JPS61283392A - Treatment of fresh water made by reverse osmosis apparatus - Google Patents
Treatment of fresh water made by reverse osmosis apparatusInfo
- Publication number
- JPS61283392A JPS61283392A JP12555585A JP12555585A JPS61283392A JP S61283392 A JPS61283392 A JP S61283392A JP 12555585 A JP12555585 A JP 12555585A JP 12555585 A JP12555585 A JP 12555585A JP S61283392 A JPS61283392 A JP S61283392A
- Authority
- JP
- Japan
- Prior art keywords
- value
- line
- filter
- reverse osmosis
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、逆浸透法により製造される淡水に硬度成分を
添加して飲料水を得る方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for obtaining drinking water by adding hardness components to fresh water produced by reverse osmosis.
本方法は海水又はかん水より製造される淡水の処理に適
応可能であるが、特に海水より製造される淡水の後処理
に適する。The method is applicable to the treatment of freshwater produced from seawater or brine, but is particularly suitable for the after-treatment of freshwater produced from seawater.
逆浸透法は蒸発法等他の海水淡水化技術と比較し、生産
水量当シのエネルギー消費量が少なく、蒸発法と比べて
i−1,電気透析法と比べても1〜1程度とされておシ
、大型装置も稼動を始めている。Compared to other seawater desalination technologies such as evaporation, the reverse osmosis method consumes less energy per amount of water produced, and is said to consume less energy than the evaporation method and about 1 to 1 compared to the electrodialysis method. In addition, large-scale equipment has also started operating.
逆浸透法による海水淡水化により製造される淡水を飲料
水用とする場合には1通常TDS (溶解固形分濃度)
が500〜1000η/l 以下とされる。TDSの主
成分は海水の主成分でもあるナトリウム塩素であシ、こ
れに海水中に溶解している各種イオンが少量節わるが、
多価イオンはほとんど完全に近く除去されるため、カル
シウムやマグネシウムの硬度成分はほとんど含まない。When fresh water produced by seawater desalination using reverse osmosis is used for drinking water, TDS (dissolved solids concentration) is usually 1.
is set to be 500 to 1000 η/l or less. The main component of TDS is sodium chloride, which is also the main component of seawater, and a small amount of various ions dissolved in seawater are also present.
Multivalent ions are almost completely removed, so hardness components such as calcium and magnesium are hardly included.
又通常原潜水は酸性にして運転されるため製造される淡
水もやや酸性になり遊離生成した炭−酸ガスを含む。し
たがってそのままでは腐蝕傾向があるため上記淡水をそ
のまま汎用の送水設備を使用して送水した場合には、送
水設備に使用されている鋼管の腐蝕、コンクリート材の
溶出現象が起こり、送水設備の機能を損う恐れがある。Furthermore, since original diving is normally operated under acidic conditions, the fresh water produced is also slightly acidic and contains free carbon dioxide gas. Therefore, if left as is, it tends to corrode, so if the above fresh water is directly conveyed using general-purpose water conveyance equipment, the steel pipes used in the water conveyance equipment will corrode and the concrete material will elute, which may impede the functionality of the water conveyance equipment. There is a risk of loss.
一方飲料水として使用した場合には、前述理由により飲
み味が悪いばかりでなく、硬度成分の不足は心臓病の原
因となり得ることが指摘されている。On the other hand, when used as drinking water, it not only tastes bad due to the reasons mentioned above, but it has also been pointed out that lack of hardness components can cause heart disease.
このだめ従来より例えば文献「膜利用技術ノ・ンドプッ
ク(大矢編)1983年発行第32〜33ページ」に紹
介されているように逆浸透法により得られる淡水より脱
ガス塔などを用いて炭酸ガス除去を行なう方法あるいは
アルカリ剤を加えてPHを再調整する方法が用いられて
いる。Conventionally, for example, as introduced in the document ``Membrane Utilization Technology No. Ndpukku'' (edited by Oya, published in 1983, pages 32-33), carbon dioxide is extracted from fresh water obtained by reverse osmosis using a degassing tower, etc. A method of removing it or a method of readjusting the pH by adding an alkali agent is used.
脱炭酸塔を使用して、逆浸透法により製造される淡水中
に含有される炭酸ガスを放散すれば。If a decarboxylation tower is used to release carbon dioxide contained in fresh water produced by reverse osmosis.
PHの調整は出来るが、硬度成分の添加はできない。ま
たカセイソーダあるいは炭酸ソーダ等のアルカリを使用
した場合にも、同様にPHの調整のみが可能である。ア
ルカリ剤として生石灰。Although pH can be adjusted, hardness components cannot be added. Furthermore, when an alkali such as caustic soda or soda carbonate is used, only the pH can be adjusted in the same way. Quicklime as an alkaline agent.
消石灰等を使用すれば硬度成分の添加は可能となるが、
PH値と添加される硬度成分量は相互に関連してい
るため両者を所定値に調整するのは困難である。従って
従来はPH値又は硬度成分のいずれか一方を優先して所
定値に設定せざるを得ない不都合点が生じていた。It is possible to add hardness components by using slaked lime, etc.
Since the pH value and the amount of hardness component added are interrelated, it is difficult to adjust both to predetermined values. Therefore, conventionally, there has been a disadvantage that either the PH value or the hardness component has to be given priority and set to a predetermined value.
本発明は、上記問題点を解消することを目的とする。The present invention aims to solve the above problems.
本発明は、上記目的達成のため、逆浸透装置により製造
される淡水を石灰石およびドロマイトのうち少なくとも
1種からなる粒状物の充填層からなるフィルターを通過
させた後アルカリ剤を加えて飲料水を得る方法に於いて
、フィルター通過後の飲料水の硬度が所定値となるよう
に該逆浸透装置に供給する原水のPH値を調整し、かつ
フィルター通過後の飲料水OPH値が所定値となるよう
加えるアルカリ剤の量を調整することを特徴とする淡水
の処理方法に係る。In order to achieve the above object, the present invention makes fresh water produced by a reverse osmosis device pass through a filter consisting of a bed of granules made of at least one of limestone and dolomite, and then an alkaline agent is added thereto to produce drinking water. In the method, the PH value of the raw water supplied to the reverse osmosis device is adjusted so that the hardness of the drinking water after passing through the filter becomes a predetermined value, and the OPH value of the drinking water after passing through the filter becomes the predetermined value. The present invention relates to a freshwater treatment method characterized by adjusting the amount of an alkaline agent added.
本発明は、逆浸透装置により製造される淡水がやや酸性
であり、遊離生成した炭酸ガスを含み、かつ炭酸ガス濃
度は逆浸透装置に供給される原水OPH値に依存してい
ることに注目してなされたものである。The present invention focuses on the fact that the fresh water produced by the reverse osmosis device is slightly acidic and contains free carbon dioxide gas, and the carbon dioxide concentration depends on the OPH value of the raw water supplied to the reverse osmosis device. It was made by
本発明で対象としているかん水又は海水には通常炭酸成
分が含まれる。例えば海水中には通常2〜3y+mnt
/lの炭酸成分が溶解している。逆浸透装置では運転中
上記炭酸成分の析出による逆浸透膜の性能低下を防止す
るため、前述のとおり原海水はPH=5〜7の酸性側で
運転されることが多い。The brine or seawater targeted by the present invention usually contains a carbonic acid component. For example, in seawater there are usually 2 to 3 y+mnt.
/l of carbonic acid component is dissolved. In reverse osmosis equipment, in order to prevent the performance of the reverse osmosis membrane from deteriorating due to the precipitation of carbonic acid components during operation, the raw seawater is often operated on the acidic side with a pH of 5 to 7, as described above.
本発明は、酸性側に調整された原水を逆浸透装置に供給
すると、製造される淡水中にも遊離生成した炭酸ガスが
含まれ、かつ含まれる遊離炭酸濃度は原水のPH値に依
存するという実験的事実にもとづいてなされたものであ
る。According to the present invention, when raw water adjusted to be acidic is supplied to a reverse osmosis device, the produced fresh water also contains free carbon dioxide gas, and the free carbon dioxide concentration depends on the pH value of the raw water. This was based on experimental facts.
すなわち原水のPH値を下げると製造される淡水中の遊
離炭酸濃度が増加し、淡水のPH値は低下する。逆に原
水のPH値を上げると淡水中の遊離炭酸濃度が低下し淡
水のPH値は上昇する。That is, when the PH value of raw water is lowered, the free carbonate concentration in the fresh water produced increases, and the PH value of the fresh water decreases. Conversely, when the PH value of raw water is increased, the free carbonate concentration in fresh water decreases, and the PH value of fresh water increases.
上述のとおり調整された淡水が1次に石灰石およびドロ
マイトのうち少なくとも1種からなる粒状物の充填層か
らなるフィルター内を通過 、すると、下記(1)及び
/又は(2)式に従って遊離炭酸ガスとフィルター剤が
反応し、硬度成分が溶解する。The fresh water adjusted as described above first passes through a filter consisting of a packed bed of granules made of at least one of limestone and dolomite, and then free carbon dioxide is released according to the following equations (1) and/or (2). The filter agent reacts with the filter agent, and the hardness component dissolves.
CaCO3+ CO2+ H2O4Ca (HCO3)
+1 (1)Ca@Mg(CO3)2 + 2CO
2+ 2H2Og Ca (HCO3)2+Mg (H
CO3)2この際、遊離炭酸(CO2)濃度に見合った
量だけフィルター剤は溶解する。すなわち、前段で逆浸
透装置に供給する原水OPH値が高く設淀−されれば、
フィルター人口淡水中の遊離炭酸濃度は低下する結果、
フィルター通過後の飲料水の硬度は低下する。逆に供給
するPH値が低く設定されればフィルター通過後の飲料
水の硬度は上昇する。CaCO3+ CO2+ H2O4Ca (HCO3)
+1 (1)Ca@Mg(CO3)2 + 2CO
2+ 2H2Og Ca (HCO3)2+Mg (H
At this time, the filter agent is dissolved in an amount commensurate with the free carbon dioxide (CO2) concentration. In other words, if the raw water supplied to the reverse osmosis device in the previous stage is set to a high OPH value,
As a result, the free carbonate concentration in the filtered freshwater decreases.
The hardness of drinking water decreases after passing through the filter. Conversely, if the pH value to be supplied is set low, the hardness of drinking water after passing through the filter will increase.
又、フィルター内では(1)及び(2)式の反応が右辺
より左辺に進行するが、これに伴なって淡水のPH値が
上昇し、その際、フィルター通過後の飲料水OPH値は
、運転条件が一定であればフィルター人口の遊離炭酸濃
度に依存することを見い出されている。すなわち遊離炭
酸濃度が高ければ、フィルター通過後のPH値は低下し
。Also, within the filter, the reactions of equations (1) and (2) proceed from the right side to the left side, and as a result, the PH value of fresh water increases, and in this case, the OPH value of drinking water after passing through the filter is It has been found that, given operating conditions, it depends on the free carbonate concentration of the filter population. In other words, if the free carbon dioxide concentration is high, the pH value after passing through the filter will decrease.
遊離炭酸濃度が低ければPH値は上昇する。If the free carbonate concentration is low, the pH value will increase.
以上の作用から、逆浸透装置に供給する原水OPH値を
調整することで、フィルター通過後の飲料水の硬度を調
整することが可能となる。From the above effects, by adjusting the OPH value of raw water supplied to the reverse osmosis device, it is possible to adjust the hardness of drinking water after passing through the filter.
又、上述の通シフイルター通過後のPH値は硬度に相関
して変化することになるため、さらにアルカリ剤を加え
て最終的に所定値に設定する。もちろんフィルター通過
後のPH値が所定値となる場合にはアルカリ剤の添加は
不要である。アルカリ剤としてはカセイソーダ、炭酸ソ
ーダ等が使用可能である。硬度成分が所定値となれば生
石灰、消石灰等の使用も可能である。Furthermore, since the pH value after passing through the above-mentioned filter changes in correlation with the hardness, an alkaline agent is further added to finally set it to a predetermined value. Of course, if the pH value after passing through the filter is a predetermined value, it is not necessary to add an alkaline agent. Caustic soda, soda carbonate, etc. can be used as the alkali agent. If the hardness component reaches a predetermined value, quicklime, slaked lime, etc. can also be used.
カセイソーダ、炭酸ソーダの場合は次式のとおり添加に
よる硬度成分(CaおよびMg )の変化はない。In the case of caustic soda and soda carbonate, there is no change in the hardness components (Ca and Mg) due to addition, as shown in the following formula.
CO2+NaOH−+NaHCO3(3)Co2+Na
2CO3+H20→2NaHCO3(4)これに対し生
石灰、消石灰等を使用してPH値を調整すると2次式の
とおり硬度成分も同時に添加される。CO2+NaOH-+NaHCO3(3)Co2+Na
2CO3+H20→2NaHCO3 (4) On the other hand, when the pH value is adjusted using quicklime, slaked lime, etc., the hardness component is also added at the same time as shown in the quadratic equation.
2CO2+CaO+H20−+Ca (HCO3)、
(5)2CO2+Ca (OH)2−+ C
a (HCO3)2 ’ (6)従って、生石
灰、消石灰等を使用して硬度成分が増加した結果が所定
値となっていれば、使用も可能である。2CO2+CaO+H20-+Ca (HCO3),
(5)2CO2+Ca (OH)2-+C
a (HCO3)2' (6) Therefore, if the hardness component increases by using quicklime, slaked lime, etc. and the result is a predetermined value, it is possible to use it.
本発明によれば2元来海水に含まれている炭酸成分を硬
度成分溶出源として有効に利用できるため、特に炭酸源
を必要としないこととなり。According to the present invention, since the carbonic acid component originally contained in seawater can be effectively used as a hardness component elution source, a carbonic acid source is not particularly required.
運転コスト節減の面で有利でもある。It is also advantageous in terms of reducing operating costs.
第1図は本発明を海水から得られる淡水の処理に適用し
た場合を示す。FIG. 1 shows the case where the present invention is applied to the treatment of fresh water obtained from seawater.
ラインaより塩素注入あるいは砂ろ過処理工程(図示な
し)を経た原理水が保安フィルター1に送入される。ラ
インaにはラインbにより硫酸タンク2から硫酸すが注
入される。硫酸注入後の原理水PHはPH検出端5によ
って検出され、このPH値が目標値となるよう調節計3
を介して目標値と検出値との偏差に応じて硫酸注入コン
トロールバルブ4の開度が調節される。Water that has undergone chlorine injection or a sand filtration process (not shown) is sent to the safety filter 1 from line a. Sulfuric acid is injected into line a from a sulfuric acid tank 2 through line b. The principle water PH after sulfuric acid injection is detected by the PH detection end 5, and the controller 3 is set so that this PH value becomes the target value.
The opening degree of the sulfuric acid injection control valve 4 is adjusted according to the deviation between the target value and the detected value.
次に保安フィルター1を通った原理水は高圧ポンプ6で
昇圧されたのち、逆浸透装置7に送入されたのちライン
C,ラインdよりそれぞれ濃縮海水、製造淡水としてと
り出される。濃縮海水Cはそのまま系外に排出される。Next, the principle water that has passed through the safety filter 1 is pressurized by a high-pressure pump 6, and then sent to a reverse osmosis device 7, and then taken out from lines C and d as concentrated seawater and manufactured fresh water, respectively. Concentrated seawater C is directly discharged from the system.
場合によっては、動力回収用タービン(図示なし)を通
りて排出される場合もある。In some cases, it may be discharged through a power recovery turbine (not shown).
ラインdを通った製造淡水は次に石灰石の粒状物を充填
したフィルター8に供給され、硬度成分が添加された淡
水はラインeにより抜き出される。ラインeにはアルカ
リタンク9よジアルカリ注入コントロールバルブ12で
注入量が調整されたアルカリ溶液がラインfより注入さ
れPH値が調整された飲料水となってラインgより系外
に抜き出される。PH値は検出端10により検出されこ
のPH値が目標値となるよう調節計11を介してアルカ
リ注入コントロールバルブ12の開度が調節される。検
出端13により飲料水の硬度が検出されこの硬度成分が
目標値となるよう、目標値との偏差に応じて調節計14
により調節計3の目標値がカスケード制御される。The produced fresh water passing through line d is then fed to a filter 8 filled with limestone granules, and the fresh water to which hardness components have been added is extracted through line e. An alkaline solution whose injection amount is adjusted by an alkali injection control valve 12 from the alkaline tank 9 is injected into line e through line f, and the drinking water with its pH value adjusted is drawn out of the system through line g. The pH value is detected by the detection end 10, and the opening degree of the alkali injection control valve 12 is adjusted via the controller 11 so that the pH value becomes the target value. The hardness of drinking water is detected by the detection end 13, and the controller 14 is adjusted according to the deviation from the target value so that this hardness component becomes the target value.
The target value of the controller 3 is controlled in a cascade manner.
すなわち、検出された飲料水の硬度が低い場合には調節
、計30PH目標値を下げ、逆に高い場合には目標値が
上げられる。もちろん硬度を間欠的に検出し、調節計3
のPH目標値をマニーアル制御する方法も可能である。That is, when the detected drinking water hardness is low, the target pH value is adjusted and lowered by a total of 30 PH, and conversely, when the hardness of the drinking water is high, the target value is increased. Of course, the hardness is detected intermittently, and the controller 3
A method of manually controlling the PH target value is also possible.
次に本発明の実験例を示す。第1の実験例では、海水を
第1図に示す態様の淡水の処理方法により処理した。逆
浸透装置により製造される淡水の量は10t/−であシ
全量をフィルター8に通して飲料水化処理した。フィル
ター8にはふるい径IWrInから4−の石灰石を充填
した。飲料水の全硬度が681ng/L ascacO
3となルヨウ調節計14の目標値を決めた。又調節計1
1の目標値はPH=7.5とした。ラインgからは2時
間毎に12のサンプルを採取した。飲料水の分析結果は
次のとおりであった。Next, an experimental example of the present invention will be shown. In the first experimental example, seawater was treated by the freshwater treatment method shown in FIG. The amount of fresh water produced by the reverse osmosis device was 10 t/-, and the entire amount was passed through a filter 8 to be treated as drinking water. Filter 8 was filled with limestone having a sieve diameter of IWrIn to 4-4. Total hardness of drinking water is 681ng/L ascacO
3 and decided the target value of the Ruyou controller 14. Also, controller 1
The target value of 1 was set to PH=7.5. Twelve samples were taken every 2 hours from line g. The analysis results of drinking water were as follows.
なお、上記サンプリング期間中の原海水の性状は次のと
おりであった。The properties of raw seawater during the above sampling period were as follows.
■aライイン通る原海水(H2S 04注入前)PH=
8.0
M−アルカリ= 148 (ppm as (acos
)■逆浸透装置7の上流側の原海水
PH=6.70
M−アルカリ= 1107(pp ascacO3)M
−アルカ!J (JIS規定のHCO3−量の測定法。■ Raw seawater passing through a line (before H2S 04 injection) PH=
8.0 M-alkali = 148 (ppm as (acos
) ■ Raw seawater PH on the upstream side of reverse osmosis device 7 = 6.70 M-alkali = 1107 (pp ascacO3) M
- Arca! J (Measurement method of HCO3 amount specified by JIS.
M−アルカリが大きどHCO;が多く、従って含有CO
2量も多くなり、硬度も増加する。)は海水に重炭酸ソ
ーダを添加して調整したものを使用した。またアルカリ
剤としてカセイソーダを使用した。M-The larger the alkali, the more HCO; therefore, the contained CO
2 amount increases, and the hardness also increases. ) was prepared by adding sodium bicarbonate to seawater. Caustic soda was also used as an alkali agent.
次に第2の実験例では全硬度が931Ni/1asca
cO3となるよう調節計14の目標値をきめた。又。Next, in the second experimental example, the total hardness was 931Ni/1asca.
The target value of the controller 14 was determined to be cO3. or.
調節計11の目標値を7.7として運転した。ライイン
gから定期的にサンプリングした。The engine was operated with the target value of the controller 11 set to 7.7. Samples were taken periodically from line g.
その他の運転条件及びサンプリング要領は実験例1と同
一である。なお、原海水(逆浸透装置7の上流側)の性
状は次のとおりである。Other operating conditions and sampling procedures were the same as in Experimental Example 1. The properties of the raw seawater (on the upstream side of the reverse osmosis device 7) are as follows.
PH=6.50
M−アルカリ= 89.8 (ppm ascacO2
)サンプリングした飲料水の分析結果は次のとおシであ
った。PH=6.50 M-alkali=89.8 (ppm ascacO2
) The analysis results of the sampled drinking water were as follows.
以上2つの実験例に代表されるように、逆浸透装置に供
給する原水のPHを変化することで。As typified by the above two experimental examples, by changing the pH of the raw water supplied to the reverse osmosis device.
飲料水の全硬度が所定値に調整される効果が明らかとな
った。The effect of adjusting the total hardness of drinking water to a predetermined value has become clear.
〔発明の効果]
以上述べたように2本発明方法によれば、逆浸透装置に
より製造される淡水の硬度成分及びPH値が任意に調整
でき、腐蝕性の少ない良好な飲料水が得られる効果があ
る。しかも元来逆浸透装置に供給される原水中の炭酸ガ
スを有効利用出来、運転コスト節減の効果がある。[Effects of the Invention] As described above, according to the two methods of the present invention, the hardness component and PH value of fresh water produced by a reverse osmosis device can be arbitrarily adjusted, and good drinking water with less corrosivity can be obtained. There is. Moreover, the carbon dioxide gas in the raw water originally supplied to the reverse osmosis device can be effectively used, resulting in the effect of reducing operating costs.
第1図は本発明方法の一実施例を示す流れ図である。
1・・・保安フィルター、2・・・硫酸タンク、3・・
・調節計、4・・・硫酸注入コントロールバルブ、5・
・・PH検出端、6・・・高圧ポンプ、7・・・逆浸透
装置、8・・・フィルター、9・・・アルカリ・タンク
。
10・・・PH検出端、11・・・調節計、12・・・
アルカリ注入コントロールバルブ、13・・・サンプリ
ングコックFIG. 1 is a flow chart showing one embodiment of the method of the present invention. 1...Safety filter, 2...Sulfuric acid tank, 3...
・Controller, 4...Sulfuric acid injection control valve, 5.
...PH detection end, 6...high pressure pump, 7...reverse osmosis device, 8...filter, 9...alkali tank. 10...PH detection end, 11...controller, 12...
Alkali injection control valve, 13... sampling cock
Claims (1)
イトのうち少なくとも1種を含む粒状物の充填層からな
るフィルターを通過させた後、アルカリ剤を加えて飲料
水を得る方法において、前記フィルター通過後の飲料水
の硬度が所定値となるように該逆浸透装置に供給する原
水のPH値を調整し、かつフィルター通過後の飲料水の
PH値が所定値となるよう前記添加アルカリ剤量を調整
することを特徴とする逆浸透装置より製造される淡水の
処理方法。In a method for obtaining drinking water by passing fresh water produced by a reverse osmosis device through a filter consisting of a packed bed of granules containing at least one of limestone and dolomite, and adding an alkaline agent to the fresh water after passing through the filter. The pH value of the raw water supplied to the reverse osmosis device is adjusted so that the hardness of the drinking water becomes a predetermined value, and the amount of the added alkali agent is adjusted so that the PH value of the drinking water after passing through the filter becomes a predetermined value. A method for treating freshwater produced by a reverse osmosis device, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12555585A JPS61283392A (en) | 1985-06-10 | 1985-06-10 | Treatment of fresh water made by reverse osmosis apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12555585A JPS61283392A (en) | 1985-06-10 | 1985-06-10 | Treatment of fresh water made by reverse osmosis apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61283392A true JPS61283392A (en) | 1986-12-13 |
Family
ID=14913095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12555585A Pending JPS61283392A (en) | 1985-06-10 | 1985-06-10 | Treatment of fresh water made by reverse osmosis apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61283392A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5096589A (en) * | 1990-12-31 | 1992-03-17 | Blind Roger A | Hydrogen sulfide removal from reverse osmosis product water |
JP2008043868A (en) * | 2006-08-14 | 2008-02-28 | Mitsubishi Heavy Ind Ltd | Drinking water manufacturing apparatus and manufacturing method of drinking water |
WO2013034396A1 (en) * | 2011-09-07 | 2013-03-14 | Unilever N.V. | A water purification system |
CN103613217A (en) * | 2013-12-12 | 2014-03-05 | 深圳市爱玛特科技有限公司 | Water purifier capable of adjusting water quality |
JP2019042734A (en) * | 2017-08-31 | 2019-03-22 | 株式会社ウェルシィ | Water treatment method and water treatment system |
-
1985
- 1985-06-10 JP JP12555585A patent/JPS61283392A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5096589A (en) * | 1990-12-31 | 1992-03-17 | Blind Roger A | Hydrogen sulfide removal from reverse osmosis product water |
JP2008043868A (en) * | 2006-08-14 | 2008-02-28 | Mitsubishi Heavy Ind Ltd | Drinking water manufacturing apparatus and manufacturing method of drinking water |
WO2013034396A1 (en) * | 2011-09-07 | 2013-03-14 | Unilever N.V. | A water purification system |
CN103764570A (en) * | 2011-09-07 | 2014-04-30 | 荷兰联合利华有限公司 | A water purification system |
CN103613217A (en) * | 2013-12-12 | 2014-03-05 | 深圳市爱玛特科技有限公司 | Water purifier capable of adjusting water quality |
JP2019042734A (en) * | 2017-08-31 | 2019-03-22 | 株式会社ウェルシィ | Water treatment method and water treatment system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090260519A1 (en) | Process for the absorption of sulfur dioxide from flue gas | |
KR101664516B1 (en) | System and method for using carbon dioxide sequestered from seawater in the remineralization of process water | |
CN108348849B (en) | Method for capturing carbon dioxide and desalting | |
CN105621776B (en) | A kind of processing method of fire coal boiler fume wet desulphurization waste water | |
US6372143B1 (en) | Purification of produced water from coal seam natural gas wells using ion exchange and reverse osmosis | |
CN106830479A (en) | Using flue gas and electrodialytic desulfurization wastewater zero-discharge treatment system and method | |
EP0603345A1 (en) | Water compositions | |
CA2700467A1 (en) | Selective sulphate removal by exclusive anion exchange from hard water waste streams | |
US20210039044A1 (en) | Carbon Dioxide Sequestration | |
CN101157504B (en) | Process for softening hardwater by employing SO2 and CO2 in exhaust gas | |
Migliorini et al. | Seawater reverse osmosis plant using the pressure exchanger for energy recovery: a calculation model | |
JPS62294484A (en) | Reverse osmosis treatment of water containing silica at high concentration | |
CN108383308A (en) | A kind of low energy consumption desulfurization wastewater technique of zero discharge and device | |
JPS61283392A (en) | Treatment of fresh water made by reverse osmosis apparatus | |
EP2694441B1 (en) | A method for monitoring and controlling the chemistry of a zld process in power plants | |
CN115745279A (en) | Desulfurization wastewater hardness removal system and process | |
CN113461237A (en) | Zero discharge system for salt wastewater treatment | |
JPH0361518B2 (en) | ||
JPH02303593A (en) | Two-stage type reverse osmosis membrane device | |
Migliorini et al. | 40 MIGD potabilization plant at Ras Laffan: design and operating experience | |
JPS62121694A (en) | Method for controlling drinking water making apparatus using carbon dioxide | |
JPH0362478B2 (en) | ||
RU2816239C2 (en) | Method for optimized softening of alkaline industrial waste water under pressure co2 | |
JPH11165179A (en) | Method for treating fluorine-containing water | |
WO2024080132A1 (en) | Method for fixing carbon dioxide |