、かつ軟化焼鈍に際して゛は再結晶し
にくく、良好な材質が得られない。例えば、第1図は予
め大気中にて750℃で2分間加熱して、外観的に表面
に酸化皮膜を生成させた純チタン材を、さらに真空中に
て温度と時間を変えて表面の外観を調べた結果を示す。
Further, if the temperature is lower than 600°C, it takes a considerable amount of time to obtain a metallic lustrous surface, and it is difficult to recrystallize during softening annealing, making it impossible to obtain a good material. For example, Figure 1 shows a pure titanium material that has been heated in advance at 750°C for 2 minutes in the air to form an oxide film on its surface, and then heated in vacuum at different temperatures and times to improve its surface appearance. The results of the investigation are shown below.

第1図の斜線部分では金属光沢が得られる。A metallic luster is obtained in the shaded area in FIG.

第2図は、予め表面酸化したチタン材の真空中での加熱
温度と、表面状態結晶粒度および曲げ試験表面肌荒れ状
態の関係図である。予め表面酸化する条件は、大気中で
750℃、2分間行い、真空中加熱保定時間を2分とし
た。
FIG. 2 is a diagram showing the relationship between the heating temperature in a vacuum of a titanium material whose surface has been oxidized in advance, the surface state crystal grain size, and the surface roughness state in a bending test. The surface oxidation was performed in advance at 750° C. for 2 minutes in the air, and the heating retention time in vacuum was 2 minutes.

材質面では、第2図に示す様に、790℃を超えると結
晶粒が粗大化し曲げ加工などで表面に肌荒れを生じたり
、また引張シ、伸びが低下する傾向を示し、同様に曲げ
加工などにおいて割れが発生したりする。
In terms of material quality, as shown in Figure 2, when the temperature exceeds 790°C, the crystal grains become coarse and the surface becomes rough during bending, and tensile strength and elongation tend to decrease. Cracks may occur.

なお、金属光沢を示す好適な条件は、最初の酸化皮膜の
程度によって異なシ、酸化皮膜の厚い場合は、600℃
〜790 ℃の温度範囲で、高温側或いは長時間側とす
る。尚、純チタンの変形特性などに、さほど影響も及ぼ
さない程度の元素を含むチタン合金(例えばTi −0
,2%Pd合金ナト)ニおいても、同様の効果が認めら
れる。
Note that the suitable conditions for showing metallic luster vary depending on the degree of the initial oxide film.
The temperature range is 790°C, which is defined as the high temperature side or the long time side. It should be noted that titanium alloys containing elements that do not have much effect on the deformation characteristics of pure titanium (for example, Ti-0
, 2% Pd alloy Na), similar effects are observed.

(実施例) (1)純tり7JIS2種材、板厚0−3mmの冷延ま
1材と用いて、次の二つの熱処理を行った。一つは大気
雰囲気中にて700 ℃、10分加熱を行い表面に酸化
皮膜を生成させた後、Arガス中にて780℃10分加
熱した。他の−っは真空中にて700℃10分加熱を行
い、表面に酸化皮膜全生成することなく、引き続きAr
ガス中にて、780℃10分加熱を行った。
(Example) (1) The following two heat treatments were performed using a pure t-7 JIS Class 2 material and a cold rolled 1 material with a plate thickness of 0 to 3 mm. One was heated at 700° C. for 10 minutes in the air to form an oxide film on the surface, and then heated at 780° C. for 10 minutes in Ar gas. The other parts were heated at 700°C for 10 minutes in a vacuum, and then Ar was continued without forming an oxide film on the surface.
Heating was performed at 780° C. for 10 minutes in gas.

この結果、外観上の表面は、双方ともに酸化皮膜のない
金属晃沢を示した。また機械的強度は、前者が後者に較
べ約5%上昇し、かつ曲げ加工を行っても割れは発生せ
ず、肌荒れもほとんどなかった。
As a result, the external appearance of both surfaces showed a metallic luster with no oxide film. In addition, the mechanical strength of the former was approximately 5% higher than that of the latter, and even after bending, no cracking occurred and there was almost no roughening of the surface.

(2)純チタンJI82種材の熱延板は、表面に濃い酸
化スケールが生成しており、これを真空中にて、750
℃50分保定加熱全行った結果、外観上酸化皮膜のない
金属光沢を示した。また機械的強度の向上効果も認めら
れた。
(2) A hot-rolled sheet made of pure titanium JI 82 has a thick oxide scale on its surface, which is removed by
As a result of heating at a constant temperature of 50 minutes at °C, the appearance showed a metallic luster with no oxide film. The effect of improving mechanical strength was also observed.

(発明の効果) 本発明は表面酸化皮膜を有するチタン材を、真空中ある
いは不活性ガス中にて、600℃〜790℃の温度範囲
で加熱することにより、金属光沢表面、 を示し、同時
に機械的性質全改善することを目的としたものである。
(Effects of the Invention) The present invention provides a metallic luster surface by heating a titanium material having a surface oxide film in a temperature range of 600°C to 790°C in a vacuum or in an inert gas, and at the same time shows a metallic luster surface. The aim is to improve all the physical properties of the robot.

この発明を工業的に適用でき、 る方法として、板の焼
鈍処理や、管の成形後の歪取シ焼鈍などにおいて、最初
から表面酸化皮膜全生成している状態、あるいは生成し
ていなくても焼鈍を行う操作上、真空あるいはArなど
の雰囲気加熱焼鈍炉に材料全挿入する時、加熱初期にお
いて表面が大気にふれて、やや酸化された場合でも、そ
の後引き続いて真空中あるいは不活性ガス中で加熱すれ
ば、表面が金属光沢のあるものが得られる。
This invention can be applied industrially, such as when annealing a plate or strain relief annealing after forming a pipe, in which the surface oxide film is completely formed from the beginning, or even if it is not formed. During annealing, when inserting the entire material into a vacuum or Ar atmosphere heating annealing furnace, even if the surface comes into contact with the atmosphere during the initial heating stage and becomes slightly oxidized, the material may be subsequently placed in a vacuum or inert gas. When heated, a surface with a metallic luster can be obtained.

一方、従来溶解以降の工程では、成分調整をすることが
できなかったが、予め酸化雰囲気に加熱した後、真空中
あるいは不活性ガス中にて加熱し、表面の酸素を内部へ
拡散浸入させることにょシ、機械的強度を向上させ、か
つ、伸びが改善され、曲げ加工性などを向上させる。従
来、小ロツト製造に対し、歩留低下をきたしていたが、
本発明法によって、表面が金属光沢を示し、かつ機械的
性質を調整することができ、工業生産上その効果は大き
い。
On the other hand, in the conventional process after melting, it was not possible to adjust the components, but after heating in an oxidizing atmosphere in advance, heating in vacuum or inert gas allows oxygen on the surface to diffuse into the interior. In addition, it improves mechanical strength, improves elongation, and improves bending workability. Traditionally, small-lot production has resulted in lower yields, but
By the method of the present invention, the surface exhibits metallic luster and the mechanical properties can be adjusted, which is highly effective in industrial production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、純チタン材の酸化皮膜生成と金属光沢化する
条件範囲の図表、第2図は真空中の保定加熱時間とチタ
ン材の表面および材質を示す図表混a(0C)
Figure 1 is a diagram showing the condition range for the formation of an oxide film on pure titanium material and metallic luster, and Figure 2 is a diagram showing the retention heating time in vacuum and the surface and material quality of titanium material (0C).

Claims (1)

【特許請求の範囲】[Claims] 表面酸化皮膜を有するチタン材を、真空中又は不活性ガ
ス中にて、600℃以上790℃以下の温度範囲に加熱
して、該酸化皮膜を消失させると同時に、機械的性質を
改善せしめることを特徴とするチタン材の表面処理方法
A method of heating a titanium material having a surface oxide film to a temperature range of 600°C to 790°C in vacuum or in an inert gas to eliminate the oxide film and at the same time improve mechanical properties. Characteristic surface treatment method for titanium materials.
JP12425485A 1985-06-10 1985-06-10 Surface treatment of titanium material Pending JPS61284559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12425485A JPS61284559A (en) 1985-06-10 1985-06-10 Surface treatment of titanium material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12425485A JPS61284559A (en) 1985-06-10 1985-06-10 Surface treatment of titanium material

Publications (1)

Publication Number Publication Date
JPS61284559A true JPS61284559A (en) 1986-12-15

Family

ID=14880775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12425485A Pending JPS61284559A (en) 1985-06-10 1985-06-10 Surface treatment of titanium material

Country Status (1)

Country Link
JP (1) JPS61284559A (en)

Similar Documents

Publication Publication Date Title
JPH01279736A (en) Heat treatment for beta titanium alloy stock
JPS62149859A (en) Production of beta type titanium alloy wire
JP4179080B2 (en) Hot working method of high Nb alloy
US4802930A (en) Air-annealing method for the production of seamless titanium alloy tubing
JPS61284559A (en) Surface treatment of titanium material
JPH03247745A (en) Manufacture of pure niobium-rolled sheet for superconducting material
JP3118342B2 (en) Method of heating titanium and titanium alloy rolled material
JP2812898B2 (en) Method for manufacturing clad plate with excellent formability
JPS62103335A (en) Ultra-high-purity metallic niobium
JPS5910522B2 (en) copper coated aluminum wire
JPH0115564B2 (en)
JPH07268598A (en) Titanium sheet having excellent antidazzle property and its production
SU1509143A1 (en) Method of producing foil from magnesium alloys
JPS61207568A (en) Surface treatment of titanium or titanium alloy
JPH08309561A (en) Manufacture of clad plate excellent in formability
JPH0254745A (en) Manufacture of pure titanium plate for working
JPH0261042A (en) Production of beta titanium alloy wire having high fatigue strength
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JPH08311627A (en) Hot rolling method for titanium slab
JPH0285345A (en) Manufacture of alpha+beta titanium alloy material having reduced componental segregation and having excellent homogeneity
JPS5837384B2 (en) Continuous annealing method for titanium and titanium alloy strips
JPH0776411B2 (en) Method for manufacturing thin-walled high-strength blind aluminum material
JPH09217157A (en) Method for annealing titanium thin cold rolled coil
JPH0569612B2 (en)
JPH0135069B2 (en)