WO2022030529A1 - Method for fixing carbon dioxide - Google Patents

Method for fixing carbon dioxide Download PDF

Info

Publication number
WO2022030529A1
WO2022030529A1 PCT/JP2021/028899 JP2021028899W WO2022030529A1 WO 2022030529 A1 WO2022030529 A1 WO 2022030529A1 JP 2021028899 W JP2021028899 W JP 2021028899W WO 2022030529 A1 WO2022030529 A1 WO 2022030529A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
carbon dioxide
concentrate
crystals
earth metal
Prior art date
Application number
PCT/JP2021/028899
Other languages
French (fr)
Japanese (ja)
Inventor
隆雄 中垣
コーリ アダム マイヤズ
翔 藤本
良彦 加藤
悟 平野
基頼 早水
慶明 三保
Original Assignee
学校法人早稲田大学
日揮グローバル株式会社
株式会社ササクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, 日揮グローバル株式会社, 株式会社ササクラ filed Critical 学校法人早稲田大学
Priority to JP2022541582A priority Critical patent/JPWO2022030529A1/ja
Publication of WO2022030529A1 publication Critical patent/WO2022030529A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a method for immobilizing carbon dioxide on an alkaline earth metal.
  • CO 2 immobilization method As a means for achieving the above-mentioned goal, a CO 2 immobilization method can be mentioned.
  • As an effective means of the CO 2 immobilization method there is a method of using the alkaline earth metals Mg and Ca to bond and immobilize these alkaline earth metals and CO 2 .
  • the conventional method using ore containing alkaline earth metal requires a treatment linked to CO 2 emission such as high temperature and high pressure and addition of chemicals, so that CO 2 emission is often generated in the entire process.
  • Mg and Ca are also contained in seawater and waste liquid irrigation from seawater desalination plants, and for example, a CO 2 immobilization method using seawater has been proposed (see, for example, Patent Documents 1 and 2). ..
  • the present invention provides a method for immobilizing carbon dioxide on an alkaline earth metal, which enhances the carbon dioxide reduction capacity while considering the amount of carbon dioxide emissions.
  • the object of the present invention is a first step of passing seawater or alkaline water through a nanofiltration membrane to generate a concentrated NF membrane concentrate without permeating the nanofiltration membrane, and the first step.
  • the second step is to add an alkali to the generated NF film concentrate, react the alkaline earth metal contained in the NF film concentrate with carbon dioxide to immobilize it, and precipitate alkaline earth metal charcoal oxide crystals.
  • a method for immobilizing carbon dioxide which comprises a third step of solid-liquid separation and recovery of the alkaline earth metal charcoal oxide crystals precipitated in the second step from the NF film concentrate.
  • the first step is a salt-making step of concentrating an NF membrane permeate that has permeated the nanofiltration membrane and recovering the precipitated sodium chloride crystals, and a chloride-making step of recovering the chloride. It is preferable to include an electrodialysis step of separating an acid solution and an alkaline solution by electrodialyzing a solution of sodium crystals, and in the second step, the alkaline solution obtained in the electrodialysis step is used as an NF membrane concentrate. It is preferable to add it.
  • the alkaline solution produced in the electrodialysis step can be reduced to only the amount required in the second step.
  • the alkaline solution produced in the electrodialysis step is obtained by bypassing a part of seawater or brackish water without passing through the nanofiltration membrane and performing the salt making step. Only the amount required for the process can be used.
  • the salt-making step is a film treatment step of producing a concentrated membrane treatment concentrate without permeating the reverse osmosis membrane by passing water through the reverse osmosis membrane, and a membrane treatment step. It is preferable to include a crystallization step of heating and evaporating the obtained membrane treatment concentrate to precipitate sodium chloride crystals. In the third step, the recovered alkaline earth metal charcoal oxide crystals are obtained in the crystallization step. It is preferable to include a washing step of washing with washing water containing the distilled water.
  • the second step can include an evaporation concentration step of precipitating calcium sulfate crystals by evaporating and concentrating the NF film concentrate in which alkaline earth metal charcoal oxide crystals are precipitated, and the third step is said to be described above.
  • the alkaline earth metal charcoal oxide crystals and calcium sulfate crystals precipitated in the second step can be recovered by solid-liquid separation from the NF film concentrate.
  • at least one crystal of sodium chloride, potassium chloride and sodium sulfate is precipitated from the filtrate after recovering alkaline earth metal charcoal oxide crystals and calcium sulfate crystals from the NF membrane concentrate. It is preferable to include a crystal recovery step for recovering the crystals.
  • the crystal recovery step includes a concentrated crystallization step of precipitating and recovering sodium chloride crystals by evaporating and concentrating the filtrate. It is preferable that the crystal recovery step includes a cooling crystallization step of recovering the precipitated crystals by cooling crystallization of the filtrate. In the cooling crystallization step, the first cooling crystallization step of recovering the potassium chloride crystals precipitated by the cooling crystallization of the filtrate and the first cooling crystallization step of the filtrate having undergone the first cooling crystallization step. It is preferable to include a second cooling crystallization step of recovering the precipitated sodium sulfate crystals by cooling crystallization at a temperature lower than the cooling crystallization temperature of the cooling crystallization step. It is preferable that the crystal recovery step includes a step of merging a part of the filtrate after crystal recovery with the NF membrane concentrate in which the second step is performed to neutralize the balance of the filtrate after crystal recovery.
  • the crystal recovery step by merging the washed water obtained by washing the recovered alkaline earth metal charcoal oxide crystals and calcium sulfate crystals with the filtrate.
  • the washing water preferably contains distilled water produced in the evaporation concentration step.
  • the first step is an evaporation concentration step of precipitating calcium sulfate crystals by evaporating and concentrating an NF membrane concentrate that has been concentrated without permeating through the nanofiltration membrane, and a calcium sulfate crystals precipitated by the evaporation concentration step. It can be provided with a solid-liquid separation step of solid-liquid separation and recovery from the NF membrane concentrate.
  • the method for immobilizing carbon dioxide of the present invention provides a method for immobilizing carbon dioxide to an alkaline earth metal contained in seawater or brackish water.
  • alkaline earth metal means a broad range including Mg and Be, which are elements of Group 2 of the periodic table, in addition to Ca, Sr, Ba, and Ra.
  • Mg and Be which are elements of Group 2 of the periodic table, in addition to Ca, Sr, Ba, and Ra.
  • seawater or brine is an aqueous solution containing ions of an alkaline earth metal such as magnesium ion (Mg 2+ ) and calcium ion (Ca 2+ ).
  • Seawater or brine usually contains ions that make up at least one crystal selected from calcium sulfate, sodium chloride, potassium chloride and sodium sulfate, in addition to the ions of alkaline earth metals.
  • seawater or brine usually contains at least one ion selected from chloride ion (Cl ⁇ ), sulfate ion ( SO 4-2 ) , sodium ion (Na + ), and potassium (K + ). I'm out.
  • seawater or brackish water those obtained from at least one selected from seawater, salt lakes, and industrial wastewater can be used.
  • seawater, salt lakes and industrial wastewater river water, rainwater, treated sewage water, and accompanying water from oil and gas fields can also be used as long as alkaline earth metals are contained.
  • irrigation irrigation using salt lakes, waste liquid irrigation discharged by desalination and salt formation processes, recovery of valuable resources using seawater and salt lakes, collection of valuable resources from chemical factories, etc. Examples include industrial wastewater.
  • brackish water is obtained from brackish water obtained from a desalination device using seawater and a process of producing salt from seawater. It is preferably at least one selected from brackish water and brackish water obtained from the process of recovering lithium from a salt lake.
  • FIG. 1 is a processing flow diagram for explaining a method for immobilizing carbon dioxide according to the first embodiment of the present invention.
  • the treatment target is seawater, but the same treatment can be performed in the case of brackish water.
  • seawater is passed through a nanofiltration membrane (NF membrane) to concentrate the NF membrane without permeating the NF membrane.
  • NF membrane nanofiltration membrane
  • Alkaline is added to the first step S1 to generate the liquid and the NF membrane concentrate produced in the first step S1, and carbon dioxide is reacted with the alkaline earth metal contained in the NF membrane concentrate to immobilize the liquid.
  • ⁇ S1 First step>
  • seawater was supplied to the NF membrane unit by a medium pressure pump or the like and passed through the NF membrane to concentrate the NF membrane permeable liquid that had permeated the NF membrane and the NF membrane without permeating the NF membrane. Produces an NF membrane concentrate.
  • the NF membrane concentrate contains an alkaline earth metal that is the target of carbon dioxide immobilization. As much remains, the concentrations of Na + , K + , etc. that may interfere with this immobilization are reduced. Therefore, it is possible to easily and efficiently fix carbon dioxide to alkaline earth metals contained in seawater (or brine), and it is possible to suppress the generation of carbon dioxide in the entire process including the post-process. ..
  • FIG. 2 shows an example of various ion amounts (mg / h) contained in seawater, NF membrane permeate and NF membrane concentrate when seawater is supplied at a flow rate of 100 m 3 / h.
  • the NF membrane permeate contains a large amount of monovalent ions Na + and Cl ⁇ , in the first step S1, the sodium chloride (NaCl) crystals precipitated by concentrating the NF membrane permeate.
  • the salt-making step S11 is provided.
  • the NF membrane permeate is supplied to the reverse osmosis membrane (RO membrane) unit by a high-pressure pump or the like and water is passed through the RO membrane, so that the membrane is concentrated without permeating the RO membrane.
  • RO membrane reverse osmosis membrane
  • the membrane treatment step S111 for producing a treatment concentrate and the crystallization step S112 for supplying the produced membrane treatment concentrate to a crystal can and heating and evaporating to precipitate NaCl crystals are provided.
  • the vapor discharged from the crystal can is condensed by a condenser or the like to become distilled water, which is merged with the membrane-treated permeate liquid that has permeated the RO membrane and used as production water or the like.
  • the concentrated liquid in the crystal can is partially discharged from the crystal can as a slurry liquid containing NaCl crystals, and dehydrated by a centrifuge or the like to recover the NaCl crystals. Since the NF membrane permeate contains almost no SO 4-2 , it can be concentrated at a high concentration by the low energy membrane treatment step S111.
  • the membrane treatment step S111 is not limited to the treatment using the RO membrane, and may be another treatment using a semipermeable membrane, or may be a combination of a plurality of membrane treatments.
  • the membrane treatment step S111 concentrates the NF membrane permeate with the RO membrane to generate the RO membrane concentrate, and the RO membrane concentrate step S113 and the RO membrane concentrate are separated by a semipermeable membrane.
  • the recovery liquid supplied to the low pressure chamber As the recovery liquid supplied to the low pressure chamber, a part of the RO membrane concentrate that has passed through the high pressure chamber can be used, and the recovery liquid that has passed through the low pressure chamber is used as the NF membrane permeate before the RO membrane concentration step S113. Can be merged. Further, as shown in FIG. 3, the evaporation treatment step S115 in which the membrane treatment concentrate produced in the membrane treatment step S111 is evaporated and concentrated by a horizontal tube type evaporator or the like between the membrane treatment step S111 and the crystallization step S112. May be provided.
  • the first step S1 includes a merging step S12 in which the filtrate after collecting the NaCl crystals in the salt making step S11 is merged with the above-mentioned NF membrane concentrate, whereby the waste liquid system is provided. It is possible to reduce the environmental load by suppressing the discharge to the outside. Alkaline earth metals such as magnesium to be recovered are contained not only in the NF membrane concentrate but also in the NF membrane permeate. Therefore, by providing the above-mentioned merging step S12, carbon dioxide in the second step S2 is provided. It is possible to increase the recovery rate of alkaline earth metals required for carbon immobilization. From the viewpoint of increasing the purity of the NaCl crystal obtained in the crystallization step S112, it is preferable to increase the amount of the filtrate to be merged with the NF film concentrate by the merging step S12 as much as possible.
  • the first step S1 includes an electrodialysis step S13 for electrodialyzing the NaCl crystals produced in the salt making step S11.
  • an electrodialysis step S13 for example, a bipolar membrane electrodialysis apparatus can be used, and the solution obtained by dissolving the NaCl crystals obtained in the crystallization step S112 in water is separated into an HCl solution and a NaOH solution.
  • Electrodialysis preferably utilizes renewable energy such as solar energy and can suppress CO 2 emissions in the entire process.
  • impurities such as magnesium and calcium contained in the NaCl solution to the chelate resin to sufficiently reduce their concentrations (for example, 1 ppm or less).
  • the NaOH solution obtained in the electrodialysis step S13 can be suitably used as an alkali to be added in the second step S2.
  • the flow path of the NF membrane permeate produced in the first step S1 is branched so that the amount of the alkaline solution produced in the electrodialysis step S13 is only the amount required in the second step S2.
  • the salt making step S11 may be performed only partially. As a result, the energy consumption required for the production of alkali can be suppressed, and CO 2 emissions in the entire process can be reduced. It is preferable to use renewable energy for the generation of alkali as described above.
  • the remainder of the NF membrane permeate not used in the salt making step S11 can be used in another step such as a desalination process, and the NF membrane permeate not used in the separate step may be discharged into the ocean or the like.
  • the first step S1 a part of seawater or brackish water is bypassed without passing through the NF membrane so that the amount of the alkaline solution produced in the electrodialysis step S13 is only the amount required in the second step S2.
  • the salt-making step S11 may be performed on a part or all of the NF film permeation liquid in which the amount of production is suppressed.
  • the seawater or brine that bypasses the NF membrane can be used for immobilization of carbon dioxide in the second step S2 after merging with the NF membrane concentrate.
  • ⁇ S2 Second step>
  • the pH of the NF membrane concentrate is adjusted to the alkaline side (for example, pH 9 to 10) by adding an alkali to the NF membrane concentrate produced in the first step S1 and stored in the storage tank.
  • a gas containing carbon dioxide By blowing a gas containing carbon dioxide into this NF membrane concentrate and bringing it into gas-liquid contact by bubbling, carbon dioxide is reacted with the alkaline earth metal contained in the NF membrane concentrate and immobilized.
  • the gas containing carbon dioxide may be the atmosphere, or may be the exhaust gas of various combustion devices.
  • the concentration of carbon dioxide contained in the gas is not limited, but for example, the concentration of carbon dioxide contained in the gas is about 100% by volume from the atmosphere.
  • the addition of alkali to the NF membrane concentrate may be carried out not only before bubbling the gas containing carbon dioxide but also during bubbling.
  • the reaction efficiency between alkaline earth metals and carbon dioxide can be improved by blowing fine bubbles of carbon dioxide (fine bubbles such as microbubbles and ultrafine bubbles).
  • the method of gas-liquid contact between the NF membrane concentrate and carbon dioxide is not only the method of blowing CO 2 gas into the NF membrane concentrate, but also the CO 2 gas in a single-stage or multi-stage desulfurization tower, a degassing tower, or the like.
  • a method of spraying the NF film concentrate inside with a spray nozzle or a tray may be used, and various known gas-liquid contacts are taken in consideration of the reaction rate, the reaction amount, the CO 2 concentration in the gas such as exhaust gas, and the like.
  • the device can be used.
  • the alkali added to the NF membrane concentrate in the second step S2 it is preferable to use the NaOH solution obtained in the electrodialysis step S13 as described above, and the increase in CO 2 emissions due to the separate generation of the alkali is increased. It can be suppressed.
  • the NF membrane concentrate has a lower concentration of Na + , K + , etc. than the original solution, and it is easy to immobilize carbon dioxide. Therefore, what is the alkali obtained in the electrodialysis step S13? Different alkalis may be used, or the alkali obtained in the electrodialysis step S13 may be used in combination with another alkali.
  • the NF film concentrate that has undergone the second step S2 becomes a slurry liquid in which alkaline earth metal carbon dioxide crystals such as MgCO 3 and CaCO 3 are precipitated by the reaction between the alkaline earth metal and carbon dioxide.
  • the alkaline earth metal charcoal oxide crystals contained in this slurry liquid are separated into solid and liquid by a solid and liquid separating device such as a centrifuge and recovered.
  • the third step S3 includes a neutralization step S31 for neutralizing the filtrate after recovering the alkaline earth metal charcoal oxide crystals from the NF film concentrate.
  • the filtrate of the NF membrane concentrate is usually pH 9 or higher due to the addition of alkali, it should be discharged as it is to the outside of the system such as the ocean by adding an acid to neutralize it (for example, pH 7 to 8). Will be possible.
  • the acid added to the filtrate it is preferable to use the HCl solution obtained in the electrodialysis step S13, and it is possible to suppress an increase in CO 2 emissions associated with the separate generation of the acid.
  • the recovered alkaline earth metal charcoal oxide crystals are washed with washing water to dissolve Na + , K + , etc. adhering to the alkaline earth metal charcoal oxide crystals in the washing water and remove them.
  • the water washing step S32 is provided.
  • the washing water used in the washing step S32 preferably contains distilled water obtained in the above crystallization step S12, thereby suppressing an increase in CO 2 emissions associated with the separate generation of washing water. Can be done.
  • a part of the produced water obtained by merging distilled water with the NF membrane permeate is used as washing water.
  • the washed alkaline earth metal charcoal oxide crystals such as MgCO 3 and CaCO 3 can be suitably used as building materials such as concrete and cement. Therefore, the present invention can also provide a method for producing an alkaline earth metal charcoal oxide salt using a method for immobilizing carbon dioxide.
  • the method for immobilizing carbon dioxide of the present embodiment can easily and efficiently immobilize carbon dioxide with respect to alkaline earth metals contained in seawater or irrigation water, and at the same time, alkalis and acids generated in each step can be used. Since the immobilization of carbon dioxide can be completed in the system by using distilled water or the like, the carbon dioxide reduction capacity can be enhanced while considering the carbon dioxide emissions in the entire process.
  • FIG. 4 is a processing flow diagram for explaining a method for immobilizing carbon dioxide according to a second embodiment of the present invention.
  • the method for immobilizing carbon dioxide according to the second embodiment shown in FIG. 4 is similar to the first embodiment, in which seawater is passed through the NF membrane to concentrate the NF membrane without permeating the NF membrane.
  • Alkaline is added to the first step S1 to generate the liquid and the NF membrane concentrate produced in the first step S1, and the alkaline earth metal contained in the NF membrane concentrate is reacted with carbon dioxide to be immobilized.
  • the second step S2 for precipitating alkaline earth metal charcoal oxide crystals and the third step S3 for solid-liquid separation and recovery of the alkaline earth metal charcoal oxide crystals precipitated in the second step S2 are performed.
  • the treatment target is seawater, but the same treatment can be performed in the case of brackish water, and in particular, it can be preferably used when the content of Ca or Mg is high.
  • FIG. 4 the same steps as in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • ⁇ S21: Evaporation concentration step> As shown in FIG. 4, in the second step S2, the slurry liquid in which carbon dioxide is immobilized on the alkaline earth metal contained in the NF film concentrate and the alkaline earth metal carbon oxide crystals are precipitated is evaporated in the evaporation can.
  • the evaporative concentration step S21 for precipitating calcium sulfate crystals (CaSO 4.2H 2 O) by concentrating is provided.
  • the slurry solution before evaporation and concentration contains Ca 2+ , Na + , K + , etc. However, since calcium sulfate crystals have backsolubility whose solubility decreases as the temperature rises, Ca 2+ is precipitated.
  • Na + and K + are concentrated to a concentration ratio at which NaCl and KCl do not precipitate while maintaining the operating temperature of evaporation concentration so that Na + and K + do not precipitate.
  • the operating temperature for evaporation concentration is preferably 70 to 90 ° C, for example set to 80 ° C.
  • the evaporation concentration step S21 in order to prevent the generation of scale of calcium sulfate, it is preferable to add a seed crystal of CaSO 4.2H 2 O to the slurry liquid to promote crystal growth centered on the seed crystal.
  • CaSO 4.2H 2 O produced in the evaporation concentration step S21 can be preferably used for this seed crystal.
  • ⁇ S3 Third step>
  • alkaline earth metal carbon oxide crystals such as MgCO 3 and CaCO 3 and calcium sulfate crystals precipitated in the second step S2 are separated from the NF film concentrate by a solid-liquid separator and recovered. ..
  • the recovered alkaline earth metal charcoal oxide crystals and calcium sulfate crystals are washed with washing water in the washing step S32 in the same manner as in the first embodiment.
  • washing water a part of the distilled water generated in the evaporation concentration step S21 is used as washing water.
  • the washing water in addition to the distilled water produced in the evaporation concentration step S21, the production water produced in the salt making step S11 or the distilled water produced in the concentration crystallization step S331 described later may be used.
  • the third step S3 is a crystal recovery step of precipitating and recovering sodium chloride, potassium chloride and sodium sulfate crystals from the filtrate after recovering alkaline earth metal charcoal oxide crystals and calcium sulfate crystals from the NF film concentrate. It is equipped with S33.
  • the filtrate in which the crystal recovery step S33 is performed is preferably only a part of the filtrate obtained by solid-liquid separating alkaline earth metal charcoal oxide crystals and calcium sulfate crystals, and the balance of the solid-liquid separated filtrate is impurities. In order to suppress the increase in concentration, it is preferable to discharge the liquid to the outside of the system through the neutralization step S31.
  • Washing water obtained by washing alkaline earth metal charcoal oxide crystals and calcium sulfate crystals in the washing step S32 may be combined with the filtrate in which the crystal recovery step S33 is performed.
  • the crystal recovery step S33 includes a concentrated crystallization step S331 that precipitates and recovers sodium chloride crystals by evaporating and concentrating the filtrate, and a cooling crystallization step S332 that recovers the precipitated crystals by cooling crystallization of the filtrate. And.
  • ⁇ S3311 Concentrated crystallization step>
  • the filtrate is supplied to an evaporative can and heated to evaporate and concentrate to precipitate crystals containing sodium chloride (NaCl) as a main component, and then sodium chloride crystals are produced by a solid-liquid separator. It is done separately.
  • the operating temperature for evaporation concentration is preferably 60 to 80 ° C, for example set to 70 ° C.
  • Cooling crystallization step> In the cooling crystallization step S332, the filtrate that has undergone the concentrated crystallization step S331 is supplied to the cooling crystallization can and cooled to a predetermined cooling crystallization temperature while stirring to precipitate crystals of the target impurities. After that, the crystals are separated by a solid-liquid separator.
  • the cooling crystallization step S332 includes a first cooling crystallization step S3321 for recovering crystals containing potassium chloride (KCl) as a main component by cooling crystallization of the NF film concentrate, and a first cooling crystallization step S3321.
  • KCl potassium chloride
  • the cooling crystallization temperature of the first cooling crystallization step S3321 is a temperature at which crystals mainly composed of KCl precipitate but crystals of Na 2 SO 4.10H 2 O do not precipitate, and is 33 to 40 ° C. Preferably, it is set to, for example, 36 ° C.
  • the cooling crystallization temperature of the second cooling crystallization step S3322 is a temperature at which crystals of Na 2 SO 4 ⁇ 10H 2 O precipitate, and is set to, for example, 0 to 10 ° C.
  • the filtrate that has passed through the crystal recovery step S33 is alkaline, and a part of the filtrate can be combined with the NF membrane concentrate in which the second step S2 is performed. Further, the remainder of the filtrate that has passed through the crystal recovery step S33 can be neutralized with an acid such as the HCl solution obtained in the electrodialysis step S13 by the neutralization step S34 and discharged to the outside of the system.
  • the crystal recovery step S33 does not need to perform all of the concentrated crystallization step S331, the first cooling crystallization step S3321 and the second cooling crystallization step S3322, and is selected from sodium chloride, potassium chloride and sodium sulfate from the filtrate. Only necessary steps may be appropriately selected depending on the components of seawater or brackish water to be treated so that at least one kind of crystal can be precipitated and recovered.
  • FIG. 5 is a diagram showing a modified example of the processing flow shown in FIG.
  • the first step S1 of the carbon dioxide fixation method shown in FIG. 1 further includes an evaporation concentration step S14 and a solid-liquid separation step S15, and the other steps include.
  • ⁇ S14 Evaporation concentration step>
  • the evaporative concentration step S14 may be performed on the NF membrane concentrate before the merging step S12, but the filtrate that merges with the NF membrane concentrate in the merging step S12 contains a small amount of calcium. As shown in 5, it is preferable to perform the evaporation concentration step S14 on the NF membrane concentrate that has undergone the merging step S12.
  • the NF membrane concentrate In order to suppress the scale of the evaporation can, it is preferable to add calcium sulfate crystals as seed crystals to the NF membrane concentrate.
  • the seed crystal for example, calcium sulfate crystals recovered in the solid-liquid separation step S15 described later can be used.
  • an acid to the NF membrane concentrate As the acid, for example, the HCl solution obtained in the above electrodialysis step S13 can be used.
  • the distilled water produced in the evaporation concentration step S14 can be used, for example, as the washing water in the washing step S32 of the third step S3.
  • Solid-liquid separation step> the calcium sulfate crystals precipitated in the evaporation concentration step S14 are solid-liquid separated from the NF film concentrate by a solid-liquid separation device and recovered.
  • the recovered calcium sulfate crystals can be used, for example, as gypsum.
  • the second step S2 By providing the above-mentioned evaporation concentration step S14 and solid-liquid separation step S15, the following merits occur in the second step S2.
  • the amount of the NF membrane concentrate in which the second step S2 is performed can be reduced, the amount of alkali (NaOH) to be added can be reduced, and the power consumption of the electrodialysis step S13 can be suppressed.
  • the reaction efficiency of carbon dioxide increases due to the increase in the concentration of the alkaline earth metal in the NF film concentrate in which the second step S2 is performed, the amount of carbon dioxide bubbling is reduced and the consumption required for bubbling is increased. Power can be suppressed.
  • calcium is recovered as calcium sulfate crystals from the NF membrane concentrate before the second step S2, the precipitation of CaCO 3 is suppressed in the second step S2, and the purity of the recovered MgCO 3 can be increased. ..
  • the evaporation concentration step S14 and the solid-liquid separation step S15 shown in FIG. 5 can also be applied to the carbon dioxide immobilization method shown in FIG. 4, and the evaporation concentration step S14 is before the second step S2 shown in FIG.
  • the solid-liquid separation step S15 By performing the solid-liquid separation step S15, the same effect as described above can be obtained.
  • the evaporation concentration step S21 shown in FIG. 4 is unnecessary, and the NF membrane concentrate that has passed through the second step S2 is solid-liquid separated by the third step S3. Since the carbon dioxide immobilization method shown in FIG.
  • the NF membrane concentrate that has undergone the second step S2 contains almost no CaSO 4 and CaCO 3 .
  • MgCO 3 can be recovered with high purity.

Abstract

A method for fixing carbon dioxide, the method comprising: a first step S1 for passing seawater or brine through a nano-filtration membrane to produce NF membrane concentrated liquid that has been concentrated as a result of not passing through the nano-filtration membrane; a second step S2 for adding an alkali to the NF membrane concentrated liquid produced in the first step S1 so as to fix carbon dioxide through a reaction with an alkaline-earth metal contained in the NF membrane concentrated liquid and to cause deposition of an alkaline-earth metal carbonate crystal; and a third step S3 for collecting the alkaline-earth metal carbonate crystal deposited in the second step S2 from the NF membrane concentrated liquid by solid-liquid separation.

Description

二酸化炭素の固定化方法Carbon dioxide fixation method
 本発明は、アルカリ土類金属への二酸化炭素の固定化方法に関する。 The present invention relates to a method for immobilizing carbon dioxide on an alkaline earth metal.
 地球温暖化の深刻化に伴い気温上昇を抑制することが求められており、その評価モデルとして人為的二酸化炭素(CO)排出量をゼロにすることが目標となっている。上記目標を達成するための手段として、CO固定化方法が挙げられる。
 CO固定化方法の有効な手段として、アルカリ土類金属であるMgやCaを利用して、これらアルカリ土類金属とCOを結合させて固定化する方法が挙げられる。しかし、アルカリ土類金属を含む鉱石を利用する従来の方法は、高温高圧や薬品添加といったCO排出と結びつく処理を必要とするため、プロセス全体でCO排出となるケースが多い。
 またMgやCaは、海水及び海水の淡水化プラントからの廃液かん水等にも含まれており、例えば海水を利用したCO固定化方法が提案されている(例えば、特許文献1及び2参照)。
As global warming becomes more serious, it is required to suppress the temperature rise, and the goal is to reduce anthropogenic carbon dioxide (CO 2 ) emissions to zero as an evaluation model. As a means for achieving the above-mentioned goal, a CO 2 immobilization method can be mentioned.
As an effective means of the CO 2 immobilization method, there is a method of using the alkaline earth metals Mg and Ca to bond and immobilize these alkaline earth metals and CO 2 . However, the conventional method using ore containing alkaline earth metal requires a treatment linked to CO 2 emission such as high temperature and high pressure and addition of chemicals, so that CO 2 emission is often generated in the entire process.
In addition, Mg and Ca are also contained in seawater and waste liquid irrigation from seawater desalination plants, and for example, a CO 2 immobilization method using seawater has been proposed (see, for example, Patent Documents 1 and 2). ..
特開2005-21870号公報Japanese Unexamined Patent Publication No. 2005-21870 特開2010-125354号公報Japanese Unexamined Patent Publication No. 2010-12354
 海水又はかん水を利用するCO固定化方法では、海水又はかん水へのCO吹込みによる方法が多く検討されてきたが、イオン径の小さな2価の陽イオンであるMg2+イオン周りに形成される強固な水和殻と、炭酸塩化を競合するカチオン(Na+、K+)の存在が原因で、液相内でのCO固定化の効率が低下するといった問題がある。その解決策として、Ca(OH)等のリサイクルが困難なアルカリ添加によるpHを上昇させる手段を用いることが主流であった。しかし、COとの反応を促進させるためのこれらの手段は、エネルギー消費やライフサイクルアセスメントとしての添加物生産に起因するCO排出を考慮すると、プロセス全体でCO排出がプラスとなってしまう。
 特許文献1及び2の技術でも、pH調整や廃水処理等が必要となりプロセス全体としてCOの排出量をマイナスとすることは困難である。
 上述のように海水又はかん水を利用したCO固定化方法の問題点として、MgやCa以外の分子やイオンの存在によるCOとの反応の阻害が挙げられる。したがって、海水又はかん水からMgやCaを分離するプロセスにおいて、単位操作ごとに由来するCO排出も考慮して、CO削減能力が評価されなければならない。
As a CO 2 immobilization method using seawater or brine, many methods have been studied by injecting CO 2 into seawater or brine, but it is formed around Mg 2+ ions, which are divalent cations with a small ion diameter. Due to the strong hydrated shell and the presence of cations (Na + , K + ) competing for carbon dioxide chloride, there is a problem that the efficiency of CO 2 immobilization in the liquid phase is reduced. As a solution to this problem, it has been the mainstream to use a means for raising the pH by adding an alkali, which is difficult to recycle, such as Ca (OH) 2 . However, these measures to accelerate the reaction with CO 2 result in positive CO 2 emissions throughout the process, given the CO 2 emissions resulting from energy consumption and additive production as a life cycle assessment. ..
Even with the techniques of Patent Documents 1 and 2, it is difficult to make the CO 2 emission amount negative as a whole process because pH adjustment, wastewater treatment, etc. are required.
As described above, a problem of the CO 2 immobilization method using seawater or brine is the inhibition of the reaction with CO 2 due to the presence of molecules and ions other than Mg and Ca. Therefore, in the process of separating Mg and Ca from seawater or brackish water, the CO 2 reduction capacity must be evaluated in consideration of the CO 2 emissions derived from each unit operation.
 そこで本発明は、二酸化炭素の排出量を考慮しつつ二酸化炭素削減能力を高める、アルカリ土類金属への二酸化炭素の固定化方法を提供する。 Therefore, the present invention provides a method for immobilizing carbon dioxide on an alkaline earth metal, which enhances the carbon dioxide reduction capacity while considering the amount of carbon dioxide emissions.
 本発明の前記目的は、海水又はかん水をナノろ過膜に通水することにより、前記ナノろ過膜を透過せずに濃縮されたNF膜濃縮液を生成する第1工程と、前記第1工程で生成されたNF膜濃縮液にアルカリを添加して、該NF膜濃縮液に含まれるアルカリ土類金属に二酸化炭素を反応させて固定化し、アルカリ土類金属炭酸化物結晶を析出させる第2工程と、前記第2工程で析出したアルカリ土類金属炭酸化物結晶をNF膜濃縮液から固液分離して回収する第3工程とを備える二酸化炭素の固定化方法により達成される。この二酸化炭素の固定化方法において、前記第1工程は、前記ナノろ過膜を透過したNF膜透過液を濃縮して析出した塩化ナトリウム結晶を回収する製塩工程と、前記製塩工程で回収された塩化ナトリウム結晶の溶液を電気透析することにより酸溶液およびアルカリ溶液を分離する電気透析工程とを備えることが好ましく、前記第2工程は、前記電気透析工程で得られたアルカリ溶液をNF膜濃縮液に添加することが好ましい。 The object of the present invention is a first step of passing seawater or alkaline water through a nanofiltration membrane to generate a concentrated NF membrane concentrate without permeating the nanofiltration membrane, and the first step. The second step is to add an alkali to the generated NF film concentrate, react the alkaline earth metal contained in the NF film concentrate with carbon dioxide to immobilize it, and precipitate alkaline earth metal charcoal oxide crystals. This is achieved by a method for immobilizing carbon dioxide, which comprises a third step of solid-liquid separation and recovery of the alkaline earth metal charcoal oxide crystals precipitated in the second step from the NF film concentrate. In this method for immobilizing carbon dioxide, the first step is a salt-making step of concentrating an NF membrane permeate that has permeated the nanofiltration membrane and recovering the precipitated sodium chloride crystals, and a chloride-making step of recovering the chloride. It is preferable to include an electrodialysis step of separating an acid solution and an alkaline solution by electrodialyzing a solution of sodium crystals, and in the second step, the alkaline solution obtained in the electrodialysis step is used as an NF membrane concentrate. It is preferable to add it.
 前記第1工程は、NF膜透過液の一部のみに前記製塩工程を行うことにより、前記電気透析工程で生成されるアルカリ溶液を前記第2工程で必要な量のみとすることができる。あるいは、前記第1工程は、海水又はかん水の一部を前記ナノろ過膜に通水せずにバイパスさせて前記製塩工程を行うことにより、前記電気透析工程で生成されるアルカリ溶液を前記第2工程で必要な量のみとすることができる。 In the first step, by performing the salt-making step only on a part of the NF membrane permeate, the alkaline solution produced in the electrodialysis step can be reduced to only the amount required in the second step. Alternatively, in the first step, the alkaline solution produced in the electrodialysis step is obtained by bypassing a part of seawater or brackish water without passing through the nanofiltration membrane and performing the salt making step. Only the amount required for the process can be used.
 前記第3工程は、NF膜濃縮液からアルカリ土類金属炭酸化物結晶を回収後のろ液を、前記電気透析工程で得られた酸溶液で中和する中和工程を備えることが好ましい。 It is preferable that the third step includes a neutralization step of neutralizing the filtrate after recovering the alkaline earth metal charcoal oxide crystals from the NF membrane concentrate with the acid solution obtained in the electrodialysis step.
 前記製塩工程は、NF膜透過液を逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された膜処理濃縮液を生成する膜処理工程と、前記膜処理工程で生成された膜処理濃縮液を加熱蒸発して塩化ナトリウム結晶を析出させる結晶化工程とを備えることが好ましく、前記第3工程は、回収したアルカリ土類金属炭酸化物結晶を、前記結晶化工程で得られた蒸留水を含む洗浄水により洗浄する水洗工程を備えることが好ましい。 The salt-making step is a film treatment step of producing a concentrated membrane treatment concentrate without permeating the reverse osmosis membrane by passing water through the reverse osmosis membrane, and a membrane treatment step. It is preferable to include a crystallization step of heating and evaporating the obtained membrane treatment concentrate to precipitate sodium chloride crystals. In the third step, the recovered alkaline earth metal charcoal oxide crystals are obtained in the crystallization step. It is preferable to include a washing step of washing with washing water containing the distilled water.
 前記第2工程は、アルカリ土類金属炭酸化物結晶が析出したNF膜濃縮液を蒸発濃縮することにより硫酸カルシウム結晶を析出させる蒸発濃縮工程を備えることが可能であり、前記第3工程は、前記第2工程で析出したアルカリ土類金属炭酸化物結晶および硫酸カルシウム結晶をNF膜濃縮液から固液分離して回収することができる。この場合、前記第3工程は、NF膜濃縮液からアルカリ土類金属炭酸化物結晶および硫酸カルシウム結晶を回収した後のろ液から、塩化ナトリウム、塩化カリウムおよび硫酸ナトリウムの少なくとも一種の結晶を析出させて回収する結晶回収工程を備えることが好ましい。 The second step can include an evaporation concentration step of precipitating calcium sulfate crystals by evaporating and concentrating the NF film concentrate in which alkaline earth metal charcoal oxide crystals are precipitated, and the third step is said to be described above. The alkaline earth metal charcoal oxide crystals and calcium sulfate crystals precipitated in the second step can be recovered by solid-liquid separation from the NF film concentrate. In this case, in the third step, at least one crystal of sodium chloride, potassium chloride and sodium sulfate is precipitated from the filtrate after recovering alkaline earth metal charcoal oxide crystals and calcium sulfate crystals from the NF membrane concentrate. It is preferable to include a crystal recovery step for recovering the crystals.
 前記結晶回収工程は、ろ液を蒸発濃縮することにより塩化ナトリウム結晶を析出させて回収する濃縮晶析工程を備えることが好ましい。前記結晶回収工程は、ろ液を冷却晶析することにより析出した結晶を回収する冷却晶析工程を備えることが好ましい。前記冷却晶析工程は、ろ液を冷却晶析することにより析出した塩化カリウム結晶を回収する第1の冷却晶析工程と、前記第1の冷却晶析工程を経たろ液を前記第1の冷却晶析工程の冷却晶析温度よりも低温で冷却晶析することにより析出した硫酸ナトリウム結晶を回収する第2の冷却晶析工程とを備えることが好ましい。前記結晶回収工程は、結晶回収後のろ液の一部を前記第2工程が行われるNF膜濃縮液に合流させ、結晶回収後のろ液の残部を中和する工程を備えることが好ましい。 It is preferable that the crystal recovery step includes a concentrated crystallization step of precipitating and recovering sodium chloride crystals by evaporating and concentrating the filtrate. It is preferable that the crystal recovery step includes a cooling crystallization step of recovering the precipitated crystals by cooling crystallization of the filtrate. In the cooling crystallization step, the first cooling crystallization step of recovering the potassium chloride crystals precipitated by the cooling crystallization of the filtrate and the first cooling crystallization step of the filtrate having undergone the first cooling crystallization step. It is preferable to include a second cooling crystallization step of recovering the precipitated sodium sulfate crystals by cooling crystallization at a temperature lower than the cooling crystallization temperature of the cooling crystallization step. It is preferable that the crystal recovery step includes a step of merging a part of the filtrate after crystal recovery with the NF membrane concentrate in which the second step is performed to neutralize the balance of the filtrate after crystal recovery.
 前記第3工程は、回収したアルカリ土類金属炭酸化物結晶および硫酸カルシウム結晶を洗浄した洗浄水をろ液に合流させて、前記結晶回収工程を行うことが好ましい。前記洗浄水は、前記蒸発濃縮工程で生成された蒸留水を含むことが好ましい。 In the third step, it is preferable to perform the crystal recovery step by merging the washed water obtained by washing the recovered alkaline earth metal charcoal oxide crystals and calcium sulfate crystals with the filtrate. The washing water preferably contains distilled water produced in the evaporation concentration step.
 前記第1工程は、前記ナノろ過膜を透過せずに濃縮されたNF膜濃縮液を蒸発濃縮することにより硫酸カルシウム結晶を析出させる蒸発濃縮工程と、前記蒸発濃縮工程により析出した硫酸カルシウム結晶をNF膜濃縮液から固液分離して回収する固液分離工程とを備えることができる。 The first step is an evaporation concentration step of precipitating calcium sulfate crystals by evaporating and concentrating an NF membrane concentrate that has been concentrated without permeating through the nanofiltration membrane, and a calcium sulfate crystals precipitated by the evaporation concentration step. It can be provided with a solid-liquid separation step of solid-liquid separation and recovery from the NF membrane concentrate.
 本発明によれば、二酸化炭素の排出量を考慮しつつ二酸化炭素削減能力を高める、アルカリ土類金属への二酸化炭素の固定化方法を提供することができる。 According to the present invention, it is possible to provide a method for immobilizing carbon dioxide on an alkaline earth metal, which enhances the carbon dioxide reduction capacity while considering the amount of carbon dioxide emissions.
本発明の第1の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。It is a process flow diagram for demonstrating the carbon dioxide fixation method which concerns on 1st Embodiment of this invention. 図1に示す処理フローにおける各種イオン量の変化の一例を示す図である。It is a figure which shows an example of the change of various ion amounts in the processing flow shown in FIG. 図1に示す処理フローにおける一部の工程の変形例を示す図である。It is a figure which shows the modification of some steps in the processing flow shown in FIG. 本発明の第2の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。It is a process flow diagram for demonstrating the carbon dioxide fixation method which concerns on 2nd Embodiment of this invention. 図1に示す処理フローの変形例を示す図である。It is a figure which shows the modification of the processing flow shown in FIG.
 本発明の二酸化炭素の固定化方法は、海水又はかん水に含まれるアルカリ土類金属に対して二酸化炭素を固定化する方法を提供するものである。本発明において「アルカリ土類金属」は、Ca、Sr、Ba、Raの他に、周期表第2族の元素であるMgとBeを含む広義の範囲を意味する。特にCOとの反応のし易さや、該反応により得られる炭酸塩を様々な用途へ利用することが期待できる観点から、アルカリ土類金属として少なくともMgを含むことが好ましい。 The method for immobilizing carbon dioxide of the present invention provides a method for immobilizing carbon dioxide to an alkaline earth metal contained in seawater or brackish water. In the present invention, "alkaline earth metal" means a broad range including Mg and Be, which are elements of Group 2 of the periodic table, in addition to Ca, Sr, Ba, and Ra. In particular, it is preferable to contain at least Mg as an alkaline earth metal from the viewpoint of ease of reaction with CO 2 and the expectation that the carbonate obtained by the reaction can be used for various purposes.
 また「海水又はかん水」は、マグネシウムイオン(Mg2+)、カルシウムイオン(Ca2+)等のアルカリ土類金属のイオンを含む水溶液である。海水又はかん水は、アルカリ土類金属のイオン以外に、硫酸カルシウム、塩化ナトリウム、塩化カリウム及び硫酸ナトリウムから選択される少なくとも一種の結晶を構成するイオンを通常含んでいる。具体的には、海水又はかん水は、塩化物イオン(Cl)、硫酸イオン(SO 2-)、ナトリウムイオン(Na)、カリウム(K)から選ばれる少なくとも1種のイオンを通常含んでいる。 Further, "seawater or brine" is an aqueous solution containing ions of an alkaline earth metal such as magnesium ion (Mg 2+ ) and calcium ion (Ca 2+ ). Seawater or brine usually contains ions that make up at least one crystal selected from calcium sulfate, sodium chloride, potassium chloride and sodium sulfate, in addition to the ions of alkaline earth metals. Specifically, seawater or brine usually contains at least one ion selected from chloride ion (Cl ), sulfate ion ( SO 4-2 ) , sodium ion (Na + ), and potassium (K + ). I'm out.
 上記の海水又はかん水としては、海水、塩湖、及び工業廃水から選ばれる少なくとも1種から得られるものを用いることができる。また、アルカリ土類金属が含まれていれば、海水、塩湖及び工業廃水の他に、河川水、雨水、下水処理水、油田やガス田の随伴水等も用いることができる。かん水としてより具体的には、塩湖等を用いた造水、淡水化や造塩のプロセスにより排出される廃液かん水や、海水及び塩湖等を用いた有価物の回収、化学工場等からの工業廃水等が挙げられる。 As the above-mentioned seawater or brackish water, those obtained from at least one selected from seawater, salt lakes, and industrial wastewater can be used. In addition to seawater, salt lakes and industrial wastewater, river water, rainwater, treated sewage water, and accompanying water from oil and gas fields can also be used as long as alkaline earth metals are contained. More specifically, as irrigation, irrigation using salt lakes, waste liquid irrigation discharged by desalination and salt formation processes, recovery of valuable resources using seawater and salt lakes, collection of valuable resources from chemical factories, etc. Examples include industrial wastewater.
 前述のMgを多く含むこと、環境負荷の低減及びCO排出量削減のし易さの観点から、かん水は、海水を用いた造水装置から得られるかん水、海水から塩を造るプロセスから得られるかん水、及び塩湖からリチウムを回収するプロセスから得られるかん水から選ばれる少なくとも1種であることが好ましい。 From the viewpoint of containing a large amount of Mg as described above, reducing the environmental load and easing to reduce CO 2 emissions, brackish water is obtained from brackish water obtained from a desalination device using seawater and a process of producing salt from seawater. It is preferably at least one selected from brackish water and brackish water obtained from the process of recovering lithium from a salt lake.
<第1の実施形態>
 以下、本発明の一実施形態について添付図面を参照して説明する。図1は、本発明の第1の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。第1の実施形態においては、処理対象を海水としているが、かん水の場合も同様の処理を行うことができる。図1に示すように、第1の実施形態の二酸化炭素の固定化方法は、海水をナノろ過膜(NF膜)に通水することにより、NF膜を透過せずに濃縮されたNF膜濃縮液を生成する第1工程S1と、第1工程S1で生成されたNF膜濃縮液にアルカリを添加して、該NF膜濃縮液に含まれるアルカリ土類金属に二酸化炭素を反応させて固定化し、アルカリ土類金属炭酸化物結晶を析出させる第2工程S2と、第2工程S2で析出したアルカリ土類金属炭酸化物結晶をNF膜濃縮液から固液分離して回収する第3工程S3とを備えている。
<First Embodiment>
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a processing flow diagram for explaining a method for immobilizing carbon dioxide according to the first embodiment of the present invention. In the first embodiment, the treatment target is seawater, but the same treatment can be performed in the case of brackish water. As shown in FIG. 1, in the method for immobilizing carbon dioxide according to the first embodiment, seawater is passed through a nanofiltration membrane (NF membrane) to concentrate the NF membrane without permeating the NF membrane. Alkaline is added to the first step S1 to generate the liquid and the NF membrane concentrate produced in the first step S1, and carbon dioxide is reacted with the alkaline earth metal contained in the NF membrane concentrate to immobilize the liquid. The second step S2 for precipitating alkaline earth metal charcoal oxide crystals and the third step S3 for solid-liquid separation and recovery of the alkaline earth metal charcoal oxide crystals precipitated in the second step S2 from the NF membrane concentrate. I have.
<S1:第1工程>
 第1工程S1は、海水を中圧ポンプ等によりNF膜ユニットに供給してNF膜に通水することにより、NF膜を透過したNF膜透過液と、NF膜を透過せずに濃縮されたNF膜濃縮液とを生成する。
<S1: First step>
In the first step S1, seawater was supplied to the NF membrane unit by a medium pressure pump or the like and passed through the NF membrane to concentrate the NF membrane permeable liquid that had permeated the NF membrane and the NF membrane without permeating the NF membrane. Produces an NF membrane concentrate.
 NF膜は、2価以上のイオンの透過を抑制する一方で、1価イオンは透過し易い性質を有するため、NF膜濃縮液には、二酸化炭素の固定化の対象となるアルカリ土類金属の多くが残留すると共に、この固定化の妨げになるおそれがあるNa、Kなどの濃度が低減される。したがって、海水(又はかん水)に含まれるアルカリ土類金属への二酸化炭素の固定化を容易に効率良く行うことができ、後工程を含めたプロセス全体での二酸化炭素の発生を抑制することができる。図2は、海水を100m/hの流量で供給した場合における、海水、NF膜透過液およびNF膜濃縮液に含まれる各種イオン量(mg/h)の一例を示している。 Since the NF membrane suppresses the permeation of divalent or higher ions, the monovalent ion has the property of being easily permeated. Therefore, the NF membrane concentrate contains an alkaline earth metal that is the target of carbon dioxide immobilization. As much remains, the concentrations of Na + , K + , etc. that may interfere with this immobilization are reduced. Therefore, it is possible to easily and efficiently fix carbon dioxide to alkaline earth metals contained in seawater (or brine), and it is possible to suppress the generation of carbon dioxide in the entire process including the post-process. .. FIG. 2 shows an example of various ion amounts (mg / h) contained in seawater, NF membrane permeate and NF membrane concentrate when seawater is supplied at a flow rate of 100 m 3 / h.
<S11:製塩工程>
 一方、NF膜透過液には、1価のイオンであるNaやClが多く含まれているため、第1工程S1は、NF膜透過液を濃縮して析出した塩化ナトリウム(NaCl)結晶を回収する製塩工程S11を備える。本実施形態の製塩工程S11は、NF膜透過液を高圧ポンプ等により逆浸透膜(RO膜)ユニットに供給してRO膜に通水することにより、RO膜を透過せずに濃縮された膜処理濃縮液を生成する膜処理工程S111と、生成された膜処理濃縮液を結晶缶に供給して加熱蒸発し、NaCl結晶を析出させる結晶化工程S112とを備えている。結晶缶から排出された蒸気は、凝縮器等で凝縮されて蒸留水となり、RO膜を透過した膜処理透過液に合流されて、製造水等として使用される。結晶缶内で濃縮された結晶缶濃縮液は、一部がNaCl結晶を含むスラリー液として結晶缶から排出され、遠心分離器等で脱水されてNaCl結晶が回収される。NF膜透過液は、SO 2-をほとんど含まないため、低エネルギーである膜処理工程S111により、高濃度で濃縮することができる。
<S11: Salt making process>
On the other hand, since the NF membrane permeate contains a large amount of monovalent ions Na + and Cl , in the first step S1, the sodium chloride (NaCl) crystals precipitated by concentrating the NF membrane permeate. The salt-making step S11 is provided. In the salt-making step S11 of the present embodiment, the NF membrane permeate is supplied to the reverse osmosis membrane (RO membrane) unit by a high-pressure pump or the like and water is passed through the RO membrane, so that the membrane is concentrated without permeating the RO membrane. The membrane treatment step S111 for producing a treatment concentrate and the crystallization step S112 for supplying the produced membrane treatment concentrate to a crystal can and heating and evaporating to precipitate NaCl crystals are provided. The vapor discharged from the crystal can is condensed by a condenser or the like to become distilled water, which is merged with the membrane-treated permeate liquid that has permeated the RO membrane and used as production water or the like. The concentrated liquid in the crystal can is partially discharged from the crystal can as a slurry liquid containing NaCl crystals, and dehydrated by a centrifuge or the like to recover the NaCl crystals. Since the NF membrane permeate contains almost no SO 4-2 , it can be concentrated at a high concentration by the low energy membrane treatment step S111.
 膜処理工程S111は、RO膜を用いた処理に限定されず、半透膜を用いる他の処理であってもよく、あるいは、複数の膜処理を組み合わせたものであってもよい。例えば、図3に示すように、膜処理工程S111が、NF膜透過液をRO膜で濃縮してRO膜濃縮液を生成するRO膜濃縮工程S113と、RO膜濃縮液を半透膜でセパレートされた半透膜ユニットの高圧室に供給し、低圧室を通過する回収液との圧力差を利用してRO膜濃縮液を更に濃縮する複合膜処理工程S114とを備えることができる。低圧室に供給される回収液は、高圧室を通過したRO膜濃縮液の一部を利用することができ、低圧室を通過した回収液を、RO膜濃縮工程S113前のNF膜透過液に合流させることができる。また、図3に示すように、膜処理工程S111と結晶化工程S112との間に、膜処理工程S111で生成された膜処理濃縮液を水平管型蒸発器等により蒸発濃縮する蒸発処理工程S115を備えてもよい。 The membrane treatment step S111 is not limited to the treatment using the RO membrane, and may be another treatment using a semipermeable membrane, or may be a combination of a plurality of membrane treatments. For example, as shown in FIG. 3, the membrane treatment step S111 concentrates the NF membrane permeate with the RO membrane to generate the RO membrane concentrate, and the RO membrane concentrate step S113 and the RO membrane concentrate are separated by a semipermeable membrane. It is possible to provide a composite membrane treatment step S114 that supplies the semipermeable membrane unit to the high pressure chamber and further concentrates the RO membrane concentrate by utilizing the pressure difference from the recovered liquid passing through the low pressure chamber. As the recovery liquid supplied to the low pressure chamber, a part of the RO membrane concentrate that has passed through the high pressure chamber can be used, and the recovery liquid that has passed through the low pressure chamber is used as the NF membrane permeate before the RO membrane concentration step S113. Can be merged. Further, as shown in FIG. 3, the evaporation treatment step S115 in which the membrane treatment concentrate produced in the membrane treatment step S111 is evaporated and concentrated by a horizontal tube type evaporator or the like between the membrane treatment step S111 and the crystallization step S112. May be provided.
<S12:合流工程>
 図1に示すように、第1工程S1は、製塩工程S11でNaCl結晶を回収した後のろ液を、上記のNF膜濃縮液に合流させる合流工程S12を備えており、これによって廃液の系外への排出を抑制して、環境負荷の軽減を図ることができる。マグネシウム等の回収対象となるアルカリ土類金属は、NF膜濃縮液だけでなく、NF膜透過液にも含まれているため、上記の合流工程S12を備えることで、第2工程S2での二酸化炭素の固定化に要するアルカリ土類金属の回収率を高めることができる。結晶化工程S112で得られるNaCl結晶の純度を高める観点からは、合流工程S12によりNF膜濃縮液に合流させるろ液の量をなるべく多くすることが好ましい。
<S12: Confluence process>
As shown in FIG. 1, the first step S1 includes a merging step S12 in which the filtrate after collecting the NaCl crystals in the salt making step S11 is merged with the above-mentioned NF membrane concentrate, whereby the waste liquid system is provided. It is possible to reduce the environmental load by suppressing the discharge to the outside. Alkaline earth metals such as magnesium to be recovered are contained not only in the NF membrane concentrate but also in the NF membrane permeate. Therefore, by providing the above-mentioned merging step S12, carbon dioxide in the second step S2 is provided. It is possible to increase the recovery rate of alkaline earth metals required for carbon immobilization. From the viewpoint of increasing the purity of the NaCl crystal obtained in the crystallization step S112, it is preferable to increase the amount of the filtrate to be merged with the NF film concentrate by the merging step S12 as much as possible.
<S13:電気透析工程>
 第1工程S1は、製塩工程S11で生成されたNaCl結晶を電気透析する電気透析工程S13を備える。電気透析工程S13は、例えば、バイポーラ膜電気透析装置を使用することができ、結晶化工程S112で得られたNaCl結晶を水に溶解させた溶液を、HCl溶液とNaOH溶液とに分離する。電気透析は、太陽光エネルギー等の再生可能エネルギーを利用することが好ましく、プロセス全体でのCO排出を抑制することができる。電気透析が行われるNaCl溶液の純度を高めるため、NaCl溶液に含まれるマグネシウムやカルシウム等の不純物をキレート樹脂に吸着させて、これらの濃度を十分軽減することが好ましい(例えば1ppm以下)。
<S13: Electrodialysis process>
The first step S1 includes an electrodialysis step S13 for electrodialyzing the NaCl crystals produced in the salt making step S11. In the electrodialysis step S13, for example, a bipolar membrane electrodialysis apparatus can be used, and the solution obtained by dissolving the NaCl crystals obtained in the crystallization step S112 in water is separated into an HCl solution and a NaOH solution. Electrodialysis preferably utilizes renewable energy such as solar energy and can suppress CO 2 emissions in the entire process. In order to increase the purity of the NaCl solution to which electrodialysis is performed, it is preferable to adsorb impurities such as magnesium and calcium contained in the NaCl solution to the chelate resin to sufficiently reduce their concentrations (for example, 1 ppm or less).
 電気透析工程S13で得られたNaOH溶液は、第2工程S2で添加するアルカリとして好適に使用することができる。電気透析工程S13で生成されるアルカリ溶液が第2工程S2で必要な量のみとなるように、第1工程S1で生成されたNF膜透過液の流路を分岐して、NF膜透過液の一部のみに製塩工程S11を行ってもよい。これによって、アルカリの生成に必要なエネルギー消費を抑制して、プロセス全体でのCO排出の軽減を図ることができる。なお、アルカリの生成には、上記のとおり再生可能エネルギーを利用することが好ましい。製塩工程S11に使用されないNF膜透過液の残部は、淡水化プロセス等の別工程に使用することができ、別工程でも使用されないNF膜透過液は、海洋等に放流してもよい。 The NaOH solution obtained in the electrodialysis step S13 can be suitably used as an alkali to be added in the second step S2. The flow path of the NF membrane permeate produced in the first step S1 is branched so that the amount of the alkaline solution produced in the electrodialysis step S13 is only the amount required in the second step S2. The salt making step S11 may be performed only partially. As a result, the energy consumption required for the production of alkali can be suppressed, and CO 2 emissions in the entire process can be reduced. It is preferable to use renewable energy for the generation of alkali as described above. The remainder of the NF membrane permeate not used in the salt making step S11 can be used in another step such as a desalination process, and the NF membrane permeate not used in the separate step may be discharged into the ocean or the like.
 電気透析工程S13で生成されるアルカリ溶液が第2工程S2で必要な量のみとなるように、第1工程S1は、海水又はかん水の一部をNF膜に通水せずにバイパスさせて、生成量が抑制されたNF膜透過液の一部または全部に対して製塩工程S11を行ってもよい。NF膜をバイパスした海水又はかん水は、NF膜濃縮液に合流した後に、第2工程S2での二酸化炭素の固定化に供することができる。 In the first step S1, a part of seawater or brackish water is bypassed without passing through the NF membrane so that the amount of the alkaline solution produced in the electrodialysis step S13 is only the amount required in the second step S2. The salt-making step S11 may be performed on a part or all of the NF film permeation liquid in which the amount of production is suppressed. The seawater or brine that bypasses the NF membrane can be used for immobilization of carbon dioxide in the second step S2 after merging with the NF membrane concentrate.
<S2:第2工程>
 第2工程S2は、第1工程S1で生成されたNF膜濃縮液にアルカリを添加することにより、NF膜濃縮液のpHをアルカリ側(例えばpH9~10)に調整して貯留槽に貯留し、このNF膜濃縮液に二酸化炭素を含む気体を吹き込んでバブリングにより気液接触させることで、NF膜濃縮液に含まれるアルカリ土類金属に二酸化炭素を反応させて固定化する。二酸化炭素を含む気体は大気でもよく、あるいは、種々の燃焼装置の排気ガス等でもよい。また、該気体中に含まれる二酸化炭素濃度に制限はないが、例えば、気体中に含まれる二酸化炭素濃度は大気~100体積%程度である。アルカリ土類金属および二酸化炭素の反応中のpHを維持するため、NF膜濃縮液へのアルカリの添加は、二酸化炭素を含む気体のバブリング前だけでなく、バブリング中に行ってもよい。バブリングする際には、二酸化炭素のファインバブル(マイクロバブルやウルトラファインバブル等の微細気泡)を吹き込むことで、アルカリ土類金属と二酸化炭素との反応効率を向上させることができる。
<S2: Second step>
In the second step S2, the pH of the NF membrane concentrate is adjusted to the alkaline side (for example, pH 9 to 10) by adding an alkali to the NF membrane concentrate produced in the first step S1 and stored in the storage tank. By blowing a gas containing carbon dioxide into this NF membrane concentrate and bringing it into gas-liquid contact by bubbling, carbon dioxide is reacted with the alkaline earth metal contained in the NF membrane concentrate and immobilized. The gas containing carbon dioxide may be the atmosphere, or may be the exhaust gas of various combustion devices. The concentration of carbon dioxide contained in the gas is not limited, but for example, the concentration of carbon dioxide contained in the gas is about 100% by volume from the atmosphere. In order to maintain the pH during the reaction of alkaline earth metals and carbon dioxide, the addition of alkali to the NF membrane concentrate may be carried out not only before bubbling the gas containing carbon dioxide but also during bubbling. When bubbling, the reaction efficiency between alkaline earth metals and carbon dioxide can be improved by blowing fine bubbles of carbon dioxide (fine bubbles such as microbubbles and ultrafine bubbles).
 NF膜濃縮液と二酸化炭素とを気液接触させる方法は、NF膜濃縮液中にCOガスを吹き込む方法以外に、単段式または多段式の脱硫塔や脱ガス塔等において、COガス中にNF膜濃縮液をスプレーノズルやトレイで散布する方法等であってもよく、反応速度や反応量、排ガス等の気体中のCO濃度等を考慮して、公知の種々の気液接触装置を使用することができる。 The method of gas-liquid contact between the NF membrane concentrate and carbon dioxide is not only the method of blowing CO 2 gas into the NF membrane concentrate, but also the CO 2 gas in a single-stage or multi-stage desulfurization tower, a degassing tower, or the like. A method of spraying the NF film concentrate inside with a spray nozzle or a tray may be used, and various known gas-liquid contacts are taken in consideration of the reaction rate, the reaction amount, the CO 2 concentration in the gas such as exhaust gas, and the like. The device can be used.
 第2工程S2でNF膜濃縮液に添加するアルカリは、上記のとおり電気透析工程S13で得られたNaOH溶液を使用することが好ましく、アルカリを別途生成することに伴うCO排出量の増大を抑制することができる。但し、NF膜濃縮液はもとの液に比べてNa、Kなどの濃度が低減されて、二酸化炭素の固定化が容易であることから、電気透析工程S13で得られたアルカリとは異なるアルカリを使用してもよく、あるいは、電気透析工程S13で得られたアルカリと他のアルカリとを併用してもよい。 As the alkali added to the NF membrane concentrate in the second step S2, it is preferable to use the NaOH solution obtained in the electrodialysis step S13 as described above, and the increase in CO 2 emissions due to the separate generation of the alkali is increased. It can be suppressed. However, the NF membrane concentrate has a lower concentration of Na + , K + , etc. than the original solution, and it is easy to immobilize carbon dioxide. Therefore, what is the alkali obtained in the electrodialysis step S13? Different alkalis may be used, or the alkali obtained in the electrodialysis step S13 may be used in combination with another alkali.
<S3:第3工程>
 第2工程S2を経たNF膜濃縮液は、アルカリ土類金属と二酸化炭素との反応により、MgCOやCaCO等のアルカリ土類金属炭酸化物結晶が析出したスラリー液となる。第3工程S3は、このスラリー液に含まれるアルカリ土類金属炭酸化物結晶を、遠心分離器等の固液分離装置により固液分離して回収する。
<S3: Third step>
The NF film concentrate that has undergone the second step S2 becomes a slurry liquid in which alkaline earth metal carbon dioxide crystals such as MgCO 3 and CaCO 3 are precipitated by the reaction between the alkaline earth metal and carbon dioxide. In the third step S3, the alkaline earth metal charcoal oxide crystals contained in this slurry liquid are separated into solid and liquid by a solid and liquid separating device such as a centrifuge and recovered.
<S31:中和工程>
 第3工程S3は、NF膜濃縮液からアルカリ土類金属炭酸化物結晶を回収した後のろ液を中和する中和工程S31を備える。NF膜濃縮液のろ液は、アルカリの添加により通常はpH9以上となっているため、酸を添加して中和することで(例えばpH7~8)、海洋等の系外にそのまま排出することが可能になる。ろ液に添加する酸は、電気透析工程S13で得られたHCl溶液を使用することが好ましく、酸を別途生成することに伴うCO排出量の増大を抑制することができる。
<S31: Neutralization process>
The third step S3 includes a neutralization step S31 for neutralizing the filtrate after recovering the alkaline earth metal charcoal oxide crystals from the NF film concentrate. Since the filtrate of the NF membrane concentrate is usually pH 9 or higher due to the addition of alkali, it should be discharged as it is to the outside of the system such as the ocean by adding an acid to neutralize it (for example, pH 7 to 8). Will be possible. As the acid added to the filtrate, it is preferable to use the HCl solution obtained in the electrodialysis step S13, and it is possible to suppress an increase in CO 2 emissions associated with the separate generation of the acid.
<S32:水洗工程>
 第3工程S3は、回収したアルカリ土類金属炭酸化物結晶を洗浄水で洗浄することにより、アルカリ土類金属炭酸化物結晶に付着しているNa、K等を洗浄水に溶解させて除去する水洗工程S32を備える。水洗工程S32で使用する洗浄水は、上記の結晶化工程S12で得られた蒸留水を含むことが好ましく、これによって、洗浄水を別途生成することに伴うCO排出量の増大を抑制することができる。本実施形態では、NF膜透過液に蒸留水を合流させた製造水の一部を洗浄水として使用する。
<S32: Washing process>
In the third step S3, the recovered alkaline earth metal charcoal oxide crystals are washed with washing water to dissolve Na + , K + , etc. adhering to the alkaline earth metal charcoal oxide crystals in the washing water and remove them. The water washing step S32 is provided. The washing water used in the washing step S32 preferably contains distilled water obtained in the above crystallization step S12, thereby suppressing an increase in CO 2 emissions associated with the separate generation of washing water. Can be done. In the present embodiment, a part of the produced water obtained by merging distilled water with the NF membrane permeate is used as washing water.
 洗浄後のMgCOやCaCO等のアルカリ土類金属炭酸化物結晶は、コンクリートやセメント等の建築材料として好適に利用することができる。したがって、本発明は、二酸化炭素の固定化方法を用いたアルカリ土類金属炭酸化物塩の製造方法をも提供することができる。 The washed alkaline earth metal charcoal oxide crystals such as MgCO 3 and CaCO 3 can be suitably used as building materials such as concrete and cement. Therefore, the present invention can also provide a method for producing an alkaline earth metal charcoal oxide salt using a method for immobilizing carbon dioxide.
 本実施形態の二酸化炭素の固定化方法は、海水又はかん水に含まれるアルカリ土類金属に対して二酸化炭素を容易に効率良く固定化することができると共に、各工程で生成されるアルカリや酸、蒸留水等を使用して二酸化炭素の固定化を系内で完結させることができるので、プロセス全体での二酸化炭素の排出量を考慮しつつ、二酸化炭素削減能力を高めることができる。 The method for immobilizing carbon dioxide of the present embodiment can easily and efficiently immobilize carbon dioxide with respect to alkaline earth metals contained in seawater or irrigation water, and at the same time, alkalis and acids generated in each step can be used. Since the immobilization of carbon dioxide can be completed in the system by using distilled water or the like, the carbon dioxide reduction capacity can be enhanced while considering the carbon dioxide emissions in the entire process.
<第2の実施形態>
 図4は、本発明の第2の実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。図4に示す第2の実施形態の二酸化炭素の固定化方法は、第1の実施形態と同様に、海水をNF膜に通水することによりNF膜を透過せずに濃縮されたNF膜濃縮液を生成する第1工程S1と、第1工程S1で生成されたNF膜濃縮液にアルカリを添加して、該NF膜濃縮液に含まれるアルカリ土類金属に二酸化炭素を反応させて固定化し、アルカリ土類金属炭酸化物結晶を析出させる第2工程S2と、第2工程S2で析出したアルカリ土類金属炭酸化物結晶をNF膜濃縮液から固液分離して回収する第3工程S3とを備えている。第2の実施形態においても、処理対象を海水としているが、かん水の場合も同様の処理を行うことができ、特に、CaやMgの含有量が多い場合に好適に使用することができる。図4において、図1と同様の工程には同一の符号を付して、詳細な説明を省略する。
<Second embodiment>
FIG. 4 is a processing flow diagram for explaining a method for immobilizing carbon dioxide according to a second embodiment of the present invention. The method for immobilizing carbon dioxide according to the second embodiment shown in FIG. 4 is similar to the first embodiment, in which seawater is passed through the NF membrane to concentrate the NF membrane without permeating the NF membrane. Alkaline is added to the first step S1 to generate the liquid and the NF membrane concentrate produced in the first step S1, and the alkaline earth metal contained in the NF membrane concentrate is reacted with carbon dioxide to be immobilized. The second step S2 for precipitating alkaline earth metal charcoal oxide crystals and the third step S3 for solid-liquid separation and recovery of the alkaline earth metal charcoal oxide crystals precipitated in the second step S2 are performed. I have. In the second embodiment, the treatment target is seawater, but the same treatment can be performed in the case of brackish water, and in particular, it can be preferably used when the content of Ca or Mg is high. In FIG. 4, the same steps as in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
<S21:蒸発濃縮工程>
 図4に示すように、第2工程S2は、NF膜濃縮液に含まれるアルカリ土類金属に二酸化炭素を固定化してアルカリ土類金属炭酸化物結晶が析出したスラリー液を、蒸発缶内で蒸発濃縮することにより、硫酸カルシウム結晶(CaSO・2HO)を析出させる蒸発濃縮工程S21を備える。蒸発濃縮前のスラリー液には、Ca2+、Na、K等が含まれているが、硫酸カルシウム結晶は、温度の上昇に伴い溶解度が減少する逆溶解性を有するため、Ca2+が析出する一方でNa、Kは析出しないように蒸発濃縮の運転温度を維持しながら、NaClやKClが析出しない濃縮倍率まで濃縮する。蒸発濃縮の運転温度は、70~90℃であることが好ましく、例えば80℃に設定される。
<S21: Evaporation concentration step>
As shown in FIG. 4, in the second step S2, the slurry liquid in which carbon dioxide is immobilized on the alkaline earth metal contained in the NF film concentrate and the alkaline earth metal carbon oxide crystals are precipitated is evaporated in the evaporation can. The evaporative concentration step S21 for precipitating calcium sulfate crystals (CaSO 4.2H 2 O) by concentrating is provided. The slurry solution before evaporation and concentration contains Ca 2+ , Na + , K + , etc. However, since calcium sulfate crystals have backsolubility whose solubility decreases as the temperature rises, Ca 2+ is precipitated. On the other hand, Na + and K + are concentrated to a concentration ratio at which NaCl and KCl do not precipitate while maintaining the operating temperature of evaporation concentration so that Na + and K + do not precipitate. The operating temperature for evaporation concentration is preferably 70 to 90 ° C, for example set to 80 ° C.
 蒸発濃縮工程S21においては、硫酸カルシウムのスケール発生を防止するため、スラリー液にCaSO・2HOの種晶を添加して、種晶を核とした結晶成長を促すことが好ましい。この種晶には、蒸発濃縮工程S21で生成されたCaSO・2HOを好ましく使用することができる。 In the evaporation concentration step S21, in order to prevent the generation of scale of calcium sulfate, it is preferable to add a seed crystal of CaSO 4.2H 2 O to the slurry liquid to promote crystal growth centered on the seed crystal. CaSO 4.2H 2 O produced in the evaporation concentration step S21 can be preferably used for this seed crystal.
<S3:第3工程>
 第3工程S3は、第2工程S2で析出したMgCOやCaCO等のアルカリ土類金属炭酸化物結晶および硫酸カルシウム結晶を、固液分離装置によりNF膜濃縮液から固液分離して回収する。回収されたアルカリ土類金属炭酸化物結晶および硫酸カルシウム結晶は、第1の実施形態と同様に水洗工程S32で洗浄水により洗浄される。
<S3: Third step>
In the third step S3, alkaline earth metal carbon oxide crystals such as MgCO 3 and CaCO 3 and calcium sulfate crystals precipitated in the second step S2 are separated from the NF film concentrate by a solid-liquid separator and recovered. .. The recovered alkaline earth metal charcoal oxide crystals and calcium sulfate crystals are washed with washing water in the washing step S32 in the same manner as in the first embodiment.
 第2の実施形態の水洗工程S32は、蒸発濃縮工程S21で生成された蒸留水の一部を洗浄水として使用する。洗浄水は、蒸発濃縮工程S21で生成された蒸留水以外に、製塩工程S11で生成された製造水や、後述する濃縮晶析工程S331で生成された蒸留水を使用してもよい。 In the water washing step S32 of the second embodiment, a part of the distilled water generated in the evaporation concentration step S21 is used as washing water. As the washing water, in addition to the distilled water produced in the evaporation concentration step S21, the production water produced in the salt making step S11 or the distilled water produced in the concentration crystallization step S331 described later may be used.
<S33:結晶回収工程>
 第3工程S3は、NF膜濃縮液からアルカリ土類金属炭酸化物結晶および硫酸カルシウム結晶を回収した後のろ液から、塩化ナトリウム、塩化カリウムおよび硫酸ナトリウムの結晶を析出させて回収する結晶回収工程S33を備える。結晶回収工程S33が行われるろ液は、アルカリ土類金属炭酸化物結晶および硫酸カルシウム結晶を固液分離したろ液の一部のみであることが好ましく、固液分離したろ液の残部は、不純物濃度の増加を抑制するため、中和工程S31を経て系外に排出することが好ましい。
<S33: Crystal recovery process>
The third step S3 is a crystal recovery step of precipitating and recovering sodium chloride, potassium chloride and sodium sulfate crystals from the filtrate after recovering alkaline earth metal charcoal oxide crystals and calcium sulfate crystals from the NF film concentrate. It is equipped with S33. The filtrate in which the crystal recovery step S33 is performed is preferably only a part of the filtrate obtained by solid-liquid separating alkaline earth metal charcoal oxide crystals and calcium sulfate crystals, and the balance of the solid-liquid separated filtrate is impurities. In order to suppress the increase in concentration, it is preferable to discharge the liquid to the outside of the system through the neutralization step S31.
 結晶回収工程S33が行われるろ液には、水洗工程S32でアルカリ土類金属炭酸化物結晶および硫酸カルシウム結晶を洗浄した洗浄水を合流させてもよい。結晶回収工程S33は、ろ液を蒸発濃縮することにより塩化ナトリウム結晶を析出させて回収する濃縮晶析工程S331と、ろ液を冷却晶析することにより析出した結晶を回収する冷却晶析工程S332とを備える。 Washing water obtained by washing alkaline earth metal charcoal oxide crystals and calcium sulfate crystals in the washing step S32 may be combined with the filtrate in which the crystal recovery step S33 is performed. The crystal recovery step S33 includes a concentrated crystallization step S331 that precipitates and recovers sodium chloride crystals by evaporating and concentrating the filtrate, and a cooling crystallization step S332 that recovers the precipitated crystals by cooling crystallization of the filtrate. And.
<S331:濃縮晶析工程>
 濃縮晶析工程S331は、ろ液を蒸発缶に供給して加熱することにより蒸発濃縮し、塩化ナトリウム(NaCl)を主成分とする結晶を析出させた後、固液分離装置により塩化ナトリウム結晶を分離して行われる。蒸発濃縮の運転温度は、60~80℃であることが好ましく、例えば70℃に設定される。
<S3311: Concentrated crystallization step>
In the concentration crystallization step S331, the filtrate is supplied to an evaporative can and heated to evaporate and concentrate to precipitate crystals containing sodium chloride (NaCl) as a main component, and then sodium chloride crystals are produced by a solid-liquid separator. It is done separately. The operating temperature for evaporation concentration is preferably 60 to 80 ° C, for example set to 70 ° C.
<S332:冷却晶析工程>
 冷却晶析工程S332は、濃縮晶析工程S331を経たろ液を冷却晶析缶に供給して、撹拌しながら所定の冷却晶析温度まで冷却することにより、目的となる不純物の結晶を析出させた後、この結晶を固液分離装置により分離して行われる。冷却晶析工程S332は、NF膜濃縮液を冷却晶析することにより塩化カリウム(KCl)を主成分とする結晶を回収する第1の冷却晶析工程S3321と、第1の冷却晶析工程S3321を経たろ液を、第1の冷却晶析工程S3321の冷却晶析温度よりも低温で冷却晶析することにより析出した硫酸ナトリウム結晶(NaSO・10HO)を回収する第2の冷却晶析工程S3322とを備えている。第1の冷却晶析工程S3321の冷却晶析温度は、KClが主体の結晶が析出する一方、NaSO・10HOの結晶が析出しない温度であり、33~40℃であることが好ましく、例えば36℃に設定される。また、第2の冷却晶析工程S3322の冷却晶析温度は、NaSO・10HOの結晶が析出する温度であり、例えば、0~10℃に設定される。
<S332: Cooling crystallization step>
In the cooling crystallization step S332, the filtrate that has undergone the concentrated crystallization step S331 is supplied to the cooling crystallization can and cooled to a predetermined cooling crystallization temperature while stirring to precipitate crystals of the target impurities. After that, the crystals are separated by a solid-liquid separator. The cooling crystallization step S332 includes a first cooling crystallization step S3321 for recovering crystals containing potassium chloride (KCl) as a main component by cooling crystallization of the NF film concentrate, and a first cooling crystallization step S3321. A second method for recovering sodium sulfate crystals (Na 2 SO 4.10H 2 O) precipitated by cooling crystallization of the filtrate that has passed through the above steps at a temperature lower than the cooling crystallization temperature of the first cooling crystallization step S3321. It is provided with a cooling crystallization step S3322. The cooling crystallization temperature of the first cooling crystallization step S3321 is a temperature at which crystals mainly composed of KCl precipitate but crystals of Na 2 SO 4.10H 2 O do not precipitate, and is 33 to 40 ° C. Preferably, it is set to, for example, 36 ° C. The cooling crystallization temperature of the second cooling crystallization step S3322 is a temperature at which crystals of Na 2 SO 4・ 10H 2 O precipitate, and is set to, for example, 0 to 10 ° C.
 結晶回収工程S33を経たろ液はアルカリ性であり、第2工程S2が行われるNF膜濃縮液に一部を合流させることができる。また、結晶回収工程S33を経たろ液の残部は、中和工程S34により、電気透析工程S13で得られたHCl溶液等の酸で中和して、系外に排出することができる。 The filtrate that has passed through the crystal recovery step S33 is alkaline, and a part of the filtrate can be combined with the NF membrane concentrate in which the second step S2 is performed. Further, the remainder of the filtrate that has passed through the crystal recovery step S33 can be neutralized with an acid such as the HCl solution obtained in the electrodialysis step S13 by the neutralization step S34 and discharged to the outside of the system.
 結晶回収工程S33は、濃縮晶析工程S331、第1の冷却晶析工程S3321および第2の冷却晶析工程S3322を全て行う必要はなく、ろ液から塩化ナトリウム、塩化カリウム及び硫酸ナトリウムから選択される少なくとも一種の結晶を析出させて回収できるように、処理対象となる海水又はかん水の成分に応じて必要な工程のみを適宜選択してもよい。 The crystal recovery step S33 does not need to perform all of the concentrated crystallization step S331, the first cooling crystallization step S3321 and the second cooling crystallization step S3322, and is selected from sodium chloride, potassium chloride and sodium sulfate from the filtrate. Only necessary steps may be appropriately selected depending on the components of seawater or brackish water to be treated so that at least one kind of crystal can be precipitated and recovered.
<第1の変形例>
 図5は、図1に示す処理フローの変形例を示す図である。図5に示す二酸化炭素の固定化方法は、図1に示す二酸化炭素の固定化方法の第1工程S1が、蒸発濃縮工程S14および固液分離工程S15を更に備えるものであり、その他の工程は、図1に示す二酸化炭素の固定化方法と同様である。
<First modification>
FIG. 5 is a diagram showing a modified example of the processing flow shown in FIG. In the carbon dioxide fixation method shown in FIG. 5, the first step S1 of the carbon dioxide fixation method shown in FIG. 1 further includes an evaporation concentration step S14 and a solid-liquid separation step S15, and the other steps include. , The same as the carbon dioxide fixation method shown in FIG.
<S14:蒸発濃縮工程>
 蒸発濃縮工程S14は、第2工程S2においてアルカリ土類金属に二酸化炭素を反応させて固定化する前に、NF膜濃縮液を蒸発缶内で蒸発濃縮することにより、硫酸カルシウム結晶を析出させる。蒸発濃縮工程S14は、合流工程S12を行う前のNF膜濃縮液に対して行ってもよいが、合流工程S12によりNF膜濃縮液に合流するろ液には若干のカルシウムが含まれるため、図5に示すように、合流工程S12を経たNF膜濃縮液に対して蒸発濃縮工程S14を行うことが好ましい。蒸発缶のスケール抑止のため、NF膜濃縮液に硫酸カルシウム結晶を種晶として添加することが好ましい。この種晶としては、例えば、後述する固液分離工程S15で回収された硫酸カルシウム結晶を使用することができる。蒸発缶のスケール抑止方法としては、NF膜濃縮液に酸を添加してpH調整することも好ましい。この酸としては、例えば、上記の電気透析工程S13で得られたHCl溶液を使用することができる。蒸発濃縮工程S14で生成された蒸留水は、例えば、第3工程S3の水洗工程S32の洗浄水として利用することができる。
<S14: Evaporation concentration step>
In the evaporation concentration step S14, calcium sulfate crystals are precipitated by evaporating and concentrating the NF film concentrate in the evaporation can before the carbon dioxide is reacted with the alkaline earth metal and immobilized in the second step S2. The evaporative concentration step S14 may be performed on the NF membrane concentrate before the merging step S12, but the filtrate that merges with the NF membrane concentrate in the merging step S12 contains a small amount of calcium. As shown in 5, it is preferable to perform the evaporation concentration step S14 on the NF membrane concentrate that has undergone the merging step S12. In order to suppress the scale of the evaporation can, it is preferable to add calcium sulfate crystals as seed crystals to the NF membrane concentrate. As the seed crystal, for example, calcium sulfate crystals recovered in the solid-liquid separation step S15 described later can be used. As a method for suppressing the scale of the evaporation can, it is also preferable to add an acid to the NF membrane concentrate to adjust the pH. As the acid, for example, the HCl solution obtained in the above electrodialysis step S13 can be used. The distilled water produced in the evaporation concentration step S14 can be used, for example, as the washing water in the washing step S32 of the third step S3.
<S15:固液分離工程>
 固液分離工程S15は、蒸発濃縮工程S14により析出した硫酸カルシウム結晶を、固液分離装置によりNF膜濃縮液から固液分離して回収する。回収した硫酸カルシウム結晶は、例えば石膏として利用することができる。
<S15: Solid-liquid separation step>
In the solid-liquid separation step S15, the calcium sulfate crystals precipitated in the evaporation concentration step S14 are solid-liquid separated from the NF film concentrate by a solid-liquid separation device and recovered. The recovered calcium sulfate crystals can be used, for example, as gypsum.
 上記の蒸発濃縮工程S14および固液分離工程S15を備えることにより、第2工程S2において、以下のメリットが生じる。まず、第2工程S2が行われるNF膜濃縮液の量を低減することができるので、添加するアルカリ(NaOH)の量を低減することができ、電気透析工程S13の消費電力を抑制することができると共に、気液接触を行う貯留槽などの反応槽をコンパクトにすることができる。また、第2工程S2が行われるNF膜濃縮液のアルカリ土類金属の濃度が上昇することにより、二酸化炭素の反応効率が上昇するため、二酸化炭素のバブリング量を低減してバブリングに必要な消費電力を抑制することができる。更に、第2工程S2の前に、NF膜濃縮液からカルシウムが硫酸カルシウム結晶として回収されるため、第2工程S2においてCaCOの析出が抑制され、回収するMgCOの純度を高めることができる。 By providing the above-mentioned evaporation concentration step S14 and solid-liquid separation step S15, the following merits occur in the second step S2. First, since the amount of the NF membrane concentrate in which the second step S2 is performed can be reduced, the amount of alkali (NaOH) to be added can be reduced, and the power consumption of the electrodialysis step S13 can be suppressed. At the same time, it is possible to make a reaction tank such as a storage tank for gas-liquid contact compact. Further, since the reaction efficiency of carbon dioxide increases due to the increase in the concentration of the alkaline earth metal in the NF film concentrate in which the second step S2 is performed, the amount of carbon dioxide bubbling is reduced and the consumption required for bubbling is increased. Power can be suppressed. Further, since calcium is recovered as calcium sulfate crystals from the NF membrane concentrate before the second step S2, the precipitation of CaCO 3 is suppressed in the second step S2, and the purity of the recovered MgCO 3 can be increased. ..
<第2の変形例>
 図5に示す蒸発濃縮工程S14および固液分離工程S15は、図4に示す二酸化炭素の固定化方法に適用することも可能であり、図4に示す第2工程S2の前に蒸発濃縮工程S14および固液分離工程S15を行うことで、上記と同様の効果を奏することができる。この場合、図4に示す蒸発濃縮工程S21は不要であり、第2工程S2を経たNF膜濃縮液は、第3工程S3により固液分離が行われる。図4に示す二酸化炭素の固定化方法が蒸発濃縮工程S14および固液分離工程S15を備えることで、第2工程S2を経たNF膜濃縮液には、CaSOおよびCaCOがほとんど含まれないため、第3工程S3によりMgCOを高純度で回収することができる。
<Second modification>
The evaporation concentration step S14 and the solid-liquid separation step S15 shown in FIG. 5 can also be applied to the carbon dioxide immobilization method shown in FIG. 4, and the evaporation concentration step S14 is before the second step S2 shown in FIG. By performing the solid-liquid separation step S15, the same effect as described above can be obtained. In this case, the evaporation concentration step S21 shown in FIG. 4 is unnecessary, and the NF membrane concentrate that has passed through the second step S2 is solid-liquid separated by the third step S3. Since the carbon dioxide immobilization method shown in FIG. 4 includes an evaporation concentration step S14 and a solid-liquid separation step S15, the NF membrane concentrate that has undergone the second step S2 contains almost no CaSO 4 and CaCO 3 . In the third step S3, MgCO 3 can be recovered with high purity.
S1 第1工程
S11 製塩工程
S111 膜処理工程
S112 結晶化工程
S12 合流工程
S13 電気透析工程
S14 蒸発濃縮工程
S15 固液分離工程
S2 第2工程
S21 蒸発濃縮工程
S3 第3工程
S31 中和工程
S32 水洗工程
S33 結晶回収工程
S331 濃縮晶析工程
S332 冷却晶析工程
S3321 第1の冷却晶析工程
S3322 第2の冷却晶析工程
S34 中和工程
S1 1st step S11 Salt making step S111 Film treatment step S112 Crystallization step S12 Confluence step S13 Electrodialysis step S14 Evaporation concentration step S15 Solid-liquid separation step S2 2nd step S21 Evaporation concentration step S3 3rd step S31 Neutralization step S32 Washing step S33 Crystal recovery step S331 Concentrated crystallization step S332 Cooling crystallization step S3321 First cooling crystallization step S3322 Second cooling crystallization step S34 Neutralization step

Claims (15)

  1.  海水又はかん水をナノろ過膜に通水することにより、前記ナノろ過膜を透過せずに濃縮されたNF膜濃縮液を生成する第1工程と、
     前記第1工程で生成されたNF膜濃縮液にアルカリを添加して、該NF膜濃縮液に含まれるアルカリ土類金属に二酸化炭素を反応させて固定化し、アルカリ土類金属炭酸化物結晶を析出させる第2工程と、
     前記第2工程で析出したアルカリ土類金属炭酸化物結晶をNF膜濃縮液から固液分離して回収する第3工程とを備える二酸化炭素の固定化方法。
    The first step of producing a concentrated NF membrane concentrate without permeating the nanofiltration membrane by passing seawater or brine through the nanofiltration membrane.
    Alkaline is added to the NF film concentrate produced in the first step, and carbon dioxide is reacted with the alkaline earth metal contained in the NF film concentrate to immobilize the NF film concentrate to precipitate alkaline earth metal charcoal oxide crystals. The second step to make it
    A method for immobilizing carbon dioxide, which comprises a third step of solid-liquid separation and recovery of alkaline earth metal charcoal oxide crystals precipitated in the second step from the NF film concentrate.
  2.  前記第1工程は、前記ナノろ過膜を透過したNF膜透過液を濃縮して析出した塩化ナトリウム結晶を回収する製塩工程と、前記製塩工程で回収された塩化ナトリウム結晶の溶液を電気透析することにより酸溶液およびアルカリ溶液を分離する電気透析工程とを備え、
     前記第2工程は、前記電気透析工程で得られたアルカリ溶液をNF膜濃縮液に添加する請求項1に記載の二酸化炭素の固定化方法。
    The first step is a salt-making step of concentrating the NF membrane permeate that has permeated the nanofiltration membrane to recover the precipitated sodium chloride crystals, and electrodialysis of the solution of the sodium chloride crystals recovered in the salt-making step. Equipped with an electrodialysis step to separate acid and alkaline solutions by
    The method for immobilizing carbon dioxide according to claim 1, wherein the second step is to add the alkaline solution obtained in the electrodialysis step to the NF membrane concentrate.
  3.  前記第1工程は、NF膜透過液の一部のみに前記製塩工程を行うことにより、前記電気透析工程で生成されるアルカリ溶液を前記第2工程で必要な量のみとする請求項2に記載の二酸化炭素の固定化方法。 The second aspect of claim 2, wherein in the first step, only a part of the NF membrane permeate is subjected to the salt-making step, so that the amount of the alkaline solution produced in the electrodialysis step is limited to the amount required in the second step. Carbon dioxide immobilization method.
  4.  前記第1工程は、海水又はかん水の一部を前記ナノろ過膜に通水せずにバイパスさせて前記製塩工程を行うことにより、前記電気透析工程で生成されるアルカリ溶液を前記第2工程で必要な量のみとする請求項2にまたは3に記載の二酸化炭素の固定化方法。 In the first step, the alkaline solution produced in the electrodialysis step is obtained in the second step by bypassing a part of seawater or brackish water without passing it through the nanofiltration membrane and performing the salt making step. The method for immobilizing carbon dioxide according to claim 2 or 3, wherein only the required amount is used.
  5.  前記第3工程は、NF膜濃縮液からアルカリ土類金属炭酸化物結晶を回収後のろ液を、前記電気透析工程で得られた酸溶液で中和する中和工程を備える請求項2から4のいずれかに記載の二酸化炭素の固定化方法。 The third step includes a neutralization step of neutralizing the filtrate after recovering the alkaline earth metal charcoal oxide crystal from the NF membrane concentrate with the acid solution obtained in the electrodialysis step, according to claims 2 to 4. The method for immobilizing carbonic acid according to any one of the above.
  6.  前記製塩工程は、NF膜透過液を逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された膜処理濃縮液を生成する膜処理工程と、前記膜処理工程で生成された膜処理濃縮液を加熱蒸発して塩化ナトリウム結晶を析出させる結晶化工程とを備え、
     前記第3工程は、回収したアルカリ土類金属炭酸化物結晶を、前記結晶化工程で得られた蒸留水を含む洗浄水により洗浄する水洗工程を備える請求項2から5のいずれかに記載の二酸化炭素の固定化方法。
    The salt-making step is a membrane treatment step of producing a concentrated membrane treatment concentrate without permeating the reverse osmosis membrane by passing water through the reverse osmosis membrane, and a membrane treatment step. It is provided with a crystallization step of heating and evaporating the prepared membrane treatment concentrate to precipitate sodium chloride crystals.
    The dioxide according to any one of claims 2 to 5, wherein the third step comprises a washing step of washing the recovered alkaline earth metal charcoal oxide crystals with washing water containing distilled water obtained in the crystallization step. Carbon immobilization method.
  7.  前記第2工程は、アルカリ土類金属炭酸化物結晶が析出したNF膜濃縮液を蒸発濃縮することにより、硫酸カルシウム結晶を析出させる蒸発濃縮工程を備え、
     前記第3工程は、前記第2工程で析出したアルカリ土類金属炭酸化物結晶および硫酸カルシウム結晶をNF膜濃縮液から固液分離して回収する請求項1または2に記載の二酸化炭素の固定化方法。
    The second step includes an evaporative concentration step of precipitating calcium sulfate crystals by evaporating and concentrating the NF film concentrate in which alkaline earth metal carbon oxide crystals are precipitated.
    The carbon dioxide immobilization according to claim 1 or 2, wherein in the third step, the alkaline earth metal charcoal oxide crystals and calcium sulfate crystals precipitated in the second step are separated from the NF film concentrate by solid and liquid and recovered. Method.
  8.  前記第3工程は、NF膜濃縮液からアルカリ土類金属炭酸化物結晶および硫酸カルシウム結晶を回収した後のろ液から、塩化ナトリウム、塩化カリウムおよび硫酸ナトリウムの少なくとも一種の結晶を析出させて回収する結晶回収工程を備える請求項7に記載の二酸化炭素の固定化方法。 In the third step, at least one crystal of sodium chloride, potassium chloride and sodium sulfate is precipitated and recovered from the filtrate after collecting alkaline earth metal charcoal oxide crystals and calcium sulfate crystals from the NF membrane concentrate. The method for immobilizing carbon dioxide according to claim 7, further comprising a crystal recovery step.
  9.  前記結晶回収工程は、ろ液を蒸発濃縮することにより塩化ナトリウム結晶を析出させて回収する濃縮晶析工程を備える請求項8に記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to claim 8, wherein the crystal recovery step comprises a concentrated crystallization step of precipitating and recovering sodium chloride crystals by evaporating and concentrating the filtrate.
  10.  前記結晶回収工程は、ろ液を冷却晶析することにより析出した結晶を回収する冷却晶析工程を備える請求項8または9に記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to claim 8 or 9, wherein the crystal recovery step comprises a cooling crystallization step of recovering the crystals precipitated by cooling crystallization of the filtrate.
  11.  前記冷却晶析工程は、ろ液を冷却晶析することにより析出した塩化カリウム結晶を回収する第1の冷却晶析工程と、前記第1の冷却晶析工程を経たろ液を前記第1の冷却晶析工程の冷却晶析温度よりも低温で冷却晶析することにより析出した硫酸ナトリウム結晶を回収する第2の冷却晶析工程とを備える請求項10に記載の二酸化炭素の固定化方法。 In the cooling crystallization step, the first cooling crystallization step of recovering the potassium chloride crystals precipitated by the cooling crystallization of the filtrate and the first cooling crystallization step of the filtrate having undergone the first cooling crystallization step. The method for immobilizing carbon dioxide according to claim 10, further comprising a second cooling crystallization step of recovering the sodium sulfate crystals precipitated by cooling crystallization at a temperature lower than the cooling crystallization temperature of the cooling crystallization step.
  12.  前記結晶回収工程は、結晶回収後のろ液の一部を前記第2工程が行われるNF膜濃縮液に合流させ、結晶回収後のろ液の残部を中和する工程を備える請求項8から11のいずれかに記載の二酸化炭素の固定化方法。 The crystal recovery step includes a step of merging a part of the filtrate after crystal recovery with the NF membrane concentrate in which the second step is performed to neutralize the balance of the filtrate after crystal recovery according to claim 8. 11. The method for immobilizing carbon dioxide according to any one of 11.
  13.  前記第3工程は、回収したアルカリ土類金属炭酸化物結晶および硫酸カルシウム結晶を洗浄した洗浄水をろ液に合流させて、前記結晶回収工程を行う請求項8から12のいずれかに記載の二酸化炭素の固定化方法。 The dioxide according to any one of claims 8 to 12, wherein in the third step, washing water obtained by washing the recovered alkaline earth metal charcoal oxide crystals and calcium sulfate crystals is combined with a filtrate to carry out the crystal recovery step. Carbon immobilization method.
  14.  前記洗浄水は、前記蒸発濃縮工程で生成された蒸留水を含む請求項13に記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to claim 13, wherein the washing water contains distilled water produced in the evaporation concentration step.
  15.  前記第1工程は、前記ナノろ過膜を透過せずに濃縮されたNF膜濃縮液を蒸発濃縮することにより硫酸カルシウム結晶を析出させる蒸発濃縮工程と、前記蒸発濃縮工程により析出した硫酸カルシウム結晶をNF膜濃縮液から固液分離して回収する固液分離工程とを備える請求項1または2に記載の二酸化炭素の固定化方法。 The first step is an evaporation concentration step of precipitating calcium sulfate crystals by evaporating and concentrating an NF membrane concentrate that has been concentrated without permeating the nanofiltration membrane, and a calcium sulfate crystals precipitated by the evaporation concentration step. The method for immobilizing carbon dioxide according to claim 1 or 2, further comprising a solid-liquid separation step of solid-liquid separation and recovery from the NF membrane concentrate.
PCT/JP2021/028899 2020-08-05 2021-08-04 Method for fixing carbon dioxide WO2022030529A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022541582A JPWO2022030529A1 (en) 2020-08-05 2021-08-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-132855 2020-08-05
JP2020132855 2020-08-05

Publications (1)

Publication Number Publication Date
WO2022030529A1 true WO2022030529A1 (en) 2022-02-10

Family

ID=80117384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028899 WO2022030529A1 (en) 2020-08-05 2021-08-04 Method for fixing carbon dioxide

Country Status (2)

Country Link
JP (1) JPWO2022030529A1 (en)
WO (1) WO2022030529A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140055A1 (en) * 2022-01-24 2023-07-27 学校法人早稲田大学 Method for fixing carbon dioxide
WO2024003575A1 (en) 2022-06-30 2024-01-04 Hydrophis Gas Ltd Process for sequestration of carbon dioxide and minerals from industrial waste products
WO2024080132A1 (en) * 2022-10-12 2024-04-18 学校法人早稲田大学 Method for fixing carbon dioxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219090A1 (en) * 2003-05-02 2004-11-04 Daniel Dziedzic Sequestration of carbon dioxide
JP2005097072A (en) * 2003-08-18 2005-04-14 Research Institute Of Innovative Technology For The Earth Method for fixing carbon dioxide
JP2012505145A (en) * 2008-10-08 2012-03-01 エクスパンション エナジー, エルエルシー Carbon capture and sequestration system and method
JP2015513444A (en) * 2012-02-03 2015-05-14 オムヤ インターナショナル アーゲー Method for preparing an aqueous solution comprising at least one alkaline earth metal bicarbonate and use of the aqueous solution
JP2015529156A (en) * 2012-09-04 2015-10-05 ブルー プラネット,エルティーディー. Carbon sequestration method and system and composition produced thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219090A1 (en) * 2003-05-02 2004-11-04 Daniel Dziedzic Sequestration of carbon dioxide
JP2005097072A (en) * 2003-08-18 2005-04-14 Research Institute Of Innovative Technology For The Earth Method for fixing carbon dioxide
JP2012505145A (en) * 2008-10-08 2012-03-01 エクスパンション エナジー, エルエルシー Carbon capture and sequestration system and method
JP2015513444A (en) * 2012-02-03 2015-05-14 オムヤ インターナショナル アーゲー Method for preparing an aqueous solution comprising at least one alkaline earth metal bicarbonate and use of the aqueous solution
JP2015529156A (en) * 2012-09-04 2015-10-05 ブルー プラネット,エルティーディー. Carbon sequestration method and system and composition produced thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140055A1 (en) * 2022-01-24 2023-07-27 学校法人早稲田大学 Method for fixing carbon dioxide
WO2024003575A1 (en) 2022-06-30 2024-01-04 Hydrophis Gas Ltd Process for sequestration of carbon dioxide and minerals from industrial waste products
WO2024080132A1 (en) * 2022-10-12 2024-04-18 学校法人早稲田大学 Method for fixing carbon dioxide

Also Published As

Publication number Publication date
JPWO2022030529A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
WO2022030529A1 (en) Method for fixing carbon dioxide
Mavukkandy et al. Brine management in desalination industry: From waste to resources generation
CN111484178B (en) Comprehensive treatment method for seawater or strong brine
US8221629B2 (en) Solvent removal process
KR101749159B1 (en) Forward osmosis separation processes
AU2005285052B2 (en) Water desalination process and apparatus
US9044711B2 (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
US8753514B2 (en) Osmotic desalination process
US11180397B2 (en) Salt production from wastewater
JP5495403B2 (en) Concentration plant, concentrated water production power plant, concentration method, and operation method of concentrated water production plant
US9822021B2 (en) Forward osmosis separation processes
JP2009095821A (en) Method of treating salt water
JP2008223115A (en) Method for treating salt water
CN115135938A (en) System and method for direct extraction of lithium from geothermal brine and production of low carbon strength lithium chemicals
KR101672224B1 (en) Desalinatation system of sea water for producing carbonate and removing carbon dioxide
JP2011006275A (en) Method and apparatus for producing lithium carbonate
WO2021261410A1 (en) Method for fixing carbon dioxide
WO2016160810A1 (en) Osmotic separation systems and methods
Ramasamy Short review of salt recovery from reverse osmosis rejects
WO2023140055A1 (en) Method for fixing carbon dioxide
WO2024080132A1 (en) Method for fixing carbon dioxide
CN111362490A (en) Desulfurization wastewater treatment method and system
US20240123400A1 (en) Systems and methods for integrated direct air carbon dioxide capture and desalination mineral recovery
CN214829617U (en) Steel wet desulphurization wastewater treatment system
CN108726755B (en) Treatment method of catalyst production wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541582

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21854063

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 523442045

Country of ref document: SA