WO2024080132A1 - Method for fixing carbon dioxide - Google Patents

Method for fixing carbon dioxide Download PDF

Info

Publication number
WO2024080132A1
WO2024080132A1 PCT/JP2023/034902 JP2023034902W WO2024080132A1 WO 2024080132 A1 WO2024080132 A1 WO 2024080132A1 JP 2023034902 W JP2023034902 W JP 2023034902W WO 2024080132 A1 WO2024080132 A1 WO 2024080132A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
carbon dioxide
alkaline earth
earth metal
concentrated
Prior art date
Application number
PCT/JP2023/034902
Other languages
French (fr)
Japanese (ja)
Inventor
隆雄 中垣
悟 平野
慶明 三保
統行 島田
升夫 湯淺
光希 有本
Original Assignee
学校法人早稲田大学
株式会社ササクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, 株式会社ササクラ filed Critical 学校法人早稲田大学
Publication of WO2024080132A1 publication Critical patent/WO2024080132A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/06Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/53Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Definitions

  • the present invention relates to a method for fixing carbon dioxide to alkaline earth metals.
  • CO2 fixation method One effective method for fixing CO2 is to use alkaline earth metals such as Mg and Ca to bind and fix CO2 .
  • alkaline earth metals such as Mg and Ca
  • conventional methods that use ores containing alkaline earth metals require treatments that result in CO2 emissions, such as high temperature and pressure and the addition of chemicals, and in many cases the entire process results in CO2 emissions.
  • Mg and Ca are also contained in seawater and wastewater brine from seawater desalination plants, and a method for fixing CO2 using seawater has been proposed (see, for example, Patent Documents 1 to 3).
  • Patent Document 3 discloses a method for fixation of carbon dioxide, which includes a first step of generating a first concentrated liquid that is concentrated without passing through the nanofiltration membrane by passing seawater or brackish water through a nanofiltration membrane, a second step of adding an alkali to the generated first concentrated liquid to react and fix carbon dioxide with the alkaline earth metal contained in the first concentrated liquid to precipitate alkaline earth metal carbonate crystals, and a third step of recovering the precipitated alkaline earth metal carbonate crystals from the first concentrated liquid by solid-liquid separation.
  • Patent Document 3 can easily and efficiently fix carbon dioxide to alkaline earth metals contained in seawater or brackish water because the concentration of Na + , K + , etc., which may hinder the fixation of carbon dioxide, is reduced by the first step, but there is room for improvement in terms of further efficient fixation of carbon dioxide.
  • the present invention provides a method for fixing carbon dioxide to alkaline earth metals, which increases the carbon dioxide reduction capacity while taking into account the amount of carbon dioxide emitted.
  • the object of the present invention is achieved by a method for immobilizing carbon dioxide, comprising a first step of generating a first concentrated liquid by passing seawater or brackish water through a nanofiltration membrane without passing through the nanofiltration membrane, a second step of generating a liquid to be treated that contains carbonate ions by contacting carbon dioxide with an alkaline solution, and a third step of precipitating carbonate crystals of the alkaline earth metal contained in the first concentrated liquid by contacting the first concentrated liquid with the liquid to be treated.
  • the first step preferably includes a salt production step in which the first permeate that has permeated the nanofiltration membrane is concentrated to recover precipitated sodium chloride crystals, and an electrodialysis step in which the solution of sodium chloride crystals is subjected to electrodialysis to separate an acid solution and an alkaline solution, and the second step preferably uses the alkaline solution obtained in the electrodialysis step to produce the liquid to be treated.
  • the first step preferably includes a concentration step of concentrating the first permeated liquid that has permeated the nanofiltration membrane to produce a second concentrated liquid, an alkaline earth metal removal step of removing alkaline earth metals contained in the second concentrated liquid, and an electrodialysis step of electrodialyzing the second concentrated liquid that has been through the alkaline earth metal removal step to separate an acid solution and an alkaline solution, and the second step preferably produces the liquid to be treated using the alkaline solution obtained in the electrodialysis step.
  • the alkaline earth metal removal step preferably includes an adsorption removal step in which the alkaline earth metals contained in the second concentrated liquid are removed by a chelating resin or an ion exchange resin.
  • the first step preferably further includes a resin regeneration step in which the chelating resin or the ion exchange resin is regenerated using the acid solution obtained in the electrodialysis step.
  • the acid solution in which the chelating resin or the ion exchange resin has been regenerated is preferably merged with the first concentrated liquid.
  • the alkaline earth metal removal step preferably includes a step of passing the second concentrated liquid through a second nanofiltration membrane different from the nanofiltration membrane, and more preferably includes a step of merging the non-permeated liquid of the second nanofiltration membrane with the first concentrated liquid.
  • the alkaline earth metal removal step preferably includes a step of contacting the second concentrated liquid with the liquid to be treated, thereby precipitating carbonate crystals of the alkaline earth metal contained in the second concentrated liquid and removing them by solid-liquid separation.
  • the third step preferably includes a first precipitation step of mixing the first concentrated liquid with the liquid to be treated to produce a first reaction liquid in which calcium carbonate crystals are precipitated, a first solid-liquid separation step of subjecting the first reaction liquid to solid-liquid separation to recover calcium carbonate, a second precipitation step of further mixing the liquid to be treated with the first reaction liquid that has been subjected to the first solid-liquid separation step to produce a second reaction liquid in which magnesium carbonate crystals are precipitated, and a second solid-liquid separation step of subjecting the second reaction liquid to solid-liquid separation to recover magnesium carbonate.
  • the present invention provides a method for fixing carbon dioxide to alkaline earth metals that increases the carbon dioxide reduction capacity while taking into account the amount of carbon dioxide emitted.
  • FIG. 1 is a process flow diagram for explaining a carbon dioxide fixation method according to a first embodiment of the present invention.
  • 2 is a diagram showing an example of changes in the amounts of various ions in the process flow shown in FIG. 1 .
  • FIG. 2 is a diagram showing a modification of some of the steps in the processing flow shown in FIG. 1 .
  • FIG. 4 is a diagram showing an example of a component change in the processing flow shown in FIG. 3 .
  • FIG. 5 is a process flow diagram for explaining a carbon dioxide fixation method according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing a modification of some of the steps in the processing flow shown in FIG. 5 .
  • FIG. 11 is a process flow diagram for explaining a carbon dioxide fixation method according to a third embodiment of the present invention.
  • FIG. 11 is a process flow diagram for explaining a carbon dioxide fixation method according to a fourth embodiment of the present invention.
  • FIG. 11 is a process flow diagram for explaining a carbon dioxide fixation method according to a fifth embodiment of the present invention.
  • FIG. 13 is a process flow diagram for explaining a carbon dioxide fixation method according to a sixth embodiment of the present invention.
  • the method for fixing carbon dioxide of the present invention provides a method for fixing carbon dioxide to alkaline earth metals contained in seawater or brine.
  • alkaline earth metal refers to a broad range including Mg and Be, which are elements of Group 2 of the periodic table, in addition to Ca, Sr, Ba, and Ra.
  • the alkaline earth metal contains at least Mg, from the viewpoint of ease of reaction with CO2 and the fact that carbonates obtained by the reaction can be expected to be used for various purposes.
  • seawater or brine is an aqueous solution containing alkaline earth metal ions such as magnesium ions (Mg 2+ ) and calcium ions (Ca 2+ ).
  • Seawater or brine usually contains, in addition to alkaline earth metal ions, at least one type of ion that forms a crystal selected from calcium sulfate, sodium chloride, potassium chloride, and sodium sulfate.
  • seawater or brine usually contains at least one type of ion selected from chloride ions (Cl - ), sulfate ions (SO 4 2- ), sodium ions (Na + ), and potassium (K + ).
  • the seawater or brine mentioned above can be obtained from at least one selected from seawater, salt lakes, and industrial wastewater.
  • seawater, salt lakes, and industrial wastewater In addition to seawater, salt lakes, and industrial wastewater, river water, rainwater, treated sewage water, and associated water from oil fields and gas fields can also be used so long as they contain alkaline earth metals.
  • More specific examples of brine include wastewater brine discharged from water production processes using salt lakes, desalination and salt production processes, recovery of valuable materials using seawater and salt lakes, and industrial wastewater from chemical plants, etc.
  • the brine is preferably at least one selected from the group consisting of brine obtained from a freshwater production system using seawater, brine obtained from a process for producing salt from seawater, and brine obtained from a process for recovering lithium from a salt lake.
  • FIG. 1 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a first embodiment of the present invention.
  • the treatment target is seawater, but the same treatment can be performed in the case of brackish water.
  • the method for immobilizing carbon dioxide according to the first embodiment includes a first step S1 of passing seawater through a nanofiltration membrane (NF membrane) to generate a first concentrated liquid that is concentrated without passing through the NF membrane, a second step S2 of contacting carbon dioxide with an alkaline solution to generate a liquid to be treated that contains carbonate ions, and a third step of contacting the generated first concentrated liquid with the liquid to be treated to precipitate carbonate crystals of an alkaline earth metal contained in the first concentrated liquid.
  • NF membrane nanofiltration membrane
  • ⁇ S1 First step>
  • the taken seawater is appropriately pretreated by filtration, coagulation, precipitation, etc. to remove impurities such as fine particles and microorganisms, and then the seawater is supplied to an NF membrane unit by a medium pressure pump or the like and passed through the NF membrane to produce a first permeate that has permeated the NF membrane and a first concentrated liquid that has not permeated the NF membrane and is concentrated.
  • FIG. 2 shows an example of the amounts (mg/h) of various ions contained in the seawater, the first permeated liquid, and the first concentrated liquid when seawater is supplied at a flow rate of 100 m 3 /h.
  • the first step S1 includes a salt production step S11 in which the first permeate is concentrated to recover precipitated sodium chloride (NaCl) crystals.
  • the salt production step S11 of this embodiment includes a first membrane treatment step S111 in which the first permeate is supplied to a reverse osmosis membrane (RO membrane) unit by a high-pressure pump or the like and passed through the RO membrane to produce a second concentrated liquid that is concentrated without passing through the RO membrane, a second membrane treatment step S112 in which the second concentrated liquid produced in the first membrane treatment step S111 is supplied to a high-pressure chamber of a semipermeable membrane unit separated by a semipermeable membrane, and the second concentrated liquid is further concentrated by utilizing the pressure difference with the recovered liquid passing through the low-pressure chamber, and a crystallization step S113 in which the second concentrated liquid further concentrated in the second membrane treatment step S112 is supplied to a crystallizer and heated and evaporated to precipitate NaCl crystals.
  • RO membrane reverse osmosis membrane
  • the recovery liquid supplied to the low pressure chamber in the second membrane treatment step S112 can utilize a part of the second concentrated liquid that has passed through the high pressure chamber, and the recovery liquid that has passed through the low pressure chamber can be merged with the first permeated liquid before the first membrane treatment step S111.
  • the steam discharged from the crystallizer in the crystallization step S113 is condensed by a condenser or the like to become distilled water, and is merged with the second permeated liquid that has permeated the RO membrane in the first membrane treatment step S111 to be used as produced water or the like.
  • the crystallizer concentrated liquid concentrated in the crystallizer is discharged from the crystallizer as a slurry liquid containing NaCl crystals, and is dehydrated by a centrifuge or the like to recover NaCl crystals. Since the first permeated liquid contains almost no SO 4 2- , it can be concentrated at a high concentration by the first membrane treatment step S111, which is low energy.
  • the second concentrated liquid may be produced only by the first membrane treatment step S111 without providing the second membrane treatment step S112.
  • the second concentrated liquid may be evaporated and concentrated using a horizontal tube evaporator or the like before the crystallization step S113 is carried out, or the first permeated liquid may be evaporated and concentrated without being concentrated through a membrane.
  • the first step S1 includes a confluence step S12 in which the filtrate obtained after recovering NaCl crystals in the salt production step S11 is merged with the first concentrated liquid, thereby suppressing discharge of waste liquid outside the system and reducing the environmental load.
  • the alkaline earth metals to be recovered such as magnesium, are contained not only in the first concentrated liquid but also in the first permeated liquid, so that the confluence step S12 can increase the recovery rate of the alkaline earth metals required for the fixation of carbon dioxide in the second step S2. From the viewpoint of increasing the purity of the NaCl crystals obtained in the crystallization step S112, it is preferable to increase the amount of filtrate merged with the first concentrated liquid in the confluence step S12 as much as possible.
  • the first step S1 includes an electrodialysis step S13 in which the NaCl crystals produced in the salt production step S11 are electrodialyzed.
  • a bipolar membrane electrodialysis device can be used in the electrodialysis step S13, and the solution in which the NaCl crystals obtained in the crystallization step S113 are dissolved in water is separated into an HCl solution and a NaOH solution.
  • the electrodialysis utilizes renewable energy such as solar energy, and CO2 emissions in the entire process can be suppressed.
  • adsorb impurities such as magnesium and calcium contained in the NaCl solution to a chelating resin to sufficiently reduce their concentrations (for example, to 1 ppm or less).
  • the NaOH solution obtained in the electrodialysis step S13 can be suitably used as the alkaline solution used in the second step S2.
  • the flow path of the first permeate produced in the first step S1 may be branched so that the alkaline solution produced in the electrodialysis step S13 is only the amount required for the second step S2, and only a part of the first permeate may be subjected to the salt production step S11. This suppresses the energy consumption required for producing the alkali, and reduces CO2 emissions in the entire process. It is preferable to use renewable energy for producing the alkali, as described above.
  • the remainder of the first permeate not used in the salt production step S11 can be used in another step such as a desalination process, and the first permeate not used in the other step may be discharged into the ocean, etc.
  • the first step S1 may bypass part of the seawater or brine without passing it through the NF membrane, and the salt production step S11 may be carried out on part or all of the first permeate with the production amount suppressed.
  • the seawater or brine that bypasses the NF membrane can be merged with the first concentrated liquid and then used for the fixation of carbon dioxide in the third step S3.
  • ⁇ S2 Second step>
  • an alkaline solution is stored in a storage tank, and a gas containing carbon dioxide is blown into the alkaline solution to bring the solution into gas-liquid contact by bubbling, thereby producing a liquid to be treated that contains carbonate ions (CO 3 2- ).
  • the gas containing carbon dioxide may be the atmosphere or exhaust gas from various combustion devices. There is no limit to the concentration of carbon dioxide contained in the gas, but it may be, for example, from the atmosphere to about 100% by volume.
  • the method of bringing the alkaline solution and carbon dioxide into gas-liquid contact may be a method of blowing CO2 gas (for example, fine bubbles such as microbubbles or ultrafine bubbles) into the alkaline solution, or a method of spraying the alkaline solution into the CO2 gas with a spray nozzle or tray in a single-stage or multi-stage desulfurization tower or degassing tower, etc., and various known gas-liquid contact devices can be used taking into consideration the reaction rate, reaction amount, CO2 concentration in gases such as exhaust gas, and the like.
  • CO2 gas for example, fine bubbles such as microbubbles or ultrafine bubbles
  • various known gas-liquid contact devices can be used taking into consideration the reaction rate, reaction amount, CO2 concentration in gases such as exhaust gas, and the like.
  • the alkaline solution used in the second step S2 is preferably the NaOH solution obtained in the electrodialysis step S13 as described above, and this makes it possible to suppress an increase in CO2 emissions associated with the separate production of alkali.
  • an alkaline solution different from the alkali obtained in the electrodialysis step S13 may be used, or the alkaline solution obtained in the electrodialysis step S13 may be used in combination with another alkaline solution.
  • the pH value of the alkaline solution is maintained at a high value, and by contacting it with carbon dioxide, sodium carbonate (Na 2 CO 3 ) is generated by the reaction between sodium hydroxide and carbon dioxide shown in reaction formula (1) below.
  • sodium bicarbonate NaHCO 3
  • reaction formula (2) sodium bicarbonate
  • ⁇ S3 Third process>
  • the first concentrated liquid obtained in the first step S1 and the liquid to be treated obtained in the second step S2 are brought into liquid-liquid contact in a reaction tank, whereby the alkaline earth metal contained in the first concentrated liquid reacts with carbonate ions to produce a reaction liquid consisting of a slurry liquid in which alkaline earth metal carbonate crystals such as MgCO3 and CaCO3 have precipitated.
  • the first concentrated liquid obtained in the first step S1 may be subjected to evaporation crystallization to precipitate calcium sulfate crystals, followed by solid-liquid separation to remove the calcium sulfate crystals, before the third step S3 is carried out.
  • the third step S3 includes a solid-liquid separation step in which the alkaline earth metal carbonate crystals contained in the produced reaction liquid are separated into solid and liquid by a solid-liquid separation device such as a centrifuge or precipitation in a precipitation tank, and then recovered.
  • a solid-liquid separation device such as a centrifuge or precipitation in a precipitation tank
  • the third step S3 includes a neutralization step S32 for neutralizing the filtrate obtained after the alkaline earth metal carbonate crystals are recovered from the reaction solution by the solid-liquid separation step S31.
  • This filtrate usually has a pH of 9 or higher, so by adding an acid to neutralize it (for example, pH 7 to 8), it becomes possible to discharge it directly outside the system, such as the ocean.
  • the acid added to the filtrate is preferably the HCl solution obtained in the electrodialysis step S13, and this makes it possible to suppress an increase in CO2 emissions associated with the separate generation of acid.
  • the third step S3 includes a water washing step S33 in which the alkaline earth metal carbonate crystals recovered in the solid-liquid separation step S31 are washed with wash water to dissolve and remove Na + , K + , and the like adhering to the alkaline earth metal carbonate crystals.
  • the wash water used in the water washing step S33 preferably contains the distilled water obtained in the crystallization step S113, which makes it possible to suppress an increase in CO 2 emissions associated with the separate production of wash water.
  • a portion of the produced water obtained by combining the second permeate obtained in the salt production step S11 and the distilled water is used as the wash water.
  • the alkaline earth metal carbonate crystals such as MgCO3 and CaCO3 after washing can be suitably used as building materials such as concrete, cement, etc. Therefore, the present invention can also provide a method for producing alkaline earth metal carbonate salts using the carbon dioxide fixation method.
  • carbon dioxide is brought into contact with an alkaline solution in the second step S2 to produce a liquid to be treated that contains carbonate ions, and then the liquid to be treated is brought into liquid-liquid contact with the first concentrated liquid in the third step S3, which makes it possible to easily produce carbonate crystals of the alkaline earth metal contained in the first concentrated liquid. Therefore, carbon dioxide can be easily and efficiently fixed to the alkaline earth metal contained in seawater or brine, and carbon dioxide fixation can be completed within the system using the alkali, acid, distilled water, etc. produced in each step, so that the carbon dioxide reduction capacity can be increased while taking into account the amount of carbon dioxide emitted throughout the entire process.
  • the first concentrated liquid and the liquid to be treated are brought into liquid-liquid contact in a reaction tank to generate a slurry liquid in which alkaline earth metal carbonate crystals such as MgCO3 and CaCO3 are precipitated. Since calcium ions contained in the first concentrated liquid are more likely to bind to carbonate ions than magnesium ions, MgCO3 and CaCO3 can be separated and recovered as described below.
  • Fig. 3 is a diagram showing a modified example of the third step S3 in the treatment flow shown in Fig. 1.
  • the precipitation of alkaline earth metal carbonate crystals by contact between the first concentrated liquid and the liquid to be treated in the third step S3 shown in Fig. 1 is divided into a first precipitation step S301 for precipitating calcium carbonate (CaCO 3 ) crystals and a second precipitation step S302 for precipitating magnesium carbonate (MgCO 3 ) crystals.
  • first solid-liquid separation step S311 for separating and recovering the calcium carbonate crystals precipitated in the first precipitation step S301
  • second solid-liquid separation step S312 for separating and recovering the magnesium carbonate crystals precipitated in the second precipitation step S302.
  • the first concentrated liquid produced in the first step S1 and the liquid to be treated produced in the second step S2 shown in FIG. 1 are stirred and mixed in a reaction tank, mainly causing calcium ions to react with carbonate ions, and calcium carbonate crystals are precipitated in the first reaction liquid, which is a mixed liquid. If the amount of liquid to be treated is too large, most of the calcium ions will crystallize and the carbonate ions will be more likely to react with magnesium ions, so it is preferable to set the amount appropriately according to the amount of calcium contained in the first concentrated liquid.
  • the first solid-liquid separation step S311 the first reaction liquid produced in the first precipitation step S301 is transferred to a precipitation tank, and the first precipitate, mainly consisting of calcium carbonate crystals, is precipitated and separated and recovered.
  • the second precipitation step S302 involves stirring and mixing the first reaction liquid that has undergone the first solid-liquid separation step S311 and the liquid to be treated produced in the second step S2 in a reaction tank, thereby causing magnesium ions to react with carbonate ions and precipitating magnesium carbonate crystals in the second reaction liquid, which is the mixed liquid.
  • the second solid-liquid separation step S312 involves transferring the second reaction liquid produced in the second precipitation step S302 to a precipitation tank, where a second precipitate, mainly consisting of magnesium carbonate crystals, is precipitated and separated and recovered.
  • the results of measuring the change in components when the pH value of the treated liquid is maintained at 9 or higher are shown in Figure 4.
  • the "NaOH equivalent to be added to dissolved Ca” and the “NaOH equivalent to be added to dissolved Mg” are values when the amount of NaOH added to dissolved Ca and dissolved Mg is 1 equivalent, respectively, when all of the calcium and magnesium dissolved in the first concentrated liquid react according to the above reaction formulas (3) and (4), respectively.
  • the Ca reduction rate shows a large value in the first reaction liquid
  • the Mg reduction rate shows a small value in the first reaction liquid and a large value in the second reaction liquid, indicating that calcium carbonate and magnesium carbonate are separated and recovered.
  • Second Embodiment Fig. 5 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a second embodiment of the present invention.
  • the method for immobilizing carbon dioxide according to the second embodiment shown in Fig. 5 includes, as in the first embodiment, a first step S1 of generating a first concentrated liquid that is concentrated without passing through the NF membrane by passing seawater through the NF membrane, a second step S2 of generating a liquid to be treated that contains carbonate ions by contacting carbon dioxide with an alkaline solution, and a third step of precipitating carbonate crystals of an alkaline earth metal contained in the first concentrated liquid by contacting the generated first concentrated liquid with the liquid to be treated.
  • the treatment target is seawater, but the same treatment can be performed in the case of brine.
  • the same steps as those in Fig. 1 are assigned the same reference numerals, and repeated explanations will be omitted.
  • the first step S1 shown in FIG. 5 includes a concentration step S114 in which the first permeate is supplied to a reverse osmosis membrane (RO membrane) unit by a high-pressure pump or the like and passed through the RO membrane to produce a second concentrated liquid that is membrane concentrated without permeating the RO membrane. Since the first permeate contains almost no SO 4 2- , the first permeate can be concentrated at a high concentration by low-energy membrane treatment using the RO membrane.
  • the concentration step S114 may include the first membrane treatment step S111 and the second membrane treatment step S112 shown in FIG. 1.
  • the concentration step S114 may be a step in which the first permeate is evaporated and concentrated instead of membrane concentration using the RO membrane, or a step in which membrane concentration using the RO membrane and evaporation concentration are used in combination.
  • the second permeate that has permeated the RO membrane in the concentration step S114 can be recovered, for example, as produced water.
  • the first step S1 includes an alkaline earth metal removal step S115 for removing alkaline earth metals contained in the second concentrated liquid generated in the concentration step S114.
  • the alkaline earth metal removal step S115 is an adsorption removal step for removing alkaline earth metals contained in the second concentrated liquid using a chelating resin or an ion exchange resin, and can be performed, for example, by passing the second concentrated liquid through a column filled with a chelating resin.
  • the chelating resin it is preferable to use one that can selectively capture alkaline earth metal ions such as magnesium ions and calcium ions, and examples of such chelating resins include iminodiacetic acid type and amino phosphoric acid type.
  • the alkaline earth metal ion concentration of the second concentrated liquid generated in the concentration step S114 is high (for example, about several hundred ppm)
  • a step of adding sodium hydroxide or sodium carbonate to the second concentrated liquid before the alkaline earth metal removal step S115 to crystallize and remove alkaline earth metal ions such as magnesium ions and calcium ions may be included.
  • the alkaline earth metal removing step S115 may not be included. Since alkaline earth metals such as magnesium and calcium are likely to cause scale in the electrodialysis step S13, the alkaline earth metal removing step S115 allows the electrodialysis step S13 to be carried out efficiently for a long period of time.
  • the first step S1 includes an electrodialysis step S13 in which the second concentrated liquid that has been through the alkaline earth metal removal step S115 is subjected to electrodialysis to separate the acid solution and the alkaline solution.
  • the second concentrated liquid that has been through the alkaline earth metal removal step S115 is a high-purity NaCl solution in which the concentration of impurities such as magnesium and calcium has been sufficiently reduced (for example, 1 ppm or less), and is separated into an HCl solution and a NaOH solution by the electrodialysis step S13.
  • the electrodialysis step S13 of the second embodiment can be performed in the same manner as the first electrodialysis step S13 shown in FIG.
  • the first step S1 includes a resin regeneration step S116 in which a regeneration liquid is passed through the chelating resin or ion exchange resin that has captured the alkaline earth metal in the alkaline earth metal removal step S115 to desorb the alkaline earth metal, thereby regenerating the chelating resin or ion exchange resin.
  • a regeneration liquid an acid solution is preferably used, and for example, the HCl solution obtained in the electrodialysis step S13 can be suitably used.
  • the alkaline earth metals to be recovered such as magnesium
  • the alkaline earth metals to be recovered are contained not only in the first concentrated liquid but also in the first permeated liquid
  • a portion of the HCl solution obtained in the electrodialysis step S13 may be merged with the seawater before the first step S1 is performed. This can suppress fouling of the membrane surfaces of the NF membrane and the RO membrane in the first step S1.
  • the seawater into which the above-mentioned HCl solution is merged may be seawater before pretreatment, or may be seawater after pretreatment.
  • the alkaline earth metal removal step S115 of the second embodiment includes an adsorption removal step of removing alkaline earth metals such as calcium and magnesium contained in the second concentrated liquid obtained in the concentration step S114 using a chelating resin or an ion exchange resin, but the alkaline earth metal removal step can be modified in various ways as long as the alkaline earth metals such as calcium and magnesium contained in the second concentrated liquid can be reduced.
  • FIG. 6 is a diagram showing a modified example of the alkaline earth metal removal step S115 in the process flow shown in FIG. 5.
  • the alkaline earth metal removal step S1151 shown in FIG. 6 includes an adsorption removal step S115 similar to the alkaline earth metal removal step S115 shown in FIG. 5, as well as an adsorption removal pretreatment step S117 in which the second concentrated liquid before the adsorption removal step S115 is passed through a second NF membrane different from the NF membrane through which seawater is passed in the first step S1, and the adsorption removal step S115 is performed on the permeated liquid of the second NF membrane in the adsorption removal pretreatment step S117.
  • the non-permeated liquid that does not pass through the second NF membrane in the adsorption removal pretreatment step S117 contains alkaline earth metals such as calcium and magnesium, so it is preferable to merge it with the first concentrated liquid generated in the first step S1, which can increase the recovery rate of alkaline earth metals required for carbon dioxide fixation in the third step S3.
  • the alkaline earth metal removal step S1151 shown in FIG. 6 can also be performed by only passing the second concentrated liquid through the second NF membrane, without including the adsorption removal step S115.
  • Third Embodiment Fig. 7 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a third embodiment of the present invention.
  • the alkaline earth metal removal step S1152 in the method for immobilizing carbon dioxide according to the third embodiment shown in Fig. 7 includes an adsorption removal pretreatment step S118 for reducing the alkaline earth metal contained in the second concentrated liquid before the adsorption removal step S115 is performed, in addition to the adsorption removal step S115 similar to the alkaline earth metal removal step S115 shown in Fig. 5.
  • steps similar to those in Fig. 5 are denoted by the same reference numerals, and repeated explanations will be omitted.
  • the second concentrated liquid obtained in the concentration step S114 and a part of the liquid to be treated obtained in the second step S2 are brought into liquid-liquid contact in a reaction tank, so that alkaline earth metals such as calcium and magnesium contained in the second concentrated liquid react with carbonate ions to precipitate alkaline earth metal carbonate crystals such as MgCO 3 and CaCO 3.
  • the second concentrated liquid containing the precipitate is transferred to a precipitation tank, and the precipitate is removed by solid-liquid separation.
  • the alkaline earth metal removal step S1152 shown in FIG. 7 can also be further combined with the adsorption removal pretreatment step S117 shown in FIG. 6. Alternatively, the alkaline earth metal removal step S1152 shown in FIG. 7 may be performed only by a step of bringing the second concentrated liquid into liquid-liquid contact with the liquid to be treated, without including the adsorption removal step S115.
  • Fourth Embodiment Fig. 8 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a fourth embodiment of the present invention.
  • the method for immobilizing carbon dioxide according to the fourth embodiment shown in Fig. 8 further includes an evaporation concentration step S14 and a solid-liquid separation step S15 described below in addition to the method for immobilizing carbon dioxide according to the third embodiment shown in Fig. 7.
  • the same steps as those in Fig. 7 are denoted by the same reference numerals, and repeated explanations will be omitted (the same applies to the following figures).
  • the first concentrated liquid produced in the first step S1 is evaporated and concentrated in an evaporator to precipitate calcium sulfate crystals.
  • the seed crystals for example, calcium sulfate crystals recovered in the solid-liquid separation step S15 described later can be used.
  • an acid to the first concentrated liquid it is also preferable to add an acid to the first concentrated liquid to adjust the pH.
  • Solid-liquid separation step> the calcium sulfate crystals precipitated in the evaporation concentration step S14 are separated from the first concentrated liquid by a solid-liquid separator and recovered.
  • the recovered calcium sulfate crystals can be used as, for example, gypsum.
  • the third step S3 is performed on the filtrate, which is the first concentrated liquid after the solid-liquid separation.
  • the amount of the first concentrated liquid to be subjected to the third step S3 can be reduced, so that the reaction tank of the third step S3 can be made smaller.
  • the increase in the concentration of alkaline earth metal in the first concentrated liquid increases the reaction efficiency of the alkaline earth metal and carbonate ions in the third step S3, so that the production rate of alkaline earth metal carbonate crystals can be increased.
  • calcium is recovered as calcium sulfate crystals from the first concentrated liquid before the third step S3, the precipitation of CaCO 3 in the third step S3 is suppressed, and the purity of the recovered MgCO 3 can be increased.
  • FIG. 9 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a fifth embodiment of the present invention.
  • a part of the liquid to be treated obtained by contacting carbon dioxide with an alkaline solution in the second step S2 is brought into liquid-liquid contact with a second concentrated liquid in an adsorption removal pretreatment step S118
  • an alkaline solution that has been previously contacted with carbon dioxide in a CO 2 absorption step S119 different from the second step S2 is brought into liquid-liquid contact with the second concentrated liquid in the adsorption removal pretreatment step S118.
  • CO 2 absorption step S119 carbon dioxide can be brought into gas-liquid contact with an alkaline solution in the same manner as in the second step S2.
  • FIG. 10 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a sixth embodiment of the present invention.
  • a part of the liquid to be treated obtained by contacting carbon dioxide with an alkaline solution in the second step S2 is brought into liquid-liquid contact with a second concentrated liquid in an adsorption/removal pretreatment step S118
  • the second concentrated liquid is brought into gas-liquid contact with carbon dioxide to perform an adsorption/removal pretreatment step S118'.
  • the alkaline solution produced in the electrodialysis step S13 is added to the second concentrated liquid to adjust the pH of the second concentrated liquid to the alkaline side (for example, pH 9 to 10) and store it in a storage tank, and a gas containing carbon dioxide is blown into the second concentrated liquid to bring the liquid into gas-liquid contact by bubbling, thereby reacting and immobilizing the alkaline earth metal contained in the second concentrated liquid.
  • the second concentrated liquid becomes a slurry in which alkaline earth metal carbonate crystals such as MgCO3 and CaCO3 are precipitated.
  • the alkaline earth metal carbonate crystals contained in the slurry-like second concentrated liquid are separated into solid and liquid using a solid-liquid separator such as a centrifuge and recovered.
  • the gas containing carbon dioxide may be the atmosphere or exhaust gas from various combustion devices. There is no limit to the concentration of carbon dioxide contained in the gas, but for example, the concentration of carbon dioxide contained in the gas is from the atmosphere to about 100% by volume.
  • the alkaline solution may be added to the second concentrated liquid not only before bubbling the gas containing carbon dioxide, but also during bubbling. When bubbling, the reaction efficiency between the alkaline earth metal and carbon dioxide can be improved by blowing in fine bubbles of carbon dioxide (fine bubbles such as microbubbles or ultrafine bubbles).
  • the method of bringing the second concentrated liquid into gas-liquid contact with carbon dioxide may be, in addition to the method of blowing CO2 gas into the second concentrated liquid, a method of spraying the second concentrated liquid into CO2 gas with a spray nozzle or tray in a single-stage or multi-stage desulfurization tower or degassing tower, etc., and various known gas-liquid contact devices can be used taking into consideration the reaction rate, reaction amount, CO2 concentration in gases such as exhaust gas, and the like.
  • the alkaline earth metal removal step S1152 shown in Figures 7 to 10 may be configured to include only the adsorption removal pre-treatment steps S118, S118' when the scale components can be sufficiently removed by the adsorption removal pre-treatment steps S118, S118'.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

[Problem] To provide a method for fixing carbon dioxide onto an alkaline earth metal, whereby it becomes possible to increase a carbon dioxide emission reduction capability while taking the amount of discharged carbon dioxide into consideration. [Solution] Provided is a method for fixing carbon dioxide, the method comprising: a first step S1 for allowing sea water or brine water to pass through a nano-filtration membrane to generate a first concentrated solution that is concentrated without the penetration through the nano-filtration membrane; a second step S2 for bringing an alkaline solution into contact with carbon dioxide to produce a solution to be treated which contains carbonate ions; and a third step S3 for bringing the first concentrated solution into contact with the solution to be treated, thereby causing the precipitation of a crystal of a carbonated product of the alkaline earth metal contained in the first concentrated solution.

Description

二酸化炭素の固定化方法Carbon dioxide fixation method
 本発明は、アルカリ土類金属への二酸化炭素の固定化方法に関する。 The present invention relates to a method for fixing carbon dioxide to alkaline earth metals.
 地球温暖化の深刻化に伴い気温上昇を抑制することが求められており、その評価モデルとして人為的二酸化炭素(CO)排出量をゼロにすることが目標となっている。上記目標を達成するための手段として、CO固定化方法が挙げられる。
 CO固定化方法の有効な手段として、アルカリ土類金属であるMgやCaを利用して、これらアルカリ土類金属とCOを結合させて固定化する方法が挙げられる。しかし、アルカリ土類金属を含む鉱石を利用する従来の方法は、高温高圧や薬品添加といったCO排出と結びつく処理を必要とするため、プロセス全体でCO排出となるケースが多い。
 またMgやCaは、海水及び海水の淡水化プラントからの廃液かん水等にも含まれており、例えば海水を利用したCO固定化方法が提案されている(例えば、特許文献1-3参照)。
As global warming becomes more serious, there is a need to suppress the rise in temperature, and as an evaluation model for this, the goal is to reduce anthropogenic carbon dioxide ( CO2 ) emissions to zero. One of the means for achieving this goal is the CO2 fixation method.
One effective method for fixing CO2 is to use alkaline earth metals such as Mg and Ca to bind and fix CO2 . However, conventional methods that use ores containing alkaline earth metals require treatments that result in CO2 emissions, such as high temperature and pressure and the addition of chemicals, and in many cases the entire process results in CO2 emissions.
Furthermore, Mg and Ca are also contained in seawater and wastewater brine from seawater desalination plants, and a method for fixing CO2 using seawater has been proposed (see, for example, Patent Documents 1 to 3).
特開2005-21870号公報JP 2005-21870 A 特開2010-125354号公報JP 2010-125354 A 国際公開第2022/30529号International Publication No. 2022/30529
 海水又はかん水を利用するCO固定化方法では、海水又はかん水へのCO吹込みによる方法が多く検討されてきたが、イオン径の小さな2価の陽イオンであるMg2+イオン周りに形成される強固な水和殻と、炭酸塩化を競合するカチオン(Na+、K+)の存在が原因で、液相内でのCO固定化の効率が低下するといった問題がある。その解決策として、Ca(OH)等のリサイクルが困難なアルカリ添加によるpHを上昇させる手段を用いることが主流であった。しかし、COとの反応を促進させるためのこれらの手段は、エネルギー消費やライフサイクルアセスメントとしての添加物生産に起因するCO排出を考慮すると、プロセス全体でCO排出がプラスとなってしまう。
 特許文献1及び2の技術でも、pH調整や廃水処理等が必要となりプロセス全体としてCOの排出量をマイナスとすることは困難である。
In the CO2 fixation method using seawater or brine, many methods have been considered that involve blowing CO2 into seawater or brine, but there are problems such as a decrease in the efficiency of CO2 fixation in the liquid phase due to the strong hydration shell formed around Mg2+ ions, which are divalent cations with a small ion diameter, and the presence of cations (Na + , K + ) that compete with carbonation. As a solution to this problem, the mainstream method has been to use a means of increasing the pH by adding alkali such as Ca(OH) 2 , which is difficult to recycle. However, these means for promoting the reaction with CO2 result in a positive CO2 emission in the entire process, considering energy consumption and CO2 emissions due to additive production as part of life cycle assessment.
Even in the techniques of Patent Documents 1 and 2, pH adjustment, wastewater treatment, etc. are required, making it difficult to reduce CO2 emissions throughout the entire process.
 上述のように海水又はかん水を利用したCO固定化方法の問題点として、MgやCa以外の分子やイオンの存在によるCOとの反応の阻害が挙げられる。したがって、海水又はかん水からMgやCaを分離するプロセスにおいて、単位操作ごとに由来するCO排出も考慮して、CO削減能力が評価されなければならない。 As described above, a problem with the CO2 fixation method using seawater or brackish water is the inhibition of reaction with CO2 due to the presence of molecules or ions other than Mg and Ca. Therefore, in the process of separating Mg and Ca from seawater or brackish water, the CO2 reduction capacity must be evaluated taking into account the CO2 emissions from each unit operation.
 特許文献3には、海水又はかん水をナノろ過膜に通水することによりナノろ過膜を透過せずに濃縮された第1濃縮液を生成する第1工程と、生成された第1濃縮液にアルカリを添加して該第1濃縮液に含まれるアルカリ土類金属に二酸化炭素を反応させて固定化し、アルカリ土類金属炭酸化物結晶を析出させる第2工程と、析出したアルカリ土類金属炭酸化物結晶を第1濃縮液から固液分離して回収する第3工程とを備える二酸化炭素の固定化方法が開示されている。特許文献3の技術は、第1工程によって、二酸化炭素の固定化の妨げになるおそれがあるNa、Kなどの濃度が低減されるため、海水又はかん水に含まれるアルカリ土類金属への二酸化炭素の固定化を容易に効率良く行うことができるが、二酸化炭素の固定化を更に効率良く行う上で改良の余地があった。 Patent Document 3 discloses a method for fixation of carbon dioxide, which includes a first step of generating a first concentrated liquid that is concentrated without passing through the nanofiltration membrane by passing seawater or brackish water through a nanofiltration membrane, a second step of adding an alkali to the generated first concentrated liquid to react and fix carbon dioxide with the alkaline earth metal contained in the first concentrated liquid to precipitate alkaline earth metal carbonate crystals, and a third step of recovering the precipitated alkaline earth metal carbonate crystals from the first concentrated liquid by solid-liquid separation. The technology of Patent Document 3 can easily and efficiently fix carbon dioxide to alkaline earth metals contained in seawater or brackish water because the concentration of Na + , K + , etc., which may hinder the fixation of carbon dioxide, is reduced by the first step, but there is room for improvement in terms of further efficient fixation of carbon dioxide.
 そこで本発明は、二酸化炭素の排出量を考慮しつつ二酸化炭素削減能力を高める、アルカリ土類金属への二酸化炭素の固定化方法を提供する。 The present invention provides a method for fixing carbon dioxide to alkaline earth metals, which increases the carbon dioxide reduction capacity while taking into account the amount of carbon dioxide emitted.
 本発明の前記目的は、海水又はかん水をナノろ過膜に通水することにより、前記ナノろ過膜を透過せずに濃縮された第1濃縮液を生成する第1工程と、アルカリ溶液に二酸化炭素を接触させることにより、炭酸イオンを含む被処理液を生成する第2工程と、前記第1濃縮液と前記被処理液とを接触させることにより、前記第1濃縮液に含まれるアルカリ土類金属の炭酸化物結晶を析出させる第3工程とを備える二酸化炭素の固定化方法により達成される。 The object of the present invention is achieved by a method for immobilizing carbon dioxide, comprising a first step of generating a first concentrated liquid by passing seawater or brackish water through a nanofiltration membrane without passing through the nanofiltration membrane, a second step of generating a liquid to be treated that contains carbonate ions by contacting carbon dioxide with an alkaline solution, and a third step of precipitating carbonate crystals of the alkaline earth metal contained in the first concentrated liquid by contacting the first concentrated liquid with the liquid to be treated.
 この二酸化炭素の固定化方法において、前記第1工程は、前記ナノろ過膜を透過した第1透過液を濃縮して析出した塩化ナトリウム結晶を回収する製塩工程と、前記塩化ナトリウム結晶の溶液を電気透析することにより酸溶液及びアルカリ溶液を分離する電気透析工程とを備えることが好ましく、前記第2工程は、前記電気透析工程で得られたアルカリ溶液を用いて前記被処理液を生成することが好ましい。 In this carbon dioxide fixation method, the first step preferably includes a salt production step in which the first permeate that has permeated the nanofiltration membrane is concentrated to recover precipitated sodium chloride crystals, and an electrodialysis step in which the solution of sodium chloride crystals is subjected to electrodialysis to separate an acid solution and an alkaline solution, and the second step preferably uses the alkaline solution obtained in the electrodialysis step to produce the liquid to be treated.
 あるいは、前記第1工程は、前記ナノろ過膜を透過した第1透過液を濃縮して第2濃縮液を生成する濃縮工程と、前記第2濃縮液に含まれるアルカリ土類金属を除去するアルカリ土類金属除去工程と、前記アルカリ土類金属除去工程を経た前記第2濃縮液を電気透析することにより酸溶液及びアルカリ溶液を分離する電気透析工程とを備えることが好ましく、前記第2工程は、前記電気透析工程で得られたアルカリ溶液を用いて前記被処理液を生成することが好ましい。 Alternatively, the first step preferably includes a concentration step of concentrating the first permeated liquid that has permeated the nanofiltration membrane to produce a second concentrated liquid, an alkaline earth metal removal step of removing alkaline earth metals contained in the second concentrated liquid, and an electrodialysis step of electrodialyzing the second concentrated liquid that has been through the alkaline earth metal removal step to separate an acid solution and an alkaline solution, and the second step preferably produces the liquid to be treated using the alkaline solution obtained in the electrodialysis step.
 前記アルカリ土類金属除去工程は、前記第2濃縮液に含まれるアルカリ土類金属をキレート樹脂又はイオン交換樹脂により除去する吸着除去工程を備えることが好ましい。前記第1工程は、前記電気透析工程で得られた酸溶液を用いて前記キレート樹脂又はイオン交換樹脂を再生する樹脂再生工程を更に備えることが好ましい。前記樹脂再生工程は、前記キレート樹脂又はイオン交換樹脂を再生させた酸溶液を前記第1濃縮液に合流させることが好ましい。 The alkaline earth metal removal step preferably includes an adsorption removal step in which the alkaline earth metals contained in the second concentrated liquid are removed by a chelating resin or an ion exchange resin. The first step preferably further includes a resin regeneration step in which the chelating resin or the ion exchange resin is regenerated using the acid solution obtained in the electrodialysis step. In the resin regeneration step, the acid solution in which the chelating resin or the ion exchange resin has been regenerated is preferably merged with the first concentrated liquid.
 前記アルカリ土類金属除去工程は、前記第2濃縮液を前記ナノろ過膜とは異なる第2ナノろ過膜に通水する工程を備えることが好ましく、前記第2ナノろ過膜の非透過液を前記第1濃縮液に合流させる工程を備えることがより好ましい。また、前記アルカリ土類金属除去工程は、前記第2濃縮液と前記被処理液とを接触させることにより、前記第2濃縮液に含まれるアルカリ土類金属の炭酸化物結晶を析出させて固液分離により除去する工程を備えることが好ましい。 The alkaline earth metal removal step preferably includes a step of passing the second concentrated liquid through a second nanofiltration membrane different from the nanofiltration membrane, and more preferably includes a step of merging the non-permeated liquid of the second nanofiltration membrane with the first concentrated liquid. In addition, the alkaline earth metal removal step preferably includes a step of contacting the second concentrated liquid with the liquid to be treated, thereby precipitating carbonate crystals of the alkaline earth metal contained in the second concentrated liquid and removing them by solid-liquid separation.
 前記第3工程は、前記第1濃縮液に前記被処理液を混合して炭酸カルシウム結晶が析出した第1反応液を生成する第1析出工程と、前記第1反応液を固液分離して炭酸カルシウムを回収する第1固液分離工程と、前記第1固液分離工程を経た前記第1反応液に前記被処理液を更に混合して炭酸マグネシウム結晶が析出した第2反応液を生成する第2析出工程と、前記第2反応液を固液分離して炭酸マグネシウムを回収する第2固液分離工程とを備えることが好ましい。 The third step preferably includes a first precipitation step of mixing the first concentrated liquid with the liquid to be treated to produce a first reaction liquid in which calcium carbonate crystals are precipitated, a first solid-liquid separation step of subjecting the first reaction liquid to solid-liquid separation to recover calcium carbonate, a second precipitation step of further mixing the liquid to be treated with the first reaction liquid that has been subjected to the first solid-liquid separation step to produce a second reaction liquid in which magnesium carbonate crystals are precipitated, and a second solid-liquid separation step of subjecting the second reaction liquid to solid-liquid separation to recover magnesium carbonate.
 本発明によれば、二酸化炭素の排出量を考慮しつつ二酸化炭素削減能力を高める、アルカリ土類金属への二酸化炭素の固定化方法を提供することができる。 The present invention provides a method for fixing carbon dioxide to alkaline earth metals that increases the carbon dioxide reduction capacity while taking into account the amount of carbon dioxide emitted.
本発明の第1の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。FIG. 1 is a process flow diagram for explaining a carbon dioxide fixation method according to a first embodiment of the present invention. 図1に示す処理フローにおける各種イオン量の変化の一例を示す図である。2 is a diagram showing an example of changes in the amounts of various ions in the process flow shown in FIG. 1 . 図1に示す処理フローにおける一部の工程の変形例を示す図である。FIG. 2 is a diagram showing a modification of some of the steps in the processing flow shown in FIG. 1 . 図3に示す処理フローにおける成分変化の一例を示す図である。FIG. 4 is a diagram showing an example of a component change in the processing flow shown in FIG. 3 . 本発明の第2の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。FIG. 5 is a process flow diagram for explaining a carbon dioxide fixation method according to a second embodiment of the present invention. 図5に示す処理フローにおける一部の工程の変形例を示す図である。FIG. 6 is a diagram showing a modification of some of the steps in the processing flow shown in FIG. 5 . 本発明の第3の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。FIG. 11 is a process flow diagram for explaining a carbon dioxide fixation method according to a third embodiment of the present invention. 本発明の第4の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。FIG. 11 is a process flow diagram for explaining a carbon dioxide fixation method according to a fourth embodiment of the present invention. 本発明の第5の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。FIG. 11 is a process flow diagram for explaining a carbon dioxide fixation method according to a fifth embodiment of the present invention. 本発明の第6の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。FIG. 13 is a process flow diagram for explaining a carbon dioxide fixation method according to a sixth embodiment of the present invention.
 本発明の二酸化炭素の固定化方法は、海水又はかん水に含まれるアルカリ土類金属に対して二酸化炭素を固定化する方法を提供するものである。本発明において「アルカリ土類金属」は、Ca、Sr、Ba、Raの他に、周期表第2族の元素であるMgとBeを含む広義の範囲を意味する。特にCOとの反応のし易さや、該反応により得られる炭酸塩を様々な用途へ利用することが期待できる観点から、アルカリ土類金属として少なくともMgを含むことが好ましい。 The method for fixing carbon dioxide of the present invention provides a method for fixing carbon dioxide to alkaline earth metals contained in seawater or brine. In the present invention, "alkaline earth metal" refers to a broad range including Mg and Be, which are elements of Group 2 of the periodic table, in addition to Ca, Sr, Ba, and Ra. In particular, it is preferable that the alkaline earth metal contains at least Mg, from the viewpoint of ease of reaction with CO2 and the fact that carbonates obtained by the reaction can be expected to be used for various purposes.
 また「海水又はかん水」は、マグネシウムイオン(Mg2+)、カルシウムイオン(Ca2+)等のアルカリ土類金属のイオンを含む水溶液である。海水又はかん水は、アルカリ土類金属のイオン以外に、硫酸カルシウム、塩化ナトリウム、塩化カリウム及び硫酸ナトリウムから選択される少なくとも一種の結晶を構成するイオンを通常含んでいる。具体的には、海水又はかん水は、塩化物イオン(Cl)、硫酸イオン(SO 2-)、ナトリウムイオン(Na)、カリウム(K)から選ばれる少なくとも1種のイオンを通常含んでいる。 Furthermore, "seawater or brine" is an aqueous solution containing alkaline earth metal ions such as magnesium ions (Mg 2+ ) and calcium ions (Ca 2+ ). Seawater or brine usually contains, in addition to alkaline earth metal ions, at least one type of ion that forms a crystal selected from calcium sulfate, sodium chloride, potassium chloride, and sodium sulfate. Specifically, seawater or brine usually contains at least one type of ion selected from chloride ions (Cl - ), sulfate ions (SO 4 2- ), sodium ions (Na + ), and potassium (K + ).
 上記の海水又はかん水としては、海水、塩湖、及び工業廃水から選ばれる少なくとも1種から得られるものを用いることができる。また、アルカリ土類金属が含まれていれば、海水、塩湖及び工業廃水の他に、河川水、雨水、下水処理水、油田やガス田の随伴水等も用いることができる。かん水としてより具体的には、塩湖等を用いた造水、淡水化や造塩のプロセスにより排出される廃液かん水や、海水及び塩湖等を用いた有価物の回収、化学工場等からの工業廃水等が挙げられる。 The seawater or brine mentioned above can be obtained from at least one selected from seawater, salt lakes, and industrial wastewater. In addition to seawater, salt lakes, and industrial wastewater, river water, rainwater, treated sewage water, and associated water from oil fields and gas fields can also be used so long as they contain alkaline earth metals. More specific examples of brine include wastewater brine discharged from water production processes using salt lakes, desalination and salt production processes, recovery of valuable materials using seawater and salt lakes, and industrial wastewater from chemical plants, etc.
 前述のMgを多く含むこと、環境負荷の低減及びCO排出量削減のし易さの観点から、かん水は、海水を用いた造水装置から得られるかん水、海水から塩を造るプロセスから得られるかん水、及び塩湖からリチウムを回収するプロセスから得られるかん水から選ばれる少なくとも1種であることが好ましい。 From the viewpoints of containing a large amount of Mg as described above, reducing the environmental load, and facilitating the reduction of CO2 emissions, the brine is preferably at least one selected from the group consisting of brine obtained from a freshwater production system using seawater, brine obtained from a process for producing salt from seawater, and brine obtained from a process for recovering lithium from a salt lake.
<第1の実施形態>
 以下、本発明の一実施形態について添付図面を参照して説明する。図1は、本発明の第1の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。第1の実施形態においては、処理対象を海水としているが、かん水の場合も同様の処理を行うことができる。図1に示すように、第1の実施形態の二酸化炭素の固定化方法は、海水をナノろ過膜(NF膜)に通水することにより、NF膜を透過せずに濃縮された第1濃縮液を生成する第1工程S1と、アルカリ溶液に二酸化炭素を接触させることにより炭酸イオンを含む被処理液を生成する第2工程S2と、生成された第1濃縮液及び被処理液を接触させることにより第1濃縮液に含まれるアルカリ土類金属の炭酸化物結晶を析出させる第3工程とを備えている。
First Embodiment
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a first embodiment of the present invention. In the first embodiment, the treatment target is seawater, but the same treatment can be performed in the case of brackish water. As shown in FIG. 1, the method for immobilizing carbon dioxide according to the first embodiment includes a first step S1 of passing seawater through a nanofiltration membrane (NF membrane) to generate a first concentrated liquid that is concentrated without passing through the NF membrane, a second step S2 of contacting carbon dioxide with an alkaline solution to generate a liquid to be treated that contains carbonate ions, and a third step of contacting the generated first concentrated liquid with the liquid to be treated to precipitate carbonate crystals of an alkaline earth metal contained in the first concentrated liquid.
<S1:第1工程>
 第1工程S1は、取水した海水に対して、ろ過、凝集、沈殿などの前処理を適宜行うことで微粒子や微生物等の不純物を除去した後、中圧ポンプ等によりNF膜ユニットに供給してNF膜に通水することにより、NF膜を透過した第1透過液と、NF膜を透過せずに濃縮された第1濃縮液とを生成する。
<S1: First step>
In the first step S1, the taken seawater is appropriately pretreated by filtration, coagulation, precipitation, etc. to remove impurities such as fine particles and microorganisms, and then the seawater is supplied to an NF membrane unit by a medium pressure pump or the like and passed through the NF membrane to produce a first permeate that has permeated the NF membrane and a first concentrated liquid that has not permeated the NF membrane and is concentrated.
 NF膜は、2価以上のイオンの透過を抑制する一方で、1価イオンは透過し易い性質を有するため、第1濃縮液には、二酸化炭素の固定化の対象となるアルカリ土類金属の多くが残留すると共に、この固定化の妨げになるおそれがあるNa、Kなどの濃度が低減される。したがって、海水(又はかん水)に含まれるアルカリ土類金属への二酸化炭素の固定化を容易に効率良く行うことができ、後工程を含めたプロセス全体での二酸化炭素の発生を抑制することができる。図2は、海水を100m/hの流量で供給した場合における、海水、第1透過液及び第1濃縮液に含まれる各種イオン量(mg/h)の一例を示している。 Since the NF membrane has the property of suppressing the permeation of divalent or higher ions while easily allowing monovalent ions to permeate, most of the alkaline earth metals to be immobilized with carbon dioxide remain in the first concentrated liquid, and the concentrations of Na + , K + , etc., which may hinder the immobilization, are reduced. Therefore, carbon dioxide can be easily and efficiently immobilized in the alkaline earth metals contained in the seawater (or brackish water), and the generation of carbon dioxide in the entire process including the subsequent steps can be suppressed. Figure 2 shows an example of the amounts (mg/h) of various ions contained in the seawater, the first permeated liquid, and the first concentrated liquid when seawater is supplied at a flow rate of 100 m 3 /h.
<S11:製塩工程>
 一方、第1透過液には、1価のイオンであるNaやClが多く含まれているため、第1工程S1は、第1透過液を濃縮して析出した塩化ナトリウム(NaCl)結晶を回収する製塩工程S11を備える。本実施形態の製塩工程S11は、第1透過液を高圧ポンプ等により逆浸透膜(RO膜)ユニットに供給してRO膜に通水することにより、RO膜を透過せずに濃縮された第2濃縮液を生成する第1膜処理工程S111と、第1膜処理工程S111で生成された第2濃縮液を半透膜でセパレートされた半透膜ユニットの高圧室に供給し、低圧室を通過する回収液との圧力差を利用して第2濃縮液を更に濃縮する第2膜処理工程S112と、第2膜処理工程S112で更に濃縮された第2濃縮液を結晶缶に供給して加熱蒸発し、NaCl結晶を析出させる結晶化工程S113とを備えている。
<S11: Salt production process>
On the other hand, since the first permeate contains a large amount of monovalent ions Na + and Cl - , the first step S1 includes a salt production step S11 in which the first permeate is concentrated to recover precipitated sodium chloride (NaCl) crystals. The salt production step S11 of this embodiment includes a first membrane treatment step S111 in which the first permeate is supplied to a reverse osmosis membrane (RO membrane) unit by a high-pressure pump or the like and passed through the RO membrane to produce a second concentrated liquid that is concentrated without passing through the RO membrane, a second membrane treatment step S112 in which the second concentrated liquid produced in the first membrane treatment step S111 is supplied to a high-pressure chamber of a semipermeable membrane unit separated by a semipermeable membrane, and the second concentrated liquid is further concentrated by utilizing the pressure difference with the recovered liquid passing through the low-pressure chamber, and a crystallization step S113 in which the second concentrated liquid further concentrated in the second membrane treatment step S112 is supplied to a crystallizer and heated and evaporated to precipitate NaCl crystals.
 第2膜処理工程S112において低圧室に供給される回収液は、高圧室を通過した第2濃縮液の一部を利用することができ、低圧室を通過した回収液を、第1膜処理工程S111前の第1透過液に合流させることができる。また、結晶化工程S113において結晶缶から排出された蒸気は、凝縮器等で凝縮されて蒸留水となり、第1膜処理工程S111でRO膜を透過した第2透過液に合流されて、製造水等として使用される。結晶缶内で濃縮された結晶缶濃縮液は、一部がNaCl結晶を含むスラリー液として結晶缶から排出され、遠心分離器等で脱水されてNaCl結晶が回収される。第1透過液は、SO 2-をほとんど含まないため、低エネルギーである第1膜処理工程S111により、高濃度で濃縮することができる。第2膜処理工程S112を備えずに、第1膜処理工程S111のみで第2濃縮液を生成してもよい。また、第2濃縮液を水平管型蒸発器等により蒸発濃縮した後に結晶化工程S113を行ってもよく、あるいは、第1透過液を膜濃縮せずに蒸発濃縮してもよい。 The recovery liquid supplied to the low pressure chamber in the second membrane treatment step S112 can utilize a part of the second concentrated liquid that has passed through the high pressure chamber, and the recovery liquid that has passed through the low pressure chamber can be merged with the first permeated liquid before the first membrane treatment step S111. In addition, the steam discharged from the crystallizer in the crystallization step S113 is condensed by a condenser or the like to become distilled water, and is merged with the second permeated liquid that has permeated the RO membrane in the first membrane treatment step S111 to be used as produced water or the like. The crystallizer concentrated liquid concentrated in the crystallizer is discharged from the crystallizer as a slurry liquid containing NaCl crystals, and is dehydrated by a centrifuge or the like to recover NaCl crystals. Since the first permeated liquid contains almost no SO 4 2- , it can be concentrated at a high concentration by the first membrane treatment step S111, which is low energy. The second concentrated liquid may be produced only by the first membrane treatment step S111 without providing the second membrane treatment step S112. In addition, the second concentrated liquid may be evaporated and concentrated using a horizontal tube evaporator or the like before the crystallization step S113 is carried out, or the first permeated liquid may be evaporated and concentrated without being concentrated through a membrane.
<S12:合流工程>
 図1に示すように、第1工程S1は、製塩工程S11でNaCl結晶を回収した後のろ液を、上記の第1濃縮液に合流させる合流工程S12を備えており、これによって廃液の系外への排出を抑制して、環境負荷の軽減を図ることができる。マグネシウム等の回収対象となるアルカリ土類金属は、第1濃縮液だけでなく、第1透過液にも含まれているため、上記の合流工程S12を備えることで、第2工程S2での二酸化炭素の固定化に要するアルカリ土類金属の回収率を高めることができる。結晶化工程S112で得られるNaCl結晶の純度を高める観点からは、合流工程S12により第1濃縮液に合流させるろ液の量をなるべく多くすることが好ましい。
<S12: Joining process>
As shown in Fig. 1, the first step S1 includes a confluence step S12 in which the filtrate obtained after recovering NaCl crystals in the salt production step S11 is merged with the first concentrated liquid, thereby suppressing discharge of waste liquid outside the system and reducing the environmental load. The alkaline earth metals to be recovered, such as magnesium, are contained not only in the first concentrated liquid but also in the first permeated liquid, so that the confluence step S12 can increase the recovery rate of the alkaline earth metals required for the fixation of carbon dioxide in the second step S2. From the viewpoint of increasing the purity of the NaCl crystals obtained in the crystallization step S112, it is preferable to increase the amount of filtrate merged with the first concentrated liquid in the confluence step S12 as much as possible.
<S13:電気透析工程>
 第1工程S1は、製塩工程S11で生成されたNaCl結晶を電気透析する電気透析工程S13を備える。電気透析工程S13は、例えば、バイポーラ膜電気透析装置を使用することができ、結晶化工程S113で得られたNaCl結晶を水に溶解させた溶液を、HCl溶液とNaOH溶液とに分離する。電気透析は、太陽光エネルギー等の再生可能エネルギーを利用することが好ましく、プロセス全体でのCO排出を抑制することができる。電気透析が行われるNaCl溶液の純度を高めるため、NaCl溶液に含まれるマグネシウムやカルシウム等の不純物をキレート樹脂に吸着させて、これらの濃度を十分軽減することが好ましい(例えば1ppm以下)。
<S13: Electrodialysis step>
The first step S1 includes an electrodialysis step S13 in which the NaCl crystals produced in the salt production step S11 are electrodialyzed. For example, a bipolar membrane electrodialysis device can be used in the electrodialysis step S13, and the solution in which the NaCl crystals obtained in the crystallization step S113 are dissolved in water is separated into an HCl solution and a NaOH solution. It is preferable that the electrodialysis utilizes renewable energy such as solar energy, and CO2 emissions in the entire process can be suppressed. In order to increase the purity of the NaCl solution to be electrodialyzed, it is preferable to adsorb impurities such as magnesium and calcium contained in the NaCl solution to a chelating resin to sufficiently reduce their concentrations (for example, to 1 ppm or less).
 電気透析工程S13で得られたNaOH溶液は、第2工程S2で使用するアルカリ溶液として好適に使用することができる。電気透析工程S13で生成されるアルカリ溶液が第2工程S2で必要な量のみとなるように、第1工程S1で生成された第1透過液の流路を分岐して、第1透過液の一部のみに製塩工程S11を行ってもよい。これによって、アルカリの生成に必要なエネルギー消費を抑制して、プロセス全体でのCO排出の軽減を図ることができる。なお、アルカリの生成には、上記のとおり再生可能エネルギーを利用することが好ましい。製塩工程S11に使用されない第1透過液の残部は、淡水化プロセス等の別工程に使用することができ、別工程でも使用されない第1透過液は、海洋等に放流してもよい。 The NaOH solution obtained in the electrodialysis step S13 can be suitably used as the alkaline solution used in the second step S2. The flow path of the first permeate produced in the first step S1 may be branched so that the alkaline solution produced in the electrodialysis step S13 is only the amount required for the second step S2, and only a part of the first permeate may be subjected to the salt production step S11. This suppresses the energy consumption required for producing the alkali, and reduces CO2 emissions in the entire process. It is preferable to use renewable energy for producing the alkali, as described above. The remainder of the first permeate not used in the salt production step S11 can be used in another step such as a desalination process, and the first permeate not used in the other step may be discharged into the ocean, etc.
 電気透析工程S13で生成されるアルカリ溶液が第2工程S2で必要な量のみとなるように、第1工程S1は、海水又はかん水の一部をNF膜に通水せずにバイパスさせて、生成量が抑制された第1透過液の一部又は全部に対して製塩工程S11を行ってもよい。NF膜をバイパスした海水又はかん水は、第1濃縮液に合流した後に、第3工程S3での二酸化炭素の固定化に供することができる。 In order to produce only the amount of alkaline solution required in the second step S2 in the electrodialysis step S13, the first step S1 may bypass part of the seawater or brine without passing it through the NF membrane, and the salt production step S11 may be carried out on part or all of the first permeate with the production amount suppressed. The seawater or brine that bypasses the NF membrane can be merged with the first concentrated liquid and then used for the fixation of carbon dioxide in the third step S3.
<S2:第2工程>
 第2工程S2は、アルカリ溶液を貯留槽に貯留し、このアルカリ溶液に二酸化炭素を含む気体を吹き込んで、バブリングにより気液接触させることで、炭酸イオン(CO3 2-)を含む被処理液を生成する。二酸化炭素を含む気体は大気でもよく、あるいは、種々の燃焼装置の排気ガス等でもよい。該気体中に含まれる二酸化炭素濃度に制限はないが、例えば、大気~100体積%程度である。
<S2: Second step>
In the second step S2, an alkaline solution is stored in a storage tank, and a gas containing carbon dioxide is blown into the alkaline solution to bring the solution into gas-liquid contact by bubbling, thereby producing a liquid to be treated that contains carbonate ions (CO 3 2- ). The gas containing carbon dioxide may be the atmosphere or exhaust gas from various combustion devices. There is no limit to the concentration of carbon dioxide contained in the gas, but it may be, for example, from the atmosphere to about 100% by volume.
 アルカリ溶液と二酸化炭素とを気液接触させる方法は、アルカリ溶液中にCOガス(例えば、マイクロバブルやウルトラファインバブル等の微細気泡)を吹き込む方法以外に、単段式又は多段式の脱硫塔や脱ガス塔等において、COガス中にアルカリ溶液をスプレーノズルやトレイで散布する方法等であってもよく、反応速度や反応量、排ガス等の気体中のCO濃度等を考慮して、公知の種々の気液接触装置を使用することができる。 The method of bringing the alkaline solution and carbon dioxide into gas-liquid contact may be a method of blowing CO2 gas (for example, fine bubbles such as microbubbles or ultrafine bubbles) into the alkaline solution, or a method of spraying the alkaline solution into the CO2 gas with a spray nozzle or tray in a single-stage or multi-stage desulfurization tower or degassing tower, etc., and various known gas-liquid contact devices can be used taking into consideration the reaction rate, reaction amount, CO2 concentration in gases such as exhaust gas, and the like.
 第2工程S2で使用するアルカリ溶液は、上記のとおり電気透析工程S13で得られたNaOH溶液を使用することが好ましく、アルカリを別途生成することに伴うCO排出量の増大を抑制することができる。但し、第2工程S2においては、電気透析工程S13で得られたアルカリとは異なるアルカリ溶液を使用してもよく、あるいは、電気透析工程S13で得られたアルカリ溶液と他のアルカリ溶液とを併用してもよい。 The alkaline solution used in the second step S2 is preferably the NaOH solution obtained in the electrodialysis step S13 as described above, and this makes it possible to suppress an increase in CO2 emissions associated with the separate production of alkali. However, in the second step S2, an alkaline solution different from the alkali obtained in the electrodialysis step S13 may be used, or the alkaline solution obtained in the electrodialysis step S13 may be used in combination with another alkaline solution.
 アルカリ溶液のpH値は、高い値に維持して二酸化炭素と接触させることにより、水酸化ナトリウムと二酸化炭素との下記反応式(1)に示す反応により、炭酸ソーダ(Na2CO3)が発生する。 The pH value of the alkaline solution is maintained at a high value, and by contacting it with carbon dioxide, sodium carbonate (Na 2 CO 3 ) is generated by the reaction between sodium hydroxide and carbon dioxide shown in reaction formula (1) below.
 2NaOH + CO2 → Na2CO+ H2O ・・・(1) 2NaOH + CO2Na2CO3 + H2O ... (1)
 一方、アルカリ溶液のpH値が低すぎると、水酸化ナトリウムと二酸化炭素との下記反応式(2)に示す反応により、重炭酸ソーダ(NaHCO3)が発生するおそれがある。 On the other hand, if the pH value of the alkaline solution is too low, sodium bicarbonate (NaHCO 3 ) may be produced by the reaction between sodium hydroxide and carbon dioxide shown in reaction formula (2) below.
 NaOH + CO2 → NaHCO3 ・・・(2) NaOH + CO2NaHCO3 ... (2)
 重炭酸ソーダが発生すると、後述するように、第3工程S3でアルカリ土類金属の炭酸化物結晶を生成する際に、二酸化炭素が発生する問題が生じる。したがって、アルカリ溶液のpH値は9以上に調整することが好ましく、これによって炭酸イオンを含む炭酸塩(本実施形態では炭酸ソーダ)を確実に生成することができる。アルカリ溶液のpHの上限値は特に制限されないが、アルカリ溶液のpH値が高すぎると、固定化できる二酸化炭素の量が減少するため、第3工程S3で二酸化炭素の固定化を効率良く行うことが困難になる。したがって、アルカリ溶液のpH値は、pH調整剤等により9以上12未満に調整されることが好ましく、9以上10未満に調整されることがより好ましい。 If sodium bicarbonate is generated, as described below, a problem occurs in that carbon dioxide is generated when alkaline earth metal carbonate crystals are generated in the third step S3. Therefore, it is preferable to adjust the pH value of the alkaline solution to 9 or more, which ensures that a carbonate salt containing carbonate ions (sodium carbonate in this embodiment) is generated. There is no particular upper limit to the pH of the alkaline solution, but if the pH value of the alkaline solution is too high, the amount of carbon dioxide that can be fixed decreases, making it difficult to efficiently fix carbon dioxide in the third step S3. Therefore, it is preferable to adjust the pH value of the alkaline solution to 9 or more and less than 12 using a pH adjuster or the like, and more preferably to 9 or more and less than 10.
<S3:第3工程>
 第3工程S3は、第1工程S1で得られた第1濃縮液と、第2工程S2で得られた被処理液とを反応槽で液液接触させることにより、第1濃縮液に含まれるアルカリ土類金属が炭酸イオンと反応して、MgCOやCaCO等のアルカリ土類金属炭酸化物結晶が析出したスラリー液からなる反応液を生成する。第1工程S1で得られた第1濃縮液は、蒸発晶析により硫酸カルシウム結晶を析出させて固液分離を行うことにより、硫酸カルシウム結晶を除去した後に第3工程S3を行ってもよい。
<S3: Third process>
In the third step S3, the first concentrated liquid obtained in the first step S1 and the liquid to be treated obtained in the second step S2 are brought into liquid-liquid contact in a reaction tank, whereby the alkaline earth metal contained in the first concentrated liquid reacts with carbonate ions to produce a reaction liquid consisting of a slurry liquid in which alkaline earth metal carbonate crystals such as MgCO3 and CaCO3 have precipitated. The first concentrated liquid obtained in the first step S1 may be subjected to evaporation crystallization to precipitate calcium sulfate crystals, followed by solid-liquid separation to remove the calcium sulfate crystals, before the third step S3 is carried out.
<S31:固液分離工程>
 第3工程S3は、生成された反応液に含まれるアルカリ土類金属炭酸化物結晶を、遠心分離器等の固液分離装置や沈殿槽での沈殿等により固液分離して回収する固液分離工程を備える。
<S31: Solid-liquid separation step>
The third step S3 includes a solid-liquid separation step in which the alkaline earth metal carbonate crystals contained in the produced reaction liquid are separated into solid and liquid by a solid-liquid separation device such as a centrifuge or precipitation in a precipitation tank, and then recovered.
<S32:中和工程>
 第3工程S3は、固液分離工程S31により反応液からアルカリ土類金属炭酸化物結晶を回収した後のろ液を中和する中和工程S32を備える。このろ液は、通常はpH9以上であるため、酸を添加して中和することで(例えばpH7~8)、海洋等の系外にそのまま排出することが可能になる。ろ液に添加する酸は、電気透析工程S13で得られたHCl溶液を使用することが好ましく、酸を別途生成することに伴うCO排出量の増大を抑制することができる。
<S32: Neutralization step>
The third step S3 includes a neutralization step S32 for neutralizing the filtrate obtained after the alkaline earth metal carbonate crystals are recovered from the reaction solution by the solid-liquid separation step S31. This filtrate usually has a pH of 9 or higher, so by adding an acid to neutralize it (for example, pH 7 to 8), it becomes possible to discharge it directly outside the system, such as the ocean. The acid added to the filtrate is preferably the HCl solution obtained in the electrodialysis step S13, and this makes it possible to suppress an increase in CO2 emissions associated with the separate generation of acid.
<S33:水洗工程>
 第3工程S3は、固液分離工程S31により回収したアルカリ土類金属炭酸化物結晶を洗浄水で洗浄することにより、アルカリ土類金属炭酸化物結晶に付着しているNa、K等を洗浄水に溶解させて除去する水洗工程S33を備える。水洗工程S33で使用する洗浄水は、上記の結晶化工程S113で得られた蒸留水を含むことが好ましく、これによって、洗浄水を別途生成することに伴うCO排出量の増大を抑制することができる。本実施形態では、製塩工程S11で得られた第2透過液及び蒸留水を合流させた製造水の一部を洗浄水として使用する。
<S33: Water washing step>
The third step S3 includes a water washing step S33 in which the alkaline earth metal carbonate crystals recovered in the solid-liquid separation step S31 are washed with wash water to dissolve and remove Na + , K + , and the like adhering to the alkaline earth metal carbonate crystals. The wash water used in the water washing step S33 preferably contains the distilled water obtained in the crystallization step S113, which makes it possible to suppress an increase in CO 2 emissions associated with the separate production of wash water. In this embodiment, a portion of the produced water obtained by combining the second permeate obtained in the salt production step S11 and the distilled water is used as the wash water.
 洗浄後のMgCOやCaCO等のアルカリ土類金属炭酸化物結晶は、コンクリートやセメント等の建築材料として好適に利用することができる。したがって、本発明は、二酸化炭素の固定化方法を用いたアルカリ土類金属炭酸化物塩の製造方法をも提供することができる。 The alkaline earth metal carbonate crystals such as MgCO3 and CaCO3 after washing can be suitably used as building materials such as concrete, cement, etc. Therefore, the present invention can also provide a method for producing alkaline earth metal carbonate salts using the carbon dioxide fixation method.
 本実施形態の二酸化炭素の固定化方法は、第2工程S2において二酸化炭素をアルカリ溶液に接触させて炭酸イオンを含む被処理液を生成した後に、第3工程S3において被処理液を第1濃縮液に液液接触させることにより、第1濃縮液に含まれるアルカリ土類金属の炭酸化物結晶を容易に生成することができる。したがって、海水又はかん水に含まれるアルカリ土類金属に対して二酸化炭素を容易に効率良く固定化することができると共に、各工程で生成されるアルカリや酸、蒸留水等を使用して二酸化炭素の固定化を系内で完結させることができるので、プロセス全体での二酸化炭素の排出量を考慮しつつ、二酸化炭素削減能力を高めることができる。 In the carbon dioxide fixation method of this embodiment, carbon dioxide is brought into contact with an alkaline solution in the second step S2 to produce a liquid to be treated that contains carbonate ions, and then the liquid to be treated is brought into liquid-liquid contact with the first concentrated liquid in the third step S3, which makes it possible to easily produce carbonate crystals of the alkaline earth metal contained in the first concentrated liquid. Therefore, carbon dioxide can be easily and efficiently fixed to the alkaline earth metal contained in seawater or brine, and carbon dioxide fixation can be completed within the system using the alkali, acid, distilled water, etc. produced in each step, so that the carbon dioxide reduction capacity can be increased while taking into account the amount of carbon dioxide emitted throughout the entire process.
<第1の実施形態の変形例>
 第1の実施形態の第3工程S3は、第1濃縮液と被処理液とを反応槽で液液接触させることにより、MgCOやCaCO等のアルカリ土類金属炭酸化物結晶が析出したスラリー液を生成しているが、第1濃縮液に含まれるカルシウムイオンは、マグネシウムイオンよりも炭酸イオンと結びつき易いため、下記のようにMgCOとCaCOとを分離して回収することができる。
<Modification of the first embodiment>
In the third step S3 of the first embodiment, the first concentrated liquid and the liquid to be treated are brought into liquid-liquid contact in a reaction tank to generate a slurry liquid in which alkaline earth metal carbonate crystals such as MgCO3 and CaCO3 are precipitated. Since calcium ions contained in the first concentrated liquid are more likely to bind to carbonate ions than magnesium ions, MgCO3 and CaCO3 can be separated and recovered as described below.
 図3は、図1に示す処理フローにおける第3工程S3の変形例を示す図である。図3に示す第3工程S3は、図1に示す第3工程S3における第1濃縮液と被処理液との接触によるアルカリ土類金属炭酸化物結晶の析出を、炭酸カルシウム(CaCO)結晶を析出させる第1析出工程S301と、炭酸マグネシウム(MgCO)結晶を析出させる第2の析出工程S302とに分けて行うものである。また、図3に示す第3工程S3が備える固液分離工程S31は、第1析出工程S301で析出した炭酸カルシウム結晶を固液分離して回収する第1固液分離工程S311と、第2の析出工程S302で析出した炭酸マグネシウム結晶を固液分離して回収する第2固液分離工程S312とを備えるものである。 Fig. 3 is a diagram showing a modified example of the third step S3 in the treatment flow shown in Fig. 1. In the third step S3 shown in Fig. 3, the precipitation of alkaline earth metal carbonate crystals by contact between the first concentrated liquid and the liquid to be treated in the third step S3 shown in Fig. 1 is divided into a first precipitation step S301 for precipitating calcium carbonate (CaCO 3 ) crystals and a second precipitation step S302 for precipitating magnesium carbonate (MgCO 3 ) crystals. In addition, the solid-liquid separation step S31 included in the third step S3 shown in Fig. 3 includes a first solid-liquid separation step S311 for separating and recovering the calcium carbonate crystals precipitated in the first precipitation step S301, and a second solid-liquid separation step S312 for separating and recovering the magnesium carbonate crystals precipitated in the second precipitation step S302.
 第1析出工程S301は、図1に示す第1工程S1で生成された第1濃縮液及び第2工程S2で生成された被処理液を、反応槽内で撹拌して混合することにより、主としてカルシウムイオンを炭酸イオンと反応させて、混合液である第1反応液中に炭酸カルシウム結晶を析出させる。被処理液の供給量は、多すぎると、カルシウムイオンの大部分が結晶化されて炭酸イオンがマグネシウムイオンと反応し易くなることから、第1濃縮液に含まれるカルシウムの量に応じて適宜設定することが好ましい。第1固液分離工程S311は、第1析出工程S301で生成された第1反応液を沈殿槽に移して、炭酸カルシウム結晶を主体とする第1沈殿物を沈殿させて分離回収する。 In the first precipitation step S301, the first concentrated liquid produced in the first step S1 and the liquid to be treated produced in the second step S2 shown in FIG. 1 are stirred and mixed in a reaction tank, mainly causing calcium ions to react with carbonate ions, and calcium carbonate crystals are precipitated in the first reaction liquid, which is a mixed liquid. If the amount of liquid to be treated is too large, most of the calcium ions will crystallize and the carbonate ions will be more likely to react with magnesium ions, so it is preferable to set the amount appropriately according to the amount of calcium contained in the first concentrated liquid. In the first solid-liquid separation step S311, the first reaction liquid produced in the first precipitation step S301 is transferred to a precipitation tank, and the first precipitate, mainly consisting of calcium carbonate crystals, is precipitated and separated and recovered.
 第2の析出工程S302は、第1固液分離工程S311を経た第1反応液及び第2工程S2で生成された被処理液を、反応槽内で撹拌して混合することにより、主としてマグネシウムイオンを炭酸イオンと反応させて、混合液である第2反応液中に炭酸マグネシウム結晶を析出させる。第2固液分離工程S312は、第2の析出工程S302で生成された第2反応液を沈殿槽に移して、炭酸マグネシウム結晶を主体とする第2沈殿物を沈殿させて分離回収する。 The second precipitation step S302 involves stirring and mixing the first reaction liquid that has undergone the first solid-liquid separation step S311 and the liquid to be treated produced in the second step S2 in a reaction tank, thereby causing magnesium ions to react with carbonate ions and precipitating magnesium carbonate crystals in the second reaction liquid, which is the mixed liquid. The second solid-liquid separation step S312 involves transferring the second reaction liquid produced in the second precipitation step S302 to a precipitation tank, where a second precipitate, mainly consisting of magnesium carbonate crystals, is precipitated and separated and recovered.
 被処理液のpH値が高く維持されている場合には(例えばpH9以上)、下記反応式(3)及び(4)に示す反応により、第1析出工程S301において主に炭酸カルシウムが生成され、第2の析出工程S302において主に炭酸マグネシウムが生成される。 When the pH value of the liquid to be treated is maintained high (e.g., pH 9 or higher), calcium carbonate is mainly produced in the first precipitation step S301, and magnesium carbonate is mainly produced in the second precipitation step S302, according to the reactions shown in the following reaction equations (3) and (4).
 Na2CO3 + CaCl2 → CaCO+ 2NaCl ・・・(3) Na2CO3 + CaCl2CaCO3 +2NaCl...(3)
 Na2CO3 + MgCl2 → MgCO+ 2NaCl ・・・(4) Na2CO3 + MgCl2MgCO3 +2NaCl...(4)
 一方、被処理液のpH値が低いために、被処理液に重炭酸イオン(HCO3 )が存在する場合には、下記反応式(5)及び(6)に示す反応により、第1析出工程S301及び第2の析出工程S302において、それぞれ炭酸カルシウム及び炭酸マグネシウム以外に二酸化炭素が生成される。 On the other hand, when the pH value of the treated liquid is low and bicarbonate ions (HCO 3 ) are present in the treated liquid, carbon dioxide is produced in addition to calcium carbonate and magnesium carbonate in the first precipitation step S301 and the second precipitation step S302, respectively, through the reactions shown in the following reaction equations (5) and (6).
 2NaHCO3 + CaCl2 → CaCO+ 2NaCl+ H2O 
+ CO2 ・・・(5)
2NaHCO3 + CaCl2CaCO3 + 2NaCl + H2O
+ CO2 ... (5)
 2NaHCO3 + MgCl2 → MgCO+ 2NaCl+ H2O 
+ CO2 ・・・(6)
2NaHCO3 + MgCl2MgCO3 + 2NaCl + H2O
+ CO2 ... (6)
 図3に示す処理フローにおいて、被処理液のpH値を9以上に維持した場合の成分変化を測定した結果を図4に示す。図4において、「溶存Caに対するNaOH添加当量」及び「溶存Mgに対するNaOH添加当量」は、第1濃縮液に溶存するカルシウム及びマグネシウムの全てがそれぞれ上記反応式(3)及び(4)のとおりに反応した場合における、溶存Ca及び溶存Mgに対するNaOHの添加量をそれぞれ1当量とした場合の値である。図4に示すように、Ca減少率は、第1反応液において大きな値を示すのに対し、Mg減少率は、第1反応液において小さく第2反応液において大きな値を示していることから、炭酸カルシウムと炭酸マグネシウムとが分離回収されていることがわかる。 In the treatment flow shown in Figure 3, the results of measuring the change in components when the pH value of the treated liquid is maintained at 9 or higher are shown in Figure 4. In Figure 4, the "NaOH equivalent to be added to dissolved Ca" and the "NaOH equivalent to be added to dissolved Mg" are values when the amount of NaOH added to dissolved Ca and dissolved Mg is 1 equivalent, respectively, when all of the calcium and magnesium dissolved in the first concentrated liquid react according to the above reaction formulas (3) and (4), respectively. As shown in Figure 4, the Ca reduction rate shows a large value in the first reaction liquid, whereas the Mg reduction rate shows a small value in the first reaction liquid and a large value in the second reaction liquid, indicating that calcium carbonate and magnesium carbonate are separated and recovered.
<第2の実施形態>
 図5は、本発明の第2の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。図5に示す第2の実施形態の二酸化炭素の固定化方法は、第1の実施形態と同様に、海水をNF膜に通水することによりNF膜を透過せずに濃縮された第1濃縮液を生成する第1工程S1と、アルカリ溶液に二酸化炭素を接触させることにより炭酸イオンを含む被処理液を生成する第2工程S2と、生成された第1濃縮液及び被処理液を接触させることにより第1濃縮液に含まれるアルカリ土類金属の炭酸化物結晶を析出させる第3工程とを備えている。第2の実施形態においても、処理対象を海水としているが、かん水の場合も同様の処理を行うことができる。図5において、図1と同様の工程には同一の符号を付して繰り返しの説明を省略する。
Second Embodiment
Fig. 5 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a second embodiment of the present invention. The method for immobilizing carbon dioxide according to the second embodiment shown in Fig. 5 includes, as in the first embodiment, a first step S1 of generating a first concentrated liquid that is concentrated without passing through the NF membrane by passing seawater through the NF membrane, a second step S2 of generating a liquid to be treated that contains carbonate ions by contacting carbon dioxide with an alkaline solution, and a third step of precipitating carbonate crystals of an alkaline earth metal contained in the first concentrated liquid by contacting the generated first concentrated liquid with the liquid to be treated. In the second embodiment, the treatment target is seawater, but the same treatment can be performed in the case of brine. In Fig. 5, the same steps as those in Fig. 1 are assigned the same reference numerals, and repeated explanations will be omitted.
<S114:濃縮工程>
 図5に示す第1工程S1は、第1透過液を高圧ポンプ等により逆浸透膜(RO膜)ユニットに供給してRO膜に通水することにより、RO膜を透過せずに膜濃縮された第2濃縮液を生成する濃縮工程S114を備える。第1透過液はSO 2-をほとんど含まないため、RO膜を用いた低エネルギーの膜処理によって、第1透過液を高濃度で濃縮することができる。濃縮工程S114は、図1に示す第1膜処理工程S111及び第2膜処理工程S112を備えるものであってもよい。また、濃縮工程S114は、RO膜による膜濃縮を行う代わりに第1透過液を蒸発濃縮するものであってもよく、あるいは、RO膜による膜濃縮と蒸発濃縮とを併用するものであってもよい。濃縮工程S114においてRO膜を透過した第2透過液は、例えば製造水として回収することができる。
<S114: Concentration step>
The first step S1 shown in FIG. 5 includes a concentration step S114 in which the first permeate is supplied to a reverse osmosis membrane (RO membrane) unit by a high-pressure pump or the like and passed through the RO membrane to produce a second concentrated liquid that is membrane concentrated without permeating the RO membrane. Since the first permeate contains almost no SO 4 2- , the first permeate can be concentrated at a high concentration by low-energy membrane treatment using the RO membrane. The concentration step S114 may include the first membrane treatment step S111 and the second membrane treatment step S112 shown in FIG. 1. In addition, the concentration step S114 may be a step in which the first permeate is evaporated and concentrated instead of membrane concentration using the RO membrane, or a step in which membrane concentration using the RO membrane and evaporation concentration are used in combination. The second permeate that has permeated the RO membrane in the concentration step S114 can be recovered, for example, as produced water.
<S115:アルカリ土類金属除去工程(吸着除去工程)>
 第1工程S1は、濃縮工程S114で生成された第2濃縮液に含まれるアルカリ土類金属を除去するアルカリ土類金属除去工程S115を備える。アルカリ土類金属除去工程S115は、第2濃縮液に含まれるアルカリ土類金属をキレート樹脂又はイオン交換樹脂により除去する吸着除去工程からなり、例えば、キレート樹脂を充填したカラムに第2濃縮液を通液して行うことができる。キレート樹脂としては、マグネシウムイオンやカルシウムイオン等のアルカリ土類金属イオンを選択的に捕捉可能なものを使用することが好ましく、例えば、イミノジ酢酸型、アミノリン酸型などを挙げることができる。濃縮工程S114で生成された第2濃縮液のアルカリ土類金属イオン濃度が高い場合(例えば数百ppm程度)は、アルカリ土類金属除去工程S115の前に、第2濃縮液に水酸化ナトリウムや炭酸ナトリウム等を添加して、マグネシウムイオンやカルシウムイオン等のアルカリ土類金属イオンを結晶化して取り除く工程を備えてもよい。一方、濃縮工程S114で生成された第2濃縮液のアルカリ土類金属イオン濃度が低い場合には、アルカリ土類金属除去工程S115を備えない構成であってもよい。マグネシウムやカルシウム等のアルカリ土類金属は、電気透析工程S13においてスケールの原因になり易いため、アルカリ土類金属除去工程S115を行うことにより、電気透析工程S13を長期間効率良く行うことができる。
<S115: Alkaline earth metal removal step (adsorption removal step)>
The first step S1 includes an alkaline earth metal removal step S115 for removing alkaline earth metals contained in the second concentrated liquid generated in the concentration step S114. The alkaline earth metal removal step S115 is an adsorption removal step for removing alkaline earth metals contained in the second concentrated liquid using a chelating resin or an ion exchange resin, and can be performed, for example, by passing the second concentrated liquid through a column filled with a chelating resin. As the chelating resin, it is preferable to use one that can selectively capture alkaline earth metal ions such as magnesium ions and calcium ions, and examples of such chelating resins include iminodiacetic acid type and amino phosphoric acid type. When the alkaline earth metal ion concentration of the second concentrated liquid generated in the concentration step S114 is high (for example, about several hundred ppm), a step of adding sodium hydroxide or sodium carbonate to the second concentrated liquid before the alkaline earth metal removal step S115 to crystallize and remove alkaline earth metal ions such as magnesium ions and calcium ions may be included. On the other hand, when the alkaline earth metal ion concentration of the second concentrated liquid produced in the concentrating step S114 is low, the alkaline earth metal removing step S115 may not be included. Since alkaline earth metals such as magnesium and calcium are likely to cause scale in the electrodialysis step S13, the alkaline earth metal removing step S115 allows the electrodialysis step S13 to be carried out efficiently for a long period of time.
<S13:電気透析工程>
 第1工程S1は、アルカリ土類金属除去工程S115を経た第2濃縮液を電気透析することにより酸溶液及びアルカリ溶液を分離する電気透析工程S13を備える。アルカリ土類金属除去工程S115を経た第2濃縮液は、マグネシウムやカルシウム等の不純物濃度が十分低減された(例えば1ppm以下)高純度のNaCl溶液であり、電気透析工程S13によりHCl溶液とNaOH溶液とに分離される。第2の実施形態の電気透析工程S13は、図1に示す第1の電気透析工程S13と同様に行うことができる。
<S13: Electrodialysis step>
The first step S1 includes an electrodialysis step S13 in which the second concentrated liquid that has been through the alkaline earth metal removal step S115 is subjected to electrodialysis to separate the acid solution and the alkaline solution. The second concentrated liquid that has been through the alkaline earth metal removal step S115 is a high-purity NaCl solution in which the concentration of impurities such as magnesium and calcium has been sufficiently reduced (for example, 1 ppm or less), and is separated into an HCl solution and a NaOH solution by the electrodialysis step S13. The electrodialysis step S13 of the second embodiment can be performed in the same manner as the first electrodialysis step S13 shown in FIG.
<S116:樹脂再生工程>
 第1工程S1は、アルカリ土類金属除去工程S115でアルカリ土類金属を捕捉したキレート樹脂またはイオン交換樹脂に対して、再生液を通液してアルカリ土類金属を脱離することにより、キレート樹脂またはイオン交換樹脂を再生する樹脂再生工程S116を備える。この再生液としては、酸溶液を使用することが好ましく、例えば、電気透析工程S13で得られたHCl溶液を好適に使用することができる。マグネシウム等の回収対象となるアルカリ土類金属は、第1濃縮液だけでなく、第1透過液にも含まれているため、樹脂再生工程S116によりキレート樹脂またはイオン交換樹脂を再生させた酸溶液を、第3工程S3が行われる前の第1濃縮液に合流させる合流工程S121を備えることが好ましい。これにより、第3工程S3での二酸化炭素の固定化に要するアルカリ土類金属の回収率を高めることができる。
<S116: Resin regeneration process>
The first step S1 includes a resin regeneration step S116 in which a regeneration liquid is passed through the chelating resin or ion exchange resin that has captured the alkaline earth metal in the alkaline earth metal removal step S115 to desorb the alkaline earth metal, thereby regenerating the chelating resin or ion exchange resin. As the regeneration liquid, an acid solution is preferably used, and for example, the HCl solution obtained in the electrodialysis step S13 can be suitably used. Since the alkaline earth metals to be recovered, such as magnesium, are contained not only in the first concentrated liquid but also in the first permeated liquid, it is preferable to include a confluence step S121 in which the acid solution that has regenerated the chelating resin or ion exchange resin in the resin regeneration step S116 is confluent with the first concentrated liquid before the third step S3 is performed. This makes it possible to increase the recovery rate of the alkaline earth metals required for the fixation of carbon dioxide in the third step S3.
 なお、電気透析工程S13で得られたHCl溶液の一部は、第1工程S1を行う前の海水に合流させてもよい。これにより、第1工程S1におけるNF膜およびRO膜の膜表面のファウリングを抑制することができる。上記のHCl溶液が合流される海水は、前処理を行う前の海水でもよく、あるいは、前処理を行った後の海水でもよい。前処理を行う前の海水にHCl溶液を合流させることにより、前処理において凝集剤を添加する場合の不純物の凝集効果を高めることができる。 Note that a portion of the HCl solution obtained in the electrodialysis step S13 may be merged with the seawater before the first step S1 is performed. This can suppress fouling of the membrane surfaces of the NF membrane and the RO membrane in the first step S1. The seawater into which the above-mentioned HCl solution is merged may be seawater before pretreatment, or may be seawater after pretreatment. By merging the HCl solution with the seawater before pretreatment, the effect of flocculating impurities can be improved when a flocculant is added in pretreatment.
<第2の実施形態の変形例>
 第2の実施形態のアルカリ土類金属除去工程S115は、濃縮工程S114で得られた第2濃縮液に含まれるカルシウムやマグネシウム等のアルカリ土類金属をキレート樹脂又はイオン交換樹脂により除去する吸着除去工程を備えているが、第2濃縮液に含まれるカルシウムやマグネシウム等のアルカリ土類金属を低減可能であれば、アルカリ土類金属除去工程は種々の変形が可能である。
<Modification of the second embodiment>
The alkaline earth metal removal step S115 of the second embodiment includes an adsorption removal step of removing alkaline earth metals such as calcium and magnesium contained in the second concentrated liquid obtained in the concentration step S114 using a chelating resin or an ion exchange resin, but the alkaline earth metal removal step can be modified in various ways as long as the alkaline earth metals such as calcium and magnesium contained in the second concentrated liquid can be reduced.
 図6は、図5に示す処理フローにおけるアルカリ土類金属除去工程S115の変形例を示す図である。図6に示すアルカリ土類金属除去工程S1151は、図5に示すアルカリ土類金属除去工程S115と同様の吸着除去工程S115の他に、吸着除去工程S115を行う前の第2濃縮液を、第1工程S1で海水を通水するNF膜とは異なる第2NF膜に通水する吸着除去前処理工程S117を備えており、吸着除去前処理工程S117の第2NF膜の透過液に対して吸着除去工程S115が行われる。吸着除去前処理工程S117において第2NF膜を透過しない非透過液は、カルシウムやマグネシウム等のアルカリ土類金属が含まれているため、第1工程S1で生成された第1濃縮液に合流させることが好ましく、これにより、第3工程S3での二酸化炭素の固定化に要するアルカリ土類金属の回収率を高めることができる。図6に示すアルカリ土類金属除去工程S1151は、吸着除去工程S115を備えずに、第2濃縮液を第2NF膜に通水する工程のみで行うことも可能である。 FIG. 6 is a diagram showing a modified example of the alkaline earth metal removal step S115 in the process flow shown in FIG. 5. The alkaline earth metal removal step S1151 shown in FIG. 6 includes an adsorption removal step S115 similar to the alkaline earth metal removal step S115 shown in FIG. 5, as well as an adsorption removal pretreatment step S117 in which the second concentrated liquid before the adsorption removal step S115 is passed through a second NF membrane different from the NF membrane through which seawater is passed in the first step S1, and the adsorption removal step S115 is performed on the permeated liquid of the second NF membrane in the adsorption removal pretreatment step S117. The non-permeated liquid that does not pass through the second NF membrane in the adsorption removal pretreatment step S117 contains alkaline earth metals such as calcium and magnesium, so it is preferable to merge it with the first concentrated liquid generated in the first step S1, which can increase the recovery rate of alkaline earth metals required for carbon dioxide fixation in the third step S3. The alkaline earth metal removal step S1151 shown in FIG. 6 can also be performed by only passing the second concentrated liquid through the second NF membrane, without including the adsorption removal step S115.
<第3の実施形態>
 図7は、本発明の第3の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。図7に示す第3の実施形態の二酸化炭素の固定化方法におけるアルカリ土類金属除去工程S1152は、図5に示すアルカリ土類金属除去工程S115と同様の吸着除去工程S115の他に、吸着除去工程S115を行う前の第2濃縮液に含まれるアルカリ土類金属を予め低減する吸着除去前処理工程S118を備えるものである。図7において、図5と同様の工程には同一の符号を付して繰り返しの説明を省略する。
Third Embodiment
Fig. 7 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a third embodiment of the present invention. The alkaline earth metal removal step S1152 in the method for immobilizing carbon dioxide according to the third embodiment shown in Fig. 7 includes an adsorption removal pretreatment step S118 for reducing the alkaline earth metal contained in the second concentrated liquid before the adsorption removal step S115 is performed, in addition to the adsorption removal step S115 similar to the alkaline earth metal removal step S115 shown in Fig. 5. In Fig. 7, steps similar to those in Fig. 5 are denoted by the same reference numerals, and repeated explanations will be omitted.
 吸着除去前処理工程S118は、濃縮工程S114で得られた第2濃縮液と、第2工程S2で得られた被処理液の一部とを反応槽で液液接触させることにより、第2濃縮液に含まれるカルシウムやマグネシウム等のアルカリ土類金属を炭酸イオンと反応させて、MgCOやCaCO等のアルカリ土類金属炭酸化物結晶を析出する。吸着除去前処理工程S118は、析出物を含む第2濃縮液を沈殿槽に移して、析出物を固液分離して除去する。これにより、電気透析工程S13でスケールの原因となるカルシウムやマグネシウム等を予め除去することができると共に、第1工程S1でNF膜を透過したカルシウムやマグネシウム等も二酸化炭素の固定化に利用することができるので、二酸化炭素の固定化を効率良く行うことができる。吸着除去前処理工程S118において、反応槽内のpH調整が必要な場合には、電気透析工程S13で得られたNaOHを使用してもよい。図7に示すアルカリ土類金属除去工程S1152は、図6に示す吸着除去前処理工程S117を更に組み合わせることも可能である。あるいは、図7に示すアルカリ土類金属除去工程S1152は、吸着除去工程S115を備えずに、第2濃縮液を被処理液と液液接触させる工程のみで行うことも可能である。 In the adsorption removal pretreatment step S118, the second concentrated liquid obtained in the concentration step S114 and a part of the liquid to be treated obtained in the second step S2 are brought into liquid-liquid contact in a reaction tank, so that alkaline earth metals such as calcium and magnesium contained in the second concentrated liquid react with carbonate ions to precipitate alkaline earth metal carbonate crystals such as MgCO 3 and CaCO 3. In the adsorption removal pretreatment step S118, the second concentrated liquid containing the precipitate is transferred to a precipitation tank, and the precipitate is removed by solid-liquid separation. This makes it possible to remove calcium, magnesium, etc., which cause scale in the electrodialysis step S13, in advance, and also makes it possible to use calcium, magnesium, etc., which permeate the NF membrane in the first step S1 for the fixation of carbon dioxide, so that the fixation of carbon dioxide can be performed efficiently. In the adsorption removal pretreatment step S118, when pH adjustment in the reaction tank is required, NaOH obtained in the electrodialysis step S13 may be used. The alkaline earth metal removal step S1152 shown in FIG. 7 can also be further combined with the adsorption removal pretreatment step S117 shown in FIG. 6. Alternatively, the alkaline earth metal removal step S1152 shown in FIG. 7 may be performed only by a step of bringing the second concentrated liquid into liquid-liquid contact with the liquid to be treated, without including the adsorption removal step S115.
<第4の実施形態>
 図8は、本発明の第4の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。図8に示す第4の実施形態の二酸化炭素の固定化方法は、図7に示す第3の実施形態の二酸化炭素の固定化方法において、下記の蒸発濃縮工程S14及び固液分離工程S15を更に備えるものである。図8において、図7と同様の工程には同一の符号を付して繰り返しの説明を省略する(以下の各図についても同様)。
Fourth Embodiment
Fig. 8 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a fourth embodiment of the present invention. The method for immobilizing carbon dioxide according to the fourth embodiment shown in Fig. 8 further includes an evaporation concentration step S14 and a solid-liquid separation step S15 described below in addition to the method for immobilizing carbon dioxide according to the third embodiment shown in Fig. 7. In Fig. 8, the same steps as those in Fig. 7 are denoted by the same reference numerals, and repeated explanations will be omitted (the same applies to the following figures).
<S14:蒸発濃縮工程>
 蒸発濃縮工程S14は、第1工程S1で生成された第1濃縮液を蒸発缶内で蒸発濃縮することにより、硫酸カルシウム結晶を析出させる。蒸発缶のスケール抑止のため、第1濃縮液には、硫酸カルシウム結晶を種晶として添加することが好ましい。この種晶としては、例えば、後述する固液分離工程S15で回収された硫酸カルシウム結晶を使用することができる。蒸発缶のスケール抑止方法としては、第1濃縮液に酸を添加してpH調整することも好ましい。
<S14: Evaporation and concentration step>
In the evaporation and concentration step S14, the first concentrated liquid produced in the first step S1 is evaporated and concentrated in an evaporator to precipitate calcium sulfate crystals. In order to prevent scale formation in the evaporator, it is preferable to add calcium sulfate crystals as seed crystals to the first concentrated liquid. As the seed crystals, for example, calcium sulfate crystals recovered in the solid-liquid separation step S15 described later can be used. As a method for preventing scale formation in the evaporator, it is also preferable to add an acid to the first concentrated liquid to adjust the pH.
<S15:固液分離工程>
 固液分離工程S15は、蒸発濃縮工程S14により析出した硫酸カルシウム結晶を、固液分離装置により第1濃縮液から固液分離して回収する。回収した硫酸カルシウム結晶は、例えば石膏として利用することができる。第3工程S3は、固液分離後の第1濃縮液であるろ液に対して行われる。
<S15: Solid-liquid separation step>
In the solid-liquid separation step S15, the calcium sulfate crystals precipitated in the evaporation concentration step S14 are separated from the first concentrated liquid by a solid-liquid separator and recovered. The recovered calcium sulfate crystals can be used as, for example, gypsum. The third step S3 is performed on the filtrate, which is the first concentrated liquid after the solid-liquid separation.
 上記の蒸発濃縮工程S14及び固液分離工程S15を備えることにより、第3工程S3が行われる第1濃縮液の量を低減することができるので、第3工程S3の反応槽を小型化することができる。また、第1濃縮液のアルカリ土類金属の濃度が上昇することにより、第3工程S3でのアルカリ土類金属と炭酸イオンの反応効率が上昇するため、アルカリ土類金属炭酸化物結晶の生成速度を上げることができる。更に、第3工程S3の前に、第1濃縮液からカルシウムが硫酸カルシウム結晶として回収されるため、第3工程S3においてCaCOの析出が抑制され、回収するMgCOの純度を高めることができる。 By providing the above-mentioned evaporation concentration step S14 and solid-liquid separation step S15, the amount of the first concentrated liquid to be subjected to the third step S3 can be reduced, so that the reaction tank of the third step S3 can be made smaller. In addition, the increase in the concentration of alkaline earth metal in the first concentrated liquid increases the reaction efficiency of the alkaline earth metal and carbonate ions in the third step S3, so that the production rate of alkaline earth metal carbonate crystals can be increased. Furthermore, since calcium is recovered as calcium sulfate crystals from the first concentrated liquid before the third step S3, the precipitation of CaCO 3 in the third step S3 is suppressed, and the purity of the recovered MgCO 3 can be increased.
<第5の実施形態>
 図9は、本発明の第5の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。図7に示す第3の実施形態は、第2工程S2でアルカリ溶液に二酸化炭素を接触させて得られた被処理液の一部を、吸着除去前処理工程S118で第2濃縮液に液液接触させるのに対し、図9に示す第5の実施形態は、第2工程S2とは別異のCO吸収工程S119により二酸化炭素を予め接触させたアルカリ溶液を、吸着除去前処理工程S118で第2濃縮液に液液接触させるものである。CO吸収工程S119においては、第2工程S2と同様の方法で、アルカリ溶液に二酸化炭素を気液接触させることができる。
Fifth embodiment
Fig. 9 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a fifth embodiment of the present invention. In the third embodiment shown in Fig. 7, a part of the liquid to be treated obtained by contacting carbon dioxide with an alkaline solution in the second step S2 is brought into liquid-liquid contact with a second concentrated liquid in an adsorption removal pretreatment step S118, whereas in the fifth embodiment shown in Fig. 9, an alkaline solution that has been previously contacted with carbon dioxide in a CO 2 absorption step S119 different from the second step S2 is brought into liquid-liquid contact with the second concentrated liquid in the adsorption removal pretreatment step S118. In the CO 2 absorption step S119, carbon dioxide can be brought into gas-liquid contact with an alkaline solution in the same manner as in the second step S2.
<第6の実施形態>
 図10は、本発明の第6の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。図7に示す第3の実施形態は、第2工程S2でアルカリ溶液に二酸化炭素を接触させて得られた被処理液の一部を、吸着除去前処理工程S118で第2濃縮液に液液接触させるのに対し、図10に示す第6の実施形態は、第2濃縮液と二酸化炭素とを気液接触させることにより、吸着除去前処理工程S118’を行うものである。
Sixth embodiment
Fig. 10 is a process flow diagram for explaining a method for immobilizing carbon dioxide according to a sixth embodiment of the present invention. In the third embodiment shown in Fig. 7, a part of the liquid to be treated obtained by contacting carbon dioxide with an alkaline solution in the second step S2 is brought into liquid-liquid contact with a second concentrated liquid in an adsorption/removal pretreatment step S118, whereas in the sixth embodiment shown in Fig. 10, the second concentrated liquid is brought into gas-liquid contact with carbon dioxide to perform an adsorption/removal pretreatment step S118'.
 図10に示す吸着除去前処理工程S118’は、電気透析工程S13で生成されたアルカリ溶液を第2濃縮液に添加することにより、第2濃縮液のpHをアルカリ側(例えばpH9~10)に調整して貯留槽に貯留し、この第2濃縮液に二酸化炭素を含む気体を吹き込んでバブリングにより気液接触させることで、第2濃縮液に含まれるアルカリ土類金属に二酸化炭素を反応させて固定化する。これにより、第2濃縮液は、MgCOやCaCO等のアルカリ土類金属炭酸化物結晶が析出したスラリー状になる。吸着除去前処理工程S118’は、このスラリー状の第2濃縮液に含まれるアルカリ土類金属炭酸化物結晶を、遠心分離器等の固液分離装置により固液分離して回収する。 In the adsorption removal pretreatment step S118' shown in Fig. 10, the alkaline solution produced in the electrodialysis step S13 is added to the second concentrated liquid to adjust the pH of the second concentrated liquid to the alkaline side (for example, pH 9 to 10) and store it in a storage tank, and a gas containing carbon dioxide is blown into the second concentrated liquid to bring the liquid into gas-liquid contact by bubbling, thereby reacting and immobilizing the alkaline earth metal contained in the second concentrated liquid. As a result, the second concentrated liquid becomes a slurry in which alkaline earth metal carbonate crystals such as MgCO3 and CaCO3 are precipitated. In the adsorption removal pretreatment step S118', the alkaline earth metal carbonate crystals contained in the slurry-like second concentrated liquid are separated into solid and liquid using a solid-liquid separator such as a centrifuge and recovered.
 二酸化炭素を含む気体は大気でもよく、あるいは、種々の燃焼装置の排気ガス等でもよい。該気体中に含まれる二酸化炭素濃度に制限はないが、例えば、気体中に含まれる二酸化炭素濃度は大気~100体積%程度である。アルカリ土類金属および二酸化炭素の反応中のpHを維持するため、第2濃縮液へのアルカリ溶液の添加は、二酸化炭素を含む気体のバブリング前だけでなく、バブリング中に行ってもよい。バブリングする際には、二酸化炭素のファインバブル(マイクロバブルやウルトラファインバブル等の微細気泡)を吹き込むことで、アルカリ土類金属と二酸化炭素との反応効率を向上させることができる。 The gas containing carbon dioxide may be the atmosphere or exhaust gas from various combustion devices. There is no limit to the concentration of carbon dioxide contained in the gas, but for example, the concentration of carbon dioxide contained in the gas is from the atmosphere to about 100% by volume. In order to maintain the pH during the reaction between the alkaline earth metal and carbon dioxide, the alkaline solution may be added to the second concentrated liquid not only before bubbling the gas containing carbon dioxide, but also during bubbling. When bubbling, the reaction efficiency between the alkaline earth metal and carbon dioxide can be improved by blowing in fine bubbles of carbon dioxide (fine bubbles such as microbubbles or ultrafine bubbles).
 第2濃縮液と二酸化炭素とを気液接触させる方法は、第2濃縮液中にCOガスを吹き込む方法以外に、単段式または多段式の脱硫塔や脱ガス塔等において、COガス中に第2濃縮液をスプレーノズルやトレイで散布する方法等であってもよく、反応速度や反応量、排ガス等の気体中のCO濃度等を考慮して、公知の種々の気液接触装置を使用することができる。 The method of bringing the second concentrated liquid into gas-liquid contact with carbon dioxide may be, in addition to the method of blowing CO2 gas into the second concentrated liquid, a method of spraying the second concentrated liquid into CO2 gas with a spray nozzle or tray in a single-stage or multi-stage desulfurization tower or degassing tower, etc., and various known gas-liquid contact devices can be used taking into consideration the reaction rate, reaction amount, CO2 concentration in gases such as exhaust gas, and the like.
<その他の実施形態>
 図7から図10に示すアルカリ土類金属除去工程S1152は、吸着除去前処理工程S118,S118’によってスケール成分を十分に除去できる場合には、吸着除去前処理工程S118,S118’のみを備える構成であってもよい。
<Other embodiments>
The alkaline earth metal removal step S1152 shown in Figures 7 to 10 may be configured to include only the adsorption removal pre-treatment steps S118, S118' when the scale components can be sufficiently removed by the adsorption removal pre-treatment steps S118, S118'.
S1 第1工程
S11 製塩工程
S111 第1膜処理工程
S112 第2膜処理工程
S113 結晶化工程
S114 濃縮工程
S115 アルカリ土類金属除去工程(吸着除去工程)
S116 樹脂再生工程
S1151,S1152 アルカリ土類金属除去工程
S12 合流工程
S13 電気透析工程
S2 第2工程
S3 第3工程
S301 第1析出工程
S302 第2析出工程
S31 固液分離工程
S311 第1固液分離工程
S312 第2固液分離工程
S32 中和工程
S33 水洗工程
S1 First step S11 Salt production step S111 First membrane treatment step S112 Second membrane treatment step S113 Crystallization step S114 Concentration step S115 Alkaline earth metal removal step (adsorption removal step)
S116 Resin regeneration step S1151, S1152 Alkaline earth metal removal step S12 Confluence step S13 Electrodialysis step S2 Second step S3 Third step S301 First precipitation step S302 Second precipitation step S31 Solid-liquid separation step S311 First solid-liquid separation step S312 Second solid-liquid separation step S32 Neutralization step S33 Water washing step

Claims (10)

  1.  海水又はかん水をナノろ過膜に通水することにより、前記ナノろ過膜を透過せずに濃縮された第1濃縮液を生成する第1工程と、
     アルカリ溶液に二酸化炭素を接触させることにより、炭酸イオンを含む被処理液を生成する第2工程と、
     前記第1濃縮液と前記被処理液とを接触させることにより、前記第1濃縮液に含まれるアルカリ土類金属の炭酸化物結晶を析出させる第3工程とを備える二酸化炭素の固定化方法。
    A first step of passing seawater or brackish water through a nanofiltration membrane to produce a first concentrated liquid that is concentrated without permeating the nanofiltration membrane;
    A second step of producing a liquid to be treated containing carbonate ions by contacting the alkaline solution with carbon dioxide;
    a third step of precipitating carbonate crystals of an alkaline earth metal contained in the first concentrated liquid by contacting the first concentrated liquid with the liquid to be treated.
  2.  前記第1工程は、前記ナノろ過膜を透過した第1透過液を濃縮して析出した塩化ナトリウム結晶を回収する製塩工程と、前記塩化ナトリウム結晶の溶液を電気透析することにより酸溶液及びアルカリ溶液を分離する電気透析工程とを備え、
     前記第2工程は、前記電気透析工程で得られたアルカリ溶液を用いて前記被処理液を生成する請求項1に記載の二酸化炭素の固定化方法。
    The first step includes a salt production step of concentrating the first permeate that has permeated the nanofiltration membrane to recover precipitated sodium chloride crystals, and an electrodialysis step of subjecting the solution of sodium chloride crystals to electrodialysis to separate an acid solution and an alkaline solution,
    2. The method for fixation of carbon dioxide according to claim 1, wherein the second step produces the liquid to be treated using the alkaline solution obtained in the electrodialysis step.
  3.  前記第1工程は、前記ナノろ過膜を透過した第1透過液を濃縮して第2濃縮液を生成する濃縮工程と、前記第2濃縮液に含まれるアルカリ土類金属を除去するアルカリ土類金属除去工程と、前記アルカリ土類金属除去工程を経た前記第2濃縮液を電気透析することにより酸溶液及びアルカリ溶液を分離する電気透析工程とを備え、
     前記第2工程は、前記電気透析工程で得られたアルカリ溶液を用いて前記被処理液を生成する請求項1に記載の二酸化炭素の固定化方法。
    The first step includes a concentration step of concentrating the first permeated liquid that has permeated the nanofiltration membrane to produce a second concentrated liquid, an alkaline earth metal removal step of removing alkaline earth metals contained in the second concentrated liquid, and an electrodialysis step of electrodialyzing the second concentrated liquid that has been subjected to the alkaline earth metal removal step to separate an acid solution and an alkaline solution,
    2. The method for fixation of carbon dioxide according to claim 1, wherein the second step produces the liquid to be treated using the alkaline solution obtained in the electrodialysis step.
  4.  前記アルカリ土類金属除去工程は、前記第2濃縮液に含まれるアルカリ土類金属をキレート樹脂又はイオン交換樹脂により除去する吸着除去工程を備える請求項3に記載の二酸化炭素の固定化方法。 The carbon dioxide fixation method according to claim 3, wherein the alkaline earth metal removal step includes an adsorption removal step in which the alkaline earth metal contained in the second concentrated liquid is removed by a chelating resin or an ion exchange resin.
  5.  前記第1工程は、前記電気透析工程で得られた酸溶液を用いて前記キレート樹脂又はイオン交換樹脂を再生する樹脂再生工程を更に備える請求項4に記載の二酸化炭素の固定化方法。 The carbon dioxide fixation method according to claim 4, wherein the first step further comprises a resin regeneration step of regenerating the chelating resin or ion exchange resin using the acid solution obtained in the electrodialysis step.
  6.  前記樹脂再生工程は、前記キレート樹脂又はイオン交換樹脂を再生させた酸溶液を前記第1濃縮液に合流させる請求項5に記載の二酸化炭素の固定化方法。 The carbon dioxide fixation method according to claim 5, wherein the resin regeneration step comprises merging the acid solution in which the chelating resin or ion exchange resin has been regenerated with the first concentrated liquid.
  7.  前記アルカリ土類金属除去工程は、前記第2濃縮液を前記ナノろ過膜とは異なる第2ナノろ過膜に通水する工程を備える請求項3に記載の二酸化炭素の固定化方法。 The carbon dioxide fixation method according to claim 3, wherein the alkaline earth metal removal step includes a step of passing the second concentrated liquid through a second nanofiltration membrane different from the nanofiltration membrane.
  8.  前記アルカリ土類金属除去工程は、前記第2ナノろ過膜の非透過液を前記第1濃縮液に合流させる工程を備える請求項7に記載の二酸化炭素の固定化方法。 The carbon dioxide fixation method according to claim 7, wherein the alkaline earth metal removal step includes a step of merging the non-permeate of the second nanofiltration membrane with the first concentrated liquid.
  9.  前記アルカリ土類金属除去工程は、前記第2濃縮液と前記被処理液とを接触させることにより、前記第2濃縮液に含まれるアルカリ土類金属の炭酸化物結晶を析出させて固液分離により除去する工程を備える請求項3に記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to claim 3, wherein the alkaline earth metal removal step includes a step of contacting the second concentrated liquid with the liquid to be treated to cause the alkaline earth metal carbonate crystals contained in the second concentrated liquid to precipitate and be removed by solid-liquid separation.
  10.  前記第3工程は、前記第1濃縮液に前記被処理液を混合して炭酸カルシウム結晶が析出した第1反応液を生成する第1析出工程と、前記第1反応液を固液分離して炭酸カルシウムを回収する第1固液分離工程と、前記第1固液分離工程を経た前記第1反応液に前記被処理液を更に混合して炭酸マグネシウム結晶が析出した第2反応液を生成する第2析出工程と、前記第2反応液を固液分離して炭酸マグネシウムを回収する第2固液分離工程とを備える請求項1に記載の二酸化炭素の固定化方法。 The carbon dioxide fixation method according to claim 1, wherein the third step includes a first precipitation step of mixing the first concentrated liquid with the liquid to be treated to produce a first reaction liquid in which calcium carbonate crystals are precipitated, a first solid-liquid separation step of performing solid-liquid separation of the first reaction liquid to recover calcium carbonate, a second precipitation step of further mixing the liquid to be treated with the first reaction liquid that has been subjected to the first solid-liquid separation step to produce a second reaction liquid in which magnesium carbonate crystals are precipitated, and a second solid-liquid separation step of performing solid-liquid separation of the second reaction liquid to recover magnesium carbonate.
PCT/JP2023/034902 2022-10-12 2023-09-26 Method for fixing carbon dioxide WO2024080132A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022163748 2022-10-12
JP2022-163748 2022-10-12

Publications (1)

Publication Number Publication Date
WO2024080132A1 true WO2024080132A1 (en) 2024-04-18

Family

ID=90669084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034902 WO2024080132A1 (en) 2022-10-12 2023-09-26 Method for fixing carbon dioxide

Country Status (1)

Country Link
WO (1) WO2024080132A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140032822A (en) * 2012-09-07 2014-03-17 한국전력공사 The removal apparatus of carbon dioxide using concentrated effluent of desalination plant and removing method thereof
WO2021261410A1 (en) * 2020-06-22 2021-12-30 学校法人早稲田大学 Method for fixing carbon dioxide
WO2022030529A1 (en) * 2020-08-05 2022-02-10 学校法人早稲田大学 Method for fixing carbon dioxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140032822A (en) * 2012-09-07 2014-03-17 한국전력공사 The removal apparatus of carbon dioxide using concentrated effluent of desalination plant and removing method thereof
WO2021261410A1 (en) * 2020-06-22 2021-12-30 学校法人早稲田大学 Method for fixing carbon dioxide
WO2022030529A1 (en) * 2020-08-05 2022-02-10 学校法人早稲田大学 Method for fixing carbon dioxide

Similar Documents

Publication Publication Date Title
US11827542B2 (en) Buffer-free process cycle for CO2 sequestration and carbonate production from brine waste streams with high salinity
WO2022030529A1 (en) Method for fixing carbon dioxide
US20110155665A1 (en) Method and System for High Recovery Water Desalting
AU2009317875B2 (en) Utilisation of desalination waste
JP4737670B2 (en) Method and apparatus for treating wastewater containing calcium and sulfuric acid
MX2007010061A (en) Process to prepare salt.
US20170036937A1 (en) Method for treating aqueous saline streams
JP6179784B2 (en) Method and system for producing sodium chloride brine
CN112794520A (en) Steel wet desulphurization wastewater treatment system and method
WO2021261410A1 (en) Method for fixing carbon dioxide
WO2016160810A1 (en) Osmotic separation systems and methods
CN216639187U (en) Treatment system for salt-containing wastewater and CO 2-containing waste gas
Ramasamy Short review of salt recovery from reverse osmosis rejects
JPWO2014174647A1 (en) Water treatment method and water treatment system
WO2024080132A1 (en) Method for fixing carbon dioxide
CN209923115U (en) Salt recovery system and processing system for salt-containing wastewater
GB2394678A (en) A solution rich in magnesium chloride (MgCl2) produced from seawater.
WO2023140055A1 (en) Method for fixing carbon dioxide
KR101860331B1 (en) Method for treating seawater desalination concentrates
CN108314112B (en) Method for treating waste water containing ammonium salt
Redelinghuys et al. Coal Power Plant Wastewater Treatment by Thermal and Membrane Technologies
Vaudevire et al. Ion exchange brine treatment: closing the loop of NaCl use and reducing disposal towards a zero liquid discharge
CN214829617U (en) Steel wet desulphurization wastewater treatment system
CN111362490A (en) Desulfurization wastewater treatment method and system
US20240123400A1 (en) Systems and methods for integrated direct air carbon dioxide capture and desalination mineral recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877138

Country of ref document: EP

Kind code of ref document: A1