WO2021261410A1 - Method for fixing carbon dioxide - Google Patents

Method for fixing carbon dioxide Download PDF

Info

Publication number
WO2021261410A1
WO2021261410A1 PCT/JP2021/023286 JP2021023286W WO2021261410A1 WO 2021261410 A1 WO2021261410 A1 WO 2021261410A1 JP 2021023286 W JP2021023286 W JP 2021023286W WO 2021261410 A1 WO2021261410 A1 WO 2021261410A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
membrane
crystals
concentrate
cooling crystallization
Prior art date
Application number
PCT/JP2021/023286
Other languages
French (fr)
Japanese (ja)
Inventor
隆雄 中垣
コーリ アダム マイヤズ
翔 藤本
良彦 加藤
悟 平野
和彦 石田
基頼 早水
恵理 鈴木
慶明 三保
Original Assignee
学校法人早稲田大学
日揮グローバル株式会社
株式会社ササクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, 日揮グローバル株式会社, 株式会社ササクラ filed Critical 学校法人早稲田大学
Priority to JP2022531952A priority Critical patent/JPWO2021261410A1/ja
Priority to AU2021295775A priority patent/AU2021295775A1/en
Publication of WO2021261410A1 publication Critical patent/WO2021261410A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention provides a method for immobilizing carbon dioxide on an alkaline earth metal, which enhances the carbon dioxide reduction capacity while considering the amount of carbon dioxide emissions.
  • the second step includes a cooling crystallization step of recovering the precipitated crystals by cooling crystallization of the NF membrane concentrate.
  • a first cooling crystallization step for recovering the potassium chloride crystals precipitated by cooling crystallization of the NF film concentrate and an NF film concentrate that has undergone the first cooling crystallization step are used.
  • the first step includes a salt-making step of concentrating the NF membrane permeate that has permeated the nanofiltration membrane and recovering the precipitated sodium chloride crystals. It is preferable that the first step includes a merging step of merging the produced NF membrane concentrate with the blow liquid after the sodium chloride crystals are recovered in the salt-making step.
  • the first step is a pH adjusting step of adding an acid solution obtained by electrodialysis of a solution of sodium chloride crystals produced in the salt-making step to the produced NF membrane concentrate to adjust the pH. It is preferable to prepare.
  • the alkaline earth metal oxide obtained in the third step preferably contains magnesium oxide.
  • the method for immobilizing carbon dioxide of the present invention provides a method for immobilizing carbon dioxide with respect to alkaline earth metals contained in seawater or brine.
  • alkaline earth metal means a broad range including Mg and Be, which are elements of Group 2 of the periodic table, in addition to Ca, Sr, Ba, and Ra.
  • Mg and Be which are elements of Group 2 of the periodic table, in addition to Ca, Sr, Ba, and Ra.
  • seawater or brine is an aqueous solution containing ions of an alkaline earth metal such as magnesium ion (Mg 2+ ) and calcium ion (Ca 2+).
  • Seawater or brine contains ions that make up at least one crystal selected from calcium sulfate, sodium chloride, potassium chloride and sodium sulfate, in addition to the ions of alkaline earth metals.
  • sea water or brine is chloride ion (Cl -), sulfate ion (SO 4 2-), sodium ion (Na +), at least one ion selected from potassium (K +) There is.
  • seawater or brackish water those obtained from at least one selected from seawater, salt lakes, and industrial wastewater can be used.
  • seawater, salt lakes and industrial wastewater river water, rainwater, treated sewage water, and accompanying water from oil and gas fields can also be used as long as alkaline earth metals are contained.
  • irrigation irrigation using salt lakes, waste liquid irrigation discharged by desalination and salt formation processes, recovery of valuable resources using seawater and salt lakes, collection of valuable resources from chemical factories, etc. Examples include industrial wastewater.
  • brackish water is obtained from brackish water obtained from a desalination device using seawater and a process of producing salt from seawater. It is preferably at least one selected from brackish water and brackish water obtained from the process of recovering lithium from a salt lake.
  • FIG. 1 is a processing flow chart for explaining a method for immobilizing carbon dioxide according to an embodiment of the present invention.
  • the treatment target is seawater, but the same treatment can be performed in the case of brackish water.
  • seawater is passed through a nanofiltration membrane (NF membrane) to obtain a concentrated NF membrane concentrate without permeating the NF membrane.
  • Carbon dioxide is reacted with the alkaline earth metal oxide obtained in the third step S3 and the third step S3 to obtain the alkaline earth metal oxide from the S2 and the NF film concentrate obtained through the second step S2. It is provided with a fourth step S4 for fixing carbon dioxide as a carbonate.
  • ⁇ S1 First step>
  • seawater was supplied to the NF membrane unit by a medium pressure pump or the like and passed through the NF membrane to concentrate the NF membrane permeable liquid that had permeated the NF membrane and the NF membrane without permeating the NF membrane. Produces an NF membrane concentrate.
  • the NF membrane concentrate contains alkaline earth metals that are the targets of carbon dioxide immobilization. As much remains, the concentrations of Na + , K +, etc. that may interfere with this immobilization are reduced. Therefore, it is possible to easily and efficiently immobilize carbon dioxide on alkaline earth metals contained in seawater (or brackish water), and it is possible to suppress the generation of carbon dioxide in the entire process including the post-process. ..
  • FIG. 2 shows an example of various ion amounts (mg / h) contained in seawater, NF membrane permeate and NF membrane concentrate when seawater is supplied at a flow rate of 100 m 3 / h.
  • the first step S1 of the present embodiment is the sodium chloride precipitated by concentrating the NF membrane permeate.
  • NaCl The salt making step S11 for recovering crystals is provided.
  • the NF membrane permeate is supplied to the reverse osmosis membrane (RO membrane) unit by a high-pressure pump or the like and water is passed through the RO membrane, so that the membrane is concentrated without permeating the RO membrane.
  • RO membrane reverse osmosis membrane
  • the membrane treatment step S111 for producing a treatment concentrate and the crystallization step S112 for supplying the produced membrane treatment concentrate to a crystal can and heating and evaporating to precipitate NaCl crystals are provided.
  • the vapor discharged from the crystal can is condensed by a condenser or the like to become distilled water, which is merged with the membrane-treated permeate liquid that has permeated the RO membrane and used as production water or the like.
  • the crystal can concentrate concentrated in the crystal can is partially discharged from the crystal can as a slurry liquid containing NaCl crystals, and is dehydrated by a centrifuge or the like to recover the NaCl crystals.
  • NF membrane permeate since it does not contain SO 4 2-most, by membrane treatment step S111 is a low energy, can be concentrated at a high concentration.
  • the membrane treatment step S111 is not limited to the treatment using the RO membrane, and may be another treatment using a semipermeable membrane, or may be a combination of a plurality of membrane treatments.
  • the membrane treatment step S111 concentrates the NF membrane permeate with the RO membrane to generate the RO membrane concentrate, and the RO membrane concentrate step S113 and the RO membrane concentrate are separated by a semipermeable membrane.
  • the recovery liquid supplied to the low pressure chamber As the recovery liquid supplied to the low pressure chamber, a part of the RO membrane concentrate that has passed through the high pressure chamber can be used, and the recovery liquid that has passed through the low pressure chamber is used as the NF membrane permeate before the RO membrane concentration step S113. Can be merged. Further, as shown in FIG. 3, the evaporation treatment step S115 in which the membrane treatment concentrate produced in the membrane treatment step S111 is evaporated and concentrated by a horizontal tube type evaporator or the like between the membrane treatment step S111 and the crystallization step S112. May be provided.
  • the liquid after recovering the NaCl crystals in the salt-making step S11 is discharged as a blow liquid.
  • the first step S1 of the present embodiment includes a merging step S12 for merging the blow liquid with the above-mentioned NF membrane concentrate, thereby suppressing the discharge of the waste liquid to the outside of the system and reducing the environmental load.
  • Alkaline earth metals such as magnesium to be recovered are contained not only in the NF film concentrate but also in the blow liquid which is the NF film permeation liquid. It is possible to increase the recovery rate of alkaline earth metals required for immobilization of carbon dioxide.
  • the first step S1 of the present embodiment includes a pH adjusting step S13 for adjusting the pH of the NF membrane concentrate to which the blow liquid is merged in the merging step S12.
  • the pH adjusting step S13 is a step of adding a pH adjusting agent such as hydrochloric acid (HCl) to the NF membrane concentrate to bring the pH value of the NF membrane concentrate to the acidic side, whereby the second step S2 described later is performed.
  • HCl hydrochloric acid
  • the formation of soft scales such as magnesium hydroxide (Mg (OH) 2 ) and calcium carbonate (CaCO 3) can be suppressed.
  • the pH value of the NF membrane concentrate after pH adjustment is preferably 3.5 to 6.5.
  • the pH adjusting step S13 includes an electrodialysis step S131 for electrodialyzing the NaCl crystals produced in the salt making step S11, so that the HCl produced in the electrodialysis step S131 can be used as a pH adjusting agent.
  • the electrodialysis step S131 for example, a bipolar membrane electrodialysis apparatus can be used, and the NaCl solution is separated into the HCl solution and the NaOH solution.
  • ⁇ S2 Second step>
  • impurities that hinder the immobilization of carbon dioxide on the alkaline earth metal described later are removed from the NF film concentrate produced in the first step S1, and the alkali in the third step S3 is removed.
  • This is a step that facilitates the isolation of earth metal oxides.
  • the second step S2 is the first concentrated crystallization step S21 for precipitating and recovering calcium sulfate crystals by adding calcium sulfate as a seed crystal to the NF membrane concentrate and evaporating and concentrating, and recovering the calcium sulfate crystals.
  • the second concentrated crystallization step S22 in which sodium chloride crystals are precipitated and recovered by further evaporating and concentrating the NF film concentrate, and the crystals precipitated by cooling crystallization of the NF film concentrate are recovered.
  • the cooling crystallization step S23 is provided.
  • First concentration crystallization step S21 is concentrated by evaporation by heating by supplying a NF membrane concentrate to a first concentration can, after precipitating the calcium sulfate crystals (CaSO 4 ⁇ 2H 2 O) , Slurry It is discharged as a liquid, and calcium sulfate crystals are separated by a solid-liquid separator such as a centrifuge.
  • the NF membrane concentrate contains Ca 2+ , Na + , K +, etc., but calcium sulfate crystals have back-solubility, which decreases in solubility as the temperature rises, so that Ca 2+ is deposited.
  • the operating temperature of evaporation concentration is maintained so that Na + and K + do not precipitate. This operating temperature is preferably 70 to 90 ° C, for example set to 80 ° C.
  • the NF membrane concentrate that has undergone the first concentrated crystallization step S21 is supplied to the second concentrated can and heated to further evaporate and concentrate, mainly containing sodium chloride (NaCl). After precipitating the crystals as components, the sodium chloride crystals are separated by a solid-liquid separator.
  • the operating temperature for evaporation concentration is preferably 60 to 80 ° C, for example set to 70 ° C.
  • the concentration ratio in the second concentration crystallization step S22 is within the range in which MgCl 2 does not precipitate so that the recovery rate of the alkaline earth metal oxide mainly composed of magnesium oxide can be increased in the third step S3 described later. It is preferable to set to.
  • Cooling crystallization step> the NF film concentrate that has undergone the second concentration crystallization step S22 is supplied to the cooling crystallization can and cooled to a predetermined cooling crystallization temperature while stirring to obtain the desired impurities. After precipitating the crystals of, the crystals are separated by a solid-liquid separator.
  • the cooling crystallization step S23 of the present embodiment has undergone a first cooling crystallization step S231 for recovering the potassium chloride crystals precipitated by cooling crystallization of the NF film concentrate and a first cooling crystallization step S231.
  • a second cooling crystallization step S232 for recovering the sodium sulfate crystals precipitated by cooling crystallization of the NF film concentrate at a temperature lower than the cooling crystallization temperature of the first cooling crystallization step S231.
  • Cooling crystallization temperature of the first cooling crystallization step S231 while KCl crystals of entities are deposited, a temperature not crystals precipitated in Na 2 SO 4 ⁇ 10H 2 O , to be 33 ⁇ 40 ° C.
  • it is set to, for example, 36 ° C.
  • the cooling crystallization temperature of the second cooling crystallization step S232 is a temperature at which crystals of Na 2 SO 4 ⁇ 10H 2 O precipitate, and is set to, for example, 0 to 10 ° C.
  • the NF membrane concentrate that has undergone the first concentrated crystallization step S21, the second concentrated crystallization step S22, and the cooling crystallization step S23 is a brine containing an alkaline earth metal chloride such as MgCl 2 as a main component. be.
  • the second step S2 it is not necessary to perform all of the first concentrated crystallization step S21, the second concentrated crystallization step S22 and the cooling crystallization step S23, and calcium sulfate, sodium chloride, potassium chloride and the like from the NF membrane concentrate are used. Only necessary steps may be appropriately selected depending on the components of seawater or brackish water to be treated so that at least one kind of crystal selected from sodium sulfate can be precipitated and recovered.
  • the third step S3 is a step of obtaining an alkaline earth metal oxide from the brine containing an alkaline earth metal chloride such as MgCl 2 obtained in the second step S2 as a main component, and is a drying step S31 and thermal decomposition.
  • the process S32 is provided.
  • the brine obtained in the second step S2 of the present embodiment is a slurry containing magnesium chloride (MgCl 2 ) hydrate as a main component, and is dried in the drying step S31 to obtain magnesium chloride dihydrate (Mgnesium chloride dihydrate (MgCl 2) hydrate. MgCl 2 ⁇ 2H 2 O) to become. Drying temperature in the drying step S31, to the generation of MgCl 2 ⁇ 2H 2 O, preferably at atmospheric pressure is at 130 ° C. or less, more preferably at 100 ⁇ 129 ° C.
  • ⁇ S32 Pyrolysis process> Pyrolysis step step S32, at least a portion of the MgCl 2 ⁇ 2H 2 O produced in the drying step S31 the thermally decomposed to produce the hydroxy magnesium chloride (MgOHCl), further dehydrochlorination by thermally decomposing MgOHCl Generates magnesium oxide (MgO).
  • the thermal decomposition temperature of the thermal decomposition step S32 is preferably 235 ° C. or lower, more preferably 160 to 235 ° C., under atmospheric pressure with respect to the formation of MgOHCl. The temperature can be further lowered by lowering the pressure below the atmospheric pressure. Further, for the formation of MgO, the temperature is preferably 300 to 500 ° C, more preferably 350 to 450 ° C under atmospheric pressure. The temperature can be further lowered by lowering the pressure below the atmospheric pressure.
  • the thermal decomposition step S32 since HCl gas is discharged when MgO is generated, the HCl gas may be recovered and reused.
  • This HCl gas can be used, for example, as a pH adjuster in the above pH adjusting step S13, thereby avoiding CO 2 emissions due to the separate production of HCl.
  • the fourth step S4 is a step of reacting carbon dioxide with an alkaline earth metal oxide such as MgO obtained in the third step S3 to fix carbon dioxide as a carbonate.
  • Carbon dioxide is immobilized on the alkaline earth metal oxide by a solid-gas reaction between the alkaline earth metal oxide and a gas containing carbon dioxide.
  • the gas containing carbon dioxide may be the atmosphere, or may be the exhaust gas of various combustion devices.
  • the concentration of carbon dioxide contained in the gas is not limited, but the concentration of carbon dioxide contained in the gas is about 100% by volume from the atmosphere from the viewpoint of the ease of progress of the solid-gas reaction.
  • the CO 2 is reacted to MgO, is a magnesium carbonate trihydrate (MgCO 3 ⁇ 3H 2 O)
  • carbon dioxide is immobilized.
  • the method for fixing carbon dioxide as a carbonate in the fourth step S4 is not limited to the above method, and for example, the alkaline earth metal oxide such as MgO obtained in the third step S3 is dissolved in water. It is also possible to generate an aqueous solution and bring carbon dioxide into gas-liquid contact with the aqueous solution by bubbling or the like to immobilize carbon dioxide on the alkaline earth metal oxide.
  • seawater or brine is an aqueous solution containing a plurality of ions as described above
  • water (pure water), salt, gypsum, potassium chloride and the like can be obtained as by-products in each of the above steps. Therefore , in addition to CO 2 immobilization, various by-products are produced, and it can be expected that these will be used in more environmentally friendly products.
  • the present invention can use the waste liquid as the brackish water as described above, it can be used as the waste liquid treatment, and it is considered that the present invention also contributes to the reduction of the waste liquid treatment cost.
  • magnesium carbonate on which carbon dioxide is immobilized can also be used as a building material. Therefore, the present invention can also provide a method for producing an alkaline earth metal carbonate using the above-mentioned method for immobilizing carbon dioxide.

Abstract

This method for fixing carbon dioxide comprises: a first step S1 for passing seawater or saline water through a nanofiltration membrane to produce an NF membrane concentrated liquid that is concentrated without permeating the nanofiltration membrane; a second step S2 for precipitating and collecting, from the NF membrane concentrated liquid produced in the first step S1, at least one crystal, which is selected from among calcium sulfate, sodium chloride, potassium chloride, and sodium sulfate; a third step S3 for obtaining an alkaline earth metal oxide from the NF membrane concentrated liquid that has undergone the second step S2; and a fourth step S4 for reacting carbon dioxide with the alkaline earth metal oxide obtained in the third step S3, and thereby fixing the carbon dioxide as carbonate.

Description

二酸化炭素の固定化方法Carbon dioxide immobilization method
 本発明は、アルカリ土類金属への二酸化炭素の固定化方法に関する。 The present invention relates to a method for immobilizing carbon dioxide on an alkaline earth metal.
 地球温暖化の深刻化に伴い気温上昇を抑制することが求められており、その評価モデルとして人為的二酸化炭素(CO)排出量をゼロにすることが目標となっている。上記目標を達成するための手段として、CO固定化方法が挙げられる。
 CO固定化方法の有効な手段として、アルカリ土類金属であるMgやCaを利用して、これらアルカリ土類金属とCOを結合させて固定化する方法が挙げられる。しかし、アルカリ土類金属を含む鉱石を利用する従来の方法は、高温高圧や薬品添加といったCO排出と結びつく処理を必要とするため、プロセス全体でCO排出となるケースが多い。
 またMgやCaは、海水及び海水の淡水化プラントからの廃液かん水等にも含まれており、例えば海水を利用したCO固定化方法が提案されている(例えば、特許文献1及び2参照)。
As global warming becomes more serious, it is required to suppress the temperature rise, and the goal is to reduce anthropogenic carbon dioxide (CO 2) emissions to zero as an evaluation model. As a means for achieving the above-mentioned goal, a CO 2 immobilization method can be mentioned.
As an effective means of the CO 2 immobilization method, there is a method of using the alkaline earth metals Mg and Ca to bond and immobilize these alkaline earth metals and CO 2. However, the conventional method using ore containing alkaline earth metal requires a treatment linked to CO 2 emission such as high temperature and high pressure and addition of chemicals, so that CO 2 emission is often generated in the entire process.
In addition, Mg and Ca are also contained in seawater and waste liquid irrigation from seawater desalination plants, and for example, a CO 2 immobilization method using seawater has been proposed (see, for example, Patent Documents 1 and 2). ..
特開2005-21870号公報Japanese Unexamined Patent Publication No. 2005-21870 特開2010-125354号公報Japanese Unexamined Patent Publication No. 2010-12354
 海水又はかん水を利用するCO固定化方法では、海水又はかん水へのCO吹込みによる方法が多く検討されてきたが、イオン径の小さな2価の陽イオンであるMg2+イオン周りに形成される強固な水和殻と、炭酸塩化を競合するカチオン(Na+、K+)の存在が原因で、液相内でのCO固定化の効率が低下するといった問題がある。その解決策として、Ca(OH)等のリサイクルが困難なアルカリ添加によるpHを上昇させる手段を用いることが主流であった。しかし、COとの反応を促進させるためのこれらの手段は、エネルギー消費やライフサイクルアセスメントとしての添加物生産に起因するCO排出を考慮すると、プロセス全体でCO排出がプラスとなってしまう。
 特許文献1及び2の技術でも、pH調整や廃水処理等が必要となりプロセス全体としてCOの排出量をマイナスとすることは困難である。
 上述のように海水又はかん水を利用したCO固定化方法の問題点として、MgやCa以外の分子やイオンの存在によるCOとの反応の阻害が挙げられる。したがって、海水又はかん水からMgやCaを分離するプロセスにおいて、単位操作ごとに由来するCO排出も考慮して、CO削減能力が評価されなければならない。
As a CO 2 immobilization method using seawater or brine, many methods have been studied by injecting CO 2 into seawater or brine, but it is formed around Mg 2+ ions, which are divalent cations with a small ion diameter. Due to the strong hydrated shell and the presence of cations (Na + , K + ) competing for carbon dioxide chloride, there is a problem that the efficiency of CO 2 immobilization in the liquid phase is reduced. As a solution to this problem, it has been the mainstream to use a means for raising the pH by adding an alkali, which is difficult to recycle, such as Ca (OH) 2. However, these means for promoting the reaction between CO 2, considering CO 2 emission caused by the additive production of the energy consumption and life cycle assessment, CO 2 emissions becomes positive in the entire process ..
Even with the techniques of Patent Documents 1 and 2, it is difficult to make the CO 2 emission amount negative as a whole process because pH adjustment, wastewater treatment, etc. are required.
As described above, a problem of the CO 2 immobilization method using seawater or brine is the inhibition of the reaction with CO 2 due to the presence of molecules and ions other than Mg and Ca. Therefore, in the process of separating Mg and Ca from seawater or brackish water, the CO 2 reduction capacity must be evaluated in consideration of the CO 2 emissions derived from each unit operation.
 そこで本発明は、二酸化炭素の排出量を考慮しつつ二酸化炭素削減能力を高める、アルカリ土類金属への二酸化炭素の固定化方法を提供する。 Therefore, the present invention provides a method for immobilizing carbon dioxide on an alkaline earth metal, which enhances the carbon dioxide reduction capacity while considering the amount of carbon dioxide emissions.
 本発明の前記目的は、海水又はかん水をナノろ過膜に通水することにより、前記ナノろ過膜を透過せずに濃縮されたNF膜濃縮液を生成する第1工程と、前記第1工程で生成されたNF膜濃縮液から、硫酸カルシウム、塩化ナトリウム、塩化カリウム及び硫酸ナトリウムから選択される少なくとも一種の結晶を析出させて回収する第2工程と、前記第2工程を経たNF膜濃縮液からアルカリ土類金属酸化物を得る第3工程と、前記第3工程で得られたアルカリ土類金属酸化物に二酸化炭素を反応させ、該二酸化炭素を炭酸塩として固定する第4工程とを備える二酸化炭素の固定化方法により達成される。 The object of the present invention is a first step of passing seawater or alkaline water through a nanofiltration membrane to generate a concentrated NF membrane concentrate without permeating the nanofiltration membrane, and the first step. From the second step of precipitating and recovering at least one crystal selected from calcium sulfate, sodium chloride, potassium chloride and sodium sulfate from the generated NF membrane concentrate, and from the NF membrane concentrate that has undergone the second step. Dioxide including a third step of obtaining an alkaline earth metal oxide and a fourth step of reacting the alkaline earth metal oxide obtained in the third step with carbon dioxide and fixing the carbon dioxide as a carbonate. Achieved by carbon immobilization methods.
 この二酸化炭素の固定化方法において、前記第2工程は、NF膜濃縮液に種晶として硫酸カルシウムを添加して蒸発濃縮することにより、硫酸カルシウム結晶を析出させて回収する第1の濃縮晶析工程を備えることが好ましい。前記第1の濃縮晶析工程は、回収した硫酸カルシウム結晶を種晶として使用することが好ましい。前記第2工程は、硫酸カルシウム結晶を回収した後のNF膜濃縮液を更に蒸発濃縮することにより、塩化ナトリウム結晶を析出させて回収する第2の濃縮晶析工程を備えることが好ましい。 In this method for immobilizing carbon dioxide, the second step is the first concentrated crystallization in which calcium sulfate crystals are precipitated and recovered by adding calcium sulfate as seed crystals to the NF membrane concentrate and evaporating and concentrating the crystals. It is preferable to have a process. In the first concentrated crystallization step, it is preferable to use the recovered calcium sulfate crystals as seed crystals. It is preferable that the second step includes a second concentrated crystallization step of precipitating and recovering sodium chloride crystals by further evaporating and concentrating the NF membrane concentrate after recovering the calcium sulfate crystals.
 前記第2工程は、NF膜濃縮液を冷却晶析することにより析出した結晶を回収する冷却晶析工程を備えることが好ましい。前記冷却晶析工程は、NF膜濃縮液を冷却晶析することにより析出した塩化カリウム結晶を回収する第1の冷却晶析工程と、前記第1の冷却晶析工程を経たNF膜濃縮液を、前記第1の冷却晶析工程の冷却晶析温度よりも低温で冷却晶析することにより析出した硫酸ナトリウム結晶を回収する第2の冷却晶析工程とを備えることが好ましい。 It is preferable that the second step includes a cooling crystallization step of recovering the precipitated crystals by cooling crystallization of the NF membrane concentrate. In the cooling crystallization step, a first cooling crystallization step for recovering the potassium chloride crystals precipitated by cooling crystallization of the NF film concentrate and an NF film concentrate that has undergone the first cooling crystallization step are used. It is preferable to include a second cooling crystallization step of recovering the precipitated sodium sulfate crystals by cooling crystallization at a temperature lower than the cooling crystallization temperature of the first cooling crystallization step.
 前記第1工程は、生成されたNF膜濃縮液に、酸を添加してpHを調整するpH調整工程を備えることが好ましい。 It is preferable that the first step includes a pH adjusting step of adding an acid to the produced NF membrane concentrate to adjust the pH.
 前記第1工程は、前記ナノろ過膜を透過したNF膜透過液を濃縮して析出した塩化ナトリウム結晶を回収する製塩工程を備えることが好ましい。前記第1工程は、生成されたNF膜濃縮液に、前記製塩工程で塩化ナトリウム結晶が回収された後のブロー液を合流させる合流工程を備えることが好ましい。前記第1工程は、前記製塩工程で生成された塩化ナトリウム結晶の溶解液を電気透析して得られた酸溶液を、生成されたNF膜濃縮液に添加してpHを調整するpH調整工程を備えることが好ましい。 It is preferable that the first step includes a salt-making step of concentrating the NF membrane permeate that has permeated the nanofiltration membrane and recovering the precipitated sodium chloride crystals. It is preferable that the first step includes a merging step of merging the produced NF membrane concentrate with the blow liquid after the sodium chloride crystals are recovered in the salt-making step. The first step is a pH adjusting step of adding an acid solution obtained by electrodialysis of a solution of sodium chloride crystals produced in the salt-making step to the produced NF membrane concentrate to adjust the pH. It is preferable to prepare.
 前記第3工程で得られるアルカリ土類金属酸化物には、酸化マグネシウムが含まれることが好ましい。 The alkaline earth metal oxide obtained in the third step preferably contains magnesium oxide.
 本発明によれば、二酸化炭素の排出量を考慮しつつ二酸化炭素削減能力を高める、アルカリ土類金属への二酸化炭素の固定化方法を提供することができる。 According to the present invention, it is possible to provide a method for immobilizing carbon dioxide on an alkaline earth metal, which enhances the carbon dioxide reduction capacity while considering the amount of carbon dioxide emissions.
本発明の一実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。It is a process flow diagram for demonstrating the method of immobilizing carbon dioxide which concerns on one Embodiment of this invention. 図1に示す処理フローにおける各種イオン量の変化の一例を示す図である。It is a figure which shows an example of the change of various ion amounts in the processing flow shown in FIG. 図1に示す処理フローにおける一部の工程の変形例を示す図である。It is a figure which shows the modification of some steps in the processing flow shown in FIG.
 本発明の二酸化炭素の固定化方法は、海水又はかん水に含まれるアルカリ土類金属に対して二酸化炭素を固定化する方法を提供するものである。本実施形態において「アルカリ土類金属」は、Ca、Sr、Ba、Raの他に、周期表第2族の元素であるMgとBeを含む広義の範囲を意味する。特にCOとの反応のし易さや、該反応により得られる炭酸塩を様々な用途へ利用することが期待できる観点から、アルカリ土類金属として少なくともMgを含むことが好ましい。 The method for immobilizing carbon dioxide of the present invention provides a method for immobilizing carbon dioxide with respect to alkaline earth metals contained in seawater or brine. In the present embodiment, "alkaline earth metal" means a broad range including Mg and Be, which are elements of Group 2 of the periodic table, in addition to Ca, Sr, Ba, and Ra. In particular, it is preferable to contain at least Mg as an alkaline earth metal from the viewpoint of ease of reaction with CO 2 and the expectation that the carbonate obtained by the reaction can be used for various purposes.
 また「海水又はかん水」は、マグネシウムイオン(Mg2+)、カルシウムイオン(Ca2+)等のアルカリ土類金属のイオンを含む水溶液である。海水又はかん水は、アルカリ土類金属のイオン以外に、硫酸カルシウム、塩化ナトリウム、塩化カリウム及び硫酸ナトリウムから選択される少なくとも一種の結晶を構成するイオンを含んでいる。具体的には、海水又はかん水は、塩化物イオン(Cl)、硫酸イオン(SO 2-)、ナトリウムイオン(Na)、カリウム(K)から選ばれる少なくとも1種のイオンを含んでいる。 Further, "seawater or brine" is an aqueous solution containing ions of an alkaline earth metal such as magnesium ion (Mg 2+ ) and calcium ion (Ca 2+). Seawater or brine contains ions that make up at least one crystal selected from calcium sulfate, sodium chloride, potassium chloride and sodium sulfate, in addition to the ions of alkaline earth metals. Specifically, sea water or brine is chloride ion (Cl -), sulfate ion (SO 4 2-), sodium ion (Na +), at least one ion selected from potassium (K +) There is.
 上記の海水又はかん水としては、海水、塩湖、及び工業廃水から選ばれる少なくとも1種から得られるものを用いることができる。また、アルカリ土類金属が含まれていれば、海水、塩湖及び工業廃水の他に、河川水、雨水、下水処理水、油田やガス田の随伴水等も用いることができる。かん水としてより具体的には、塩湖等を用いた造水、淡水化や造塩のプロセスにより排出される廃液かん水や、海水及び塩湖等を用いた有価物の回収、化学工場等からの工業廃水等が挙げられる。 As the above-mentioned seawater or brackish water, those obtained from at least one selected from seawater, salt lakes, and industrial wastewater can be used. In addition to seawater, salt lakes and industrial wastewater, river water, rainwater, treated sewage water, and accompanying water from oil and gas fields can also be used as long as alkaline earth metals are contained. More specifically, as irrigation, irrigation using salt lakes, waste liquid irrigation discharged by desalination and salt formation processes, recovery of valuable resources using seawater and salt lakes, collection of valuable resources from chemical factories, etc. Examples include industrial wastewater.
 前述のMgを多く含むこと、環境負荷の低減及びCO排出量削減のし易さの観点から、かん水は、海水を用いた造水装置から得られるかん水、海水から塩を造るプロセスから得られるかん水、及び塩湖からリチウムを回収するプロセスから得られるかん水から選ばれる少なくとも1種であることが好ましい。 From the viewpoint of containing a large amount of Mg as described above, reducing the environmental load and easing to reduce CO 2 emissions, brackish water is obtained from brackish water obtained from a desalination device using seawater and a process of producing salt from seawater. It is preferably at least one selected from brackish water and brackish water obtained from the process of recovering lithium from a salt lake.
 以下、本発明の一実施形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る二酸化炭素の固定化方法を説明するための処理フロー図である。本実施形態においては、処理対象を海水としているが、かん水の場合も同様の処理を行うことができる。図1に示すように、本実施形態の二酸化炭素の固定化方法は、海水をナノろ過膜(NF膜)に通水することにより、NF膜を透過せずに濃縮されたNF膜濃縮液を生成する第1工程S1と、第1工程S1で生成されたNF膜濃縮液から、硫酸カルシウム、塩化ナトリウム、塩化カリウム及び硫酸ナトリウムから選択される少なくとも一種の結晶を析出させて回収する第2工程S2と、第2工程S2を経たNF膜濃縮液からアルカリ土類金属酸化物を得る第3工程S3と、第3工程S3で得られたアルカリ土類金属酸化物に二酸化炭素を反応させ、該二酸化炭素を炭酸塩として固定する第4工程S4とを備えている。 Hereinafter, an embodiment of the present invention will be described with reference to the attached drawings. FIG. 1 is a processing flow chart for explaining a method for immobilizing carbon dioxide according to an embodiment of the present invention. In the present embodiment, the treatment target is seawater, but the same treatment can be performed in the case of brackish water. As shown in FIG. 1, in the method for immobilizing carbon dioxide of the present embodiment, seawater is passed through a nanofiltration membrane (NF membrane) to obtain a concentrated NF membrane concentrate without permeating the NF membrane. A second step of precipitating and recovering at least one crystal selected from calcium sulfate, sodium chloride, potassium chloride and sodium sulfate from the first step S1 to be produced and the NF membrane concentrate produced in the first step S1. Carbon dioxide is reacted with the alkaline earth metal oxide obtained in the third step S3 and the third step S3 to obtain the alkaline earth metal oxide from the S2 and the NF film concentrate obtained through the second step S2. It is provided with a fourth step S4 for fixing carbon dioxide as a carbonate.
<S1:第1工程>
 第1工程S1は、海水を中圧ポンプ等によりNF膜ユニットに供給してNF膜に通水することにより、NF膜を透過したNF膜透過液と、NF膜を透過せずに濃縮されたNF膜濃縮液とを生成する。
<S1: First step>
In the first step S1, seawater was supplied to the NF membrane unit by a medium pressure pump or the like and passed through the NF membrane to concentrate the NF membrane permeable liquid that had permeated the NF membrane and the NF membrane without permeating the NF membrane. Produces an NF membrane concentrate.
 NF膜は、2価以上のイオンの透過を抑制する一方で、1価イオンは透過し易い性質を有するため、NF膜濃縮液には、二酸化炭素の固定化の対象となるアルカリ土類金属の多くが残留すると共に、この固定化の妨げになるおそれがあるNa、Kなどの濃度が低減される。したがって、海水(又はかん水)に含まれるアルカリ土類金属への二酸化炭素の固定化を容易に効率良く行うことができ、後工程を含めたプロセス全体での二酸化炭素の発生を抑制することができる。図2は、海水を100m/hの流量で供給した場合における、海水、NF膜透過液およびNF膜濃縮液に含まれる各種イオン量(mg/h)の一例を示している。 Since the NF membrane suppresses the permeation of divalent or higher ions, the monovalent ion has the property of being easily permeated. Therefore, the NF membrane concentrate contains alkaline earth metals that are the targets of carbon dioxide immobilization. As much remains, the concentrations of Na + , K +, etc. that may interfere with this immobilization are reduced. Therefore, it is possible to easily and efficiently immobilize carbon dioxide on alkaline earth metals contained in seawater (or brackish water), and it is possible to suppress the generation of carbon dioxide in the entire process including the post-process. .. FIG. 2 shows an example of various ion amounts (mg / h) contained in seawater, NF membrane permeate and NF membrane concentrate when seawater is supplied at a flow rate of 100 m 3 / h.
<S11:製塩工程>
 一方、NF膜透過液には、1価のイオンであるNaやClが多く含まれているため、本実施形態の第1工程S1は、NF膜透過液を濃縮して析出した塩化ナトリウム(NaCl)結晶を回収する製塩工程S11を備える。本実施形態の製塩工程S11は、NF膜透過液を高圧ポンプ等により逆浸透膜(RO膜)ユニットに供給してRO膜に通水することにより、RO膜を透過せずに濃縮された膜処理濃縮液を生成する膜処理工程S111と、生成された膜処理濃縮液を結晶缶に供給して加熱蒸発し、NaCl結晶を析出させる結晶化工程S112とを備えている。結晶缶から排出された蒸気は、凝縮器等で凝縮されて蒸留水となり、RO膜を透過した膜処理透過液に合流されて、製造水等として使用される。結晶缶内で濃縮された結晶缶濃縮液は、一部がNaCl結晶を含むスラリー液として結晶缶から排出され、遠心分離器等で脱水されてNaCl結晶が回収される。NF膜透過液は、SO 2-をほとんど含まないため、低エネルギーである膜処理工程S111により、高濃度で濃縮することができる。
<S11: Salt making process>
On the other hand, since the NF membrane permeate contains a large amount of monovalent ions Na + and Cl , the first step S1 of the present embodiment is the sodium chloride precipitated by concentrating the NF membrane permeate. (NaCl) The salt making step S11 for recovering crystals is provided. In the salt-making step S11 of the present embodiment, the NF membrane permeate is supplied to the reverse osmosis membrane (RO membrane) unit by a high-pressure pump or the like and water is passed through the RO membrane, so that the membrane is concentrated without permeating the RO membrane. The membrane treatment step S111 for producing a treatment concentrate and the crystallization step S112 for supplying the produced membrane treatment concentrate to a crystal can and heating and evaporating to precipitate NaCl crystals are provided. The vapor discharged from the crystal can is condensed by a condenser or the like to become distilled water, which is merged with the membrane-treated permeate liquid that has permeated the RO membrane and used as production water or the like. The crystal can concentrate concentrated in the crystal can is partially discharged from the crystal can as a slurry liquid containing NaCl crystals, and is dehydrated by a centrifuge or the like to recover the NaCl crystals. NF membrane permeate since it does not contain SO 4 2-most, by membrane treatment step S111 is a low energy, can be concentrated at a high concentration.
 膜処理工程S111は、RO膜を用いた処理に限定されず、半透膜を用いる他の処理であってもよく、あるいは、複数の膜処理を組み合わせたものであってもよい。例えば、図3に示すように、膜処理工程S111が、NF膜透過液をRO膜で濃縮してRO膜濃縮液を生成するRO膜濃縮工程S113と、RO膜濃縮液を半透膜でセパレートされた半透膜ユニットの高圧室に供給し、低圧室を通過する回収液との圧力差を利用してRO膜濃縮液を更に濃縮する複合膜処理工程S114とを備えることができる。低圧室に供給される回収液は、高圧室を通過したRO膜濃縮液の一部を利用することができ、低圧室を通過した回収液を、RO膜濃縮工程S113前のNF膜透過液に合流させることができる。また、図3に示すように、膜処理工程S111と結晶化工程S112との間に、膜処理工程S111で生成された膜処理濃縮液を水平管型蒸発器等により蒸発濃縮する蒸発処理工程S115を備えてもよい。 The membrane treatment step S111 is not limited to the treatment using the RO membrane, and may be another treatment using a semipermeable membrane, or may be a combination of a plurality of membrane treatments. For example, as shown in FIG. 3, the membrane treatment step S111 concentrates the NF membrane permeate with the RO membrane to generate the RO membrane concentrate, and the RO membrane concentrate step S113 and the RO membrane concentrate are separated by a semipermeable membrane. It is possible to provide a composite membrane treatment step S114 that supplies the semipermeable membrane unit to the high pressure chamber and further concentrates the RO membrane concentrate by utilizing the pressure difference from the recovered liquid passing through the low pressure chamber. As the recovery liquid supplied to the low pressure chamber, a part of the RO membrane concentrate that has passed through the high pressure chamber can be used, and the recovery liquid that has passed through the low pressure chamber is used as the NF membrane permeate before the RO membrane concentration step S113. Can be merged. Further, as shown in FIG. 3, the evaporation treatment step S115 in which the membrane treatment concentrate produced in the membrane treatment step S111 is evaporated and concentrated by a horizontal tube type evaporator or the like between the membrane treatment step S111 and the crystallization step S112. May be provided.
<S12:合流工程>
 製塩工程S11でNaCl結晶を回収した後の液は、ブロー液として排出される。本実施形態の第1工程S1は、このブロー液を、上記のNF膜濃縮液に合流させる合流工程S12を備えており、これによって廃液の系外への排出を抑制して、環境負荷の軽減を図ることができる。マグネシウム等の回収対象となるアルカリ土類金属は、NF膜濃縮液だけでなく、NF膜透過液であるブロー液にも含まれているため、上記の合流工程S12を備えることで、後工程での二酸化炭素の固定化に要するアルカリ土類金属の回収率を高めることができる。
<S12: Confluence process>
The liquid after recovering the NaCl crystals in the salt-making step S11 is discharged as a blow liquid. The first step S1 of the present embodiment includes a merging step S12 for merging the blow liquid with the above-mentioned NF membrane concentrate, thereby suppressing the discharge of the waste liquid to the outside of the system and reducing the environmental load. Can be planned. Alkaline earth metals such as magnesium to be recovered are contained not only in the NF film concentrate but also in the blow liquid which is the NF film permeation liquid. It is possible to increase the recovery rate of alkaline earth metals required for immobilization of carbon dioxide.
<S13:pH調整工程>
 本実施形態の第1工程S1は、合流工程S12でブロー液が合流されたNF膜濃縮液のpH調整を行うpH調整工程S13を備えている。pH調整工程S13は、NF膜濃縮液に塩酸(HCl)等のpH調整剤を添加して、NF膜濃縮液のpH値を酸性側にする工程であり、これによって、後述する第2工程S2において、水酸化マグネシウム(Mg(OH))や炭酸カルシウム(CaCO)などのソフトスケールの生成を抑制することができる。pH調整後のNF膜濃縮液のpH値は、3.5~6.5であることが好ましい。
<S13: pH adjustment process>
The first step S1 of the present embodiment includes a pH adjusting step S13 for adjusting the pH of the NF membrane concentrate to which the blow liquid is merged in the merging step S12. The pH adjusting step S13 is a step of adding a pH adjusting agent such as hydrochloric acid (HCl) to the NF membrane concentrate to bring the pH value of the NF membrane concentrate to the acidic side, whereby the second step S2 described later is performed. In, the formation of soft scales such as magnesium hydroxide (Mg (OH) 2 ) and calcium carbonate (CaCO 3) can be suppressed. The pH value of the NF membrane concentrate after pH adjustment is preferably 3.5 to 6.5.
 pH調整工程S13は、製塩工程S11で生成されたNaCl結晶を電気透析する電気透析工程S131を備えることにより、電気透析工程S131で生成されたHClをpH調整剤として使用することができる。電気透析工程S131は、例えば、バイポーラ膜電気透析装置を使用することができ、NaCl溶液を、HCl溶液とNaOH溶液とに分離する。このように、製塩工程S11で得られた結晶を用いた電気透析によりpH調整剤を生成することで、pH調整剤の生成過程でCOが別途発生するおそれがなく、電気透析は再生可能エネルギー等を利用して行うことができるので、プロセス全体でのCO排出を抑制することができる。 The pH adjusting step S13 includes an electrodialysis step S131 for electrodialyzing the NaCl crystals produced in the salt making step S11, so that the HCl produced in the electrodialysis step S131 can be used as a pH adjusting agent. In the electrodialysis step S131, for example, a bipolar membrane electrodialysis apparatus can be used, and the NaCl solution is separated into the HCl solution and the NaOH solution. As described above, by producing the pH adjuster by electrodialysis using the crystals obtained in the salt making step S11, there is no possibility that CO 2 is separately generated in the process of producing the pH adjuster, and the electrodialysis is a renewable energy. Since it can be carried out by using the above, it is possible to suppress CO 2 emissions in the entire process.
<S2:第2工程>
 第2工程S2は、第1工程S1で生成されたNF膜濃縮液から、後述するアルカリ土類金属への二酸化炭素の固定化の妨げとなる不純物を除去して、第3工程S3でのアルカリ土類金属酸化物の単離を容易にする工程である。第2工程S2は、NF膜濃縮液に種晶として硫酸カルシウムを添加して蒸発濃縮することにより、硫酸カルシウム結晶を析出させて回収する第1の濃縮晶析工程S21と、硫酸カルシウム結晶を回収した後のNF膜濃縮液を更に蒸発濃縮することにより、塩化ナトリウム結晶を析出させて回収する第2の濃縮晶析工程S22と、NF膜濃縮液を冷却晶析することにより析出した結晶を回収する冷却晶析工程S23とを備えている。
<S2: Second step>
In the second step S2, impurities that hinder the immobilization of carbon dioxide on the alkaline earth metal described later are removed from the NF film concentrate produced in the first step S1, and the alkali in the third step S3 is removed. This is a step that facilitates the isolation of earth metal oxides. The second step S2 is the first concentrated crystallization step S21 for precipitating and recovering calcium sulfate crystals by adding calcium sulfate as a seed crystal to the NF membrane concentrate and evaporating and concentrating, and recovering the calcium sulfate crystals. The second concentrated crystallization step S22, in which sodium chloride crystals are precipitated and recovered by further evaporating and concentrating the NF film concentrate, and the crystals precipitated by cooling crystallization of the NF film concentrate are recovered. The cooling crystallization step S23 is provided.
<S21:第1の濃縮晶析工程>
 第1の濃縮晶析工程S21は、NF膜濃縮液を第1の濃縮缶に供給して加熱することにより蒸発濃縮し、硫酸カルシウム結晶(CaSO・2HO)を析出させた後、スラリー液として排出し、遠心分離器等の固液分離装置により硫酸カルシウム結晶を分離する。NF膜濃縮液には、Ca2+、Na、K等が含まれているが、硫酸カルシウム結晶は、温度の上昇に伴い溶解度が減少する逆溶解性を有するため、Ca2+が析出する一方でNa、Kは析出しないように蒸発濃縮の運転温度を維持する。この運転温度は、70~90℃であることが好ましく、例えば80℃に設定される。
<S21: First concentrated crystallization step>
First concentration crystallization step S21 is concentrated by evaporation by heating by supplying a NF membrane concentrate to a first concentration can, after precipitating the calcium sulfate crystals (CaSO 4 · 2H 2 O) , Slurry It is discharged as a liquid, and calcium sulfate crystals are separated by a solid-liquid separator such as a centrifuge. The NF membrane concentrate contains Ca 2+ , Na + , K +, etc., but calcium sulfate crystals have back-solubility, which decreases in solubility as the temperature rises, so that Ca 2+ is deposited. The operating temperature of evaporation concentration is maintained so that Na + and K + do not precipitate. This operating temperature is preferably 70 to 90 ° C, for example set to 80 ° C.
 第1の濃縮晶析工程S21においては、硫酸カルシウムのスケール発生を防止するため、第1の蒸発缶にCaSO・2HOの種晶を添加して、種晶を核とした結晶成長を促すことが好ましい。この種晶には、第1の濃縮晶析工程S21で生成されたCaSO・2HOを好ましく使用することができる。NF膜濃縮液は、上記のpH調整工程S13により酸性側となっているため、これによっても硫酸カルシウムのスケール発生を抑制することができる。 In the first concentrating crystallization step S21, in order to prevent scale formation of calcium sulfate, by adding seed crystals of the first evaporator to the CaSO 4 · 2H 2 O, the crystal growth of the seed crystals as nuclei It is preferable to encourage. This is seed, can be preferably used first of CaSO 4 · 2H 2 O produced in the concentration crystallization step S21. Since the NF membrane concentrate is on the acidic side by the above pH adjusting step S13, the scale generation of calcium sulfate can also be suppressed by this.
<S22:第2の濃縮晶析工程>
 第2の濃縮晶析工程S22は、第1の濃縮晶析工程S21を経たNF膜濃縮液を第2の濃縮缶に供給して加熱することにより更に蒸発濃縮し、塩化ナトリウム(NaCl)を主成分とする結晶を析出させた後、固液分離装置により塩化ナトリウム結晶を分離して行われる。蒸発濃縮の運転温度は、60~80℃であることが好ましく、例えば70℃に設定される。後述する第3工程S3において酸化マグネシウムを主体とするアルカリ土類金属酸化物の回収率を高めることができるように、第2の濃縮晶析工程S22での濃縮倍率は、MgClが析出しない範囲に設定することが好ましい。
<S22: Second concentrated crystallization step>
In the second concentrated crystallization step S22, the NF membrane concentrate that has undergone the first concentrated crystallization step S21 is supplied to the second concentrated can and heated to further evaporate and concentrate, mainly containing sodium chloride (NaCl). After precipitating the crystals as components, the sodium chloride crystals are separated by a solid-liquid separator. The operating temperature for evaporation concentration is preferably 60 to 80 ° C, for example set to 70 ° C. The concentration ratio in the second concentration crystallization step S22 is within the range in which MgCl 2 does not precipitate so that the recovery rate of the alkaline earth metal oxide mainly composed of magnesium oxide can be increased in the third step S3 described later. It is preferable to set to.
<S23:冷却晶析工程>
 冷却晶析工程S23は、第2の濃縮晶析工程S22を経たNF膜濃縮液を冷却晶析缶に供給して、撹拌しながら所定の冷却晶析温度まで冷却することにより、目的となる不純物の結晶を析出させた後、この結晶を固液分離装置により分離して行われる。本実施形態の冷却晶析工程S23は、NF膜濃縮液を冷却晶析することにより析出した塩化カリウム結晶を回収する第1の冷却晶析工程S231と、第1の冷却晶析工程S231を経たNF膜濃縮液を、第1の冷却晶析工程S231の冷却晶析温度よりも低温で冷却晶析することにより析出した硫酸ナトリウム結晶を回収する第2の冷却晶析工程S232とを備えている。第1の冷却晶析工程S231の冷却晶析温度は、KClが主体の結晶が析出する一方、NaSO・10HOの結晶が析出しない温度であり、33~40℃であることが好ましく、例えば36℃に設定される。また、第2の冷却晶析工程S232の冷却晶析温度は、NaSO・10HOの結晶が析出する温度であり、例えば、0~10℃に設定される。
<S23: Cooling crystallization step>
In the cooling crystallization step S23, the NF film concentrate that has undergone the second concentration crystallization step S22 is supplied to the cooling crystallization can and cooled to a predetermined cooling crystallization temperature while stirring to obtain the desired impurities. After precipitating the crystals of, the crystals are separated by a solid-liquid separator. The cooling crystallization step S23 of the present embodiment has undergone a first cooling crystallization step S231 for recovering the potassium chloride crystals precipitated by cooling crystallization of the NF film concentrate and a first cooling crystallization step S231. It is provided with a second cooling crystallization step S232 for recovering the sodium sulfate crystals precipitated by cooling crystallization of the NF film concentrate at a temperature lower than the cooling crystallization temperature of the first cooling crystallization step S231. .. Cooling crystallization temperature of the first cooling crystallization step S231, while KCl crystals of entities are deposited, a temperature not crystals precipitated in Na 2 SO 4 · 10H 2 O , to be 33 ~ 40 ° C. Preferably, it is set to, for example, 36 ° C. The cooling crystallization temperature of the second cooling crystallization step S232 is a temperature at which crystals of Na 2 SO 4・ 10H 2 O precipitate, and is set to, for example, 0 to 10 ° C.
 こうして、第1の濃縮晶析工程S21、第2の濃縮晶析工程S22および冷却晶析工程S23を経たNF膜濃縮液は、MgCl等のアルカリ土類金属塩化物を主成分とするブラインである。第2工程S2は、第1の濃縮晶析工程S21、第2の濃縮晶析工程S22および冷却晶析工程S23を全て行う必要はなく、NF膜濃縮液から硫酸カルシウム、塩化ナトリウム、塩化カリウム及び硫酸ナトリウムから選択される少なくとも一種の結晶を析出させて回収できるように、処理対象となる海水又はかん水の成分に応じて必要な工程のみを適宜選択してもよい。 In this way, the NF membrane concentrate that has undergone the first concentrated crystallization step S21, the second concentrated crystallization step S22, and the cooling crystallization step S23 is a brine containing an alkaline earth metal chloride such as MgCl 2 as a main component. be. In the second step S2, it is not necessary to perform all of the first concentrated crystallization step S21, the second concentrated crystallization step S22 and the cooling crystallization step S23, and calcium sulfate, sodium chloride, potassium chloride and the like from the NF membrane concentrate are used. Only necessary steps may be appropriately selected depending on the components of seawater or brackish water to be treated so that at least one kind of crystal selected from sodium sulfate can be precipitated and recovered.
<S3:第3工程>
 第3工程S3は、第2工程S2で得られたMgCl等のアルカリ土類金属塩化物を主成分とするブラインから、アルカリ土類金属酸化物を得る工程であり、乾燥工程S31および熱分解工程S32を備えている。
<S3: Third step>
The third step S3 is a step of obtaining an alkaline earth metal oxide from the brine containing an alkaline earth metal chloride such as MgCl 2 obtained in the second step S2 as a main component, and is a drying step S31 and thermal decomposition. The process S32 is provided.
<S31:乾燥工程>
 本実施形態の第2工程S2で得られたブラインは、塩化マグネシウム(MgCl)水和物を主成分とするスラリーであり、乾燥工程S31において乾燥されることにより、塩化マグネシウム二水和物(MgCl・2HO)となる。乾燥工程S31の乾燥温度は、MgCl・2HOの生成に対しては、大気圧下において好ましくは130℃以下であり、より好ましくは100~129℃である
<S31: Drying process>
The brine obtained in the second step S2 of the present embodiment is a slurry containing magnesium chloride (MgCl 2 ) hydrate as a main component, and is dried in the drying step S31 to obtain magnesium chloride dihydrate (Mgnesium chloride dihydrate (MgCl 2) hydrate. MgCl 2 · 2H 2 O) to become. Drying temperature in the drying step S31, to the generation of MgCl 2 · 2H 2 O, preferably at atmospheric pressure is at 130 ° C. or less, more preferably at 100 ~ 129 ° C.
<S32:熱分解工程>
 熱分解工程S32は、乾燥工程S31で生成されたMgCl・2HOの少なくとも一部を熱分解してヒドロキシ塩化マグネシウム(MgOHCl)を生成し、MgOHClを更に熱分解して脱塩酸化することにより、酸化マグネシウム(MgO)を生成する。熱分解工程S32の熱分解温度は、MgOHClの生成に対しては、大気圧下において好ましくは235℃以下であり、より好ましくは160~235℃である。圧力を大気圧よりも低くすればさらに温度を下げることができる。また、MgOの生成に対しては、大気圧下において好ましくは300~500℃、より好ましくは350~450℃である。圧力を大気圧よりも低くすればさらに温度を下げることができる。
<S32: Pyrolysis process>
Pyrolysis step step S32, at least a portion of the MgCl 2 · 2H 2 O produced in the drying step S31 the thermally decomposed to produce the hydroxy magnesium chloride (MgOHCl), further dehydrochlorination by thermally decomposing MgOHCl Generates magnesium oxide (MgO). The thermal decomposition temperature of the thermal decomposition step S32 is preferably 235 ° C. or lower, more preferably 160 to 235 ° C., under atmospheric pressure with respect to the formation of MgOHCl. The temperature can be further lowered by lowering the pressure below the atmospheric pressure. Further, for the formation of MgO, the temperature is preferably 300 to 500 ° C, more preferably 350 to 450 ° C under atmospheric pressure. The temperature can be further lowered by lowering the pressure below the atmospheric pressure.
 熱分解工程S32においては、MgOを生成する際にHClガスが排出されるため、HClガスを回収、再利用してもよい。このHClガスは、例えば、上記のpH調整工程S13におけるpH調整剤として利用することが可能であり、これによって、HClを別途製造することによるCO排出を回避することができる。 In the thermal decomposition step S32, since HCl gas is discharged when MgO is generated, the HCl gas may be recovered and reused. This HCl gas can be used, for example, as a pH adjuster in the above pH adjusting step S13, thereby avoiding CO 2 emissions due to the separate production of HCl.
<S4:第4工程>
 第4工程S4は、第3工程S3で得られたMgO等のアルカリ土類金属酸化物に二酸化炭素を反応させて、二酸化炭素を炭酸塩として固定する工程である。アルカリ土類金属酸化物と二酸化炭素を含む気体との固気反応により、アルカリ土類金属酸化物に二酸化炭素を固定化する。二酸化炭素を含む気体は大気でもよく、あるいは、種々の燃焼装置の排気ガス等でもよい。また、該気体中に含まれる二酸化炭素濃度に制限はないが、上記固気反応の進行のし易さの観点から、気体中に含まれる二酸化炭素濃度は大気~100体積%程度である。MgOにCOを反応させると、炭酸マグネシウム三水和物(MgCO・3HO)となって、二酸化炭素は固定化される。第4工程S4において二酸化炭素を炭酸塩として固定する方法は、上記の方法に限定されるものではなく、例えば、第3工程S3で得られたMgO等のアルカリ土類金属酸化物を水に溶解させて水溶液を生成し、この水溶液に二酸化炭素をバブリング等により気液接触させて、アルカリ土類金属酸化物に二酸化炭素を固定化することも可能である。
<S4: Fourth step>
The fourth step S4 is a step of reacting carbon dioxide with an alkaline earth metal oxide such as MgO obtained in the third step S3 to fix carbon dioxide as a carbonate. Carbon dioxide is immobilized on the alkaline earth metal oxide by a solid-gas reaction between the alkaline earth metal oxide and a gas containing carbon dioxide. The gas containing carbon dioxide may be the atmosphere, or may be the exhaust gas of various combustion devices. The concentration of carbon dioxide contained in the gas is not limited, but the concentration of carbon dioxide contained in the gas is about 100% by volume from the atmosphere from the viewpoint of the ease of progress of the solid-gas reaction. When the CO 2 is reacted to MgO, is a magnesium carbonate trihydrate (MgCO 3 · 3H 2 O) , carbon dioxide is immobilized. The method for fixing carbon dioxide as a carbonate in the fourth step S4 is not limited to the above method, and for example, the alkaline earth metal oxide such as MgO obtained in the third step S3 is dissolved in water. It is also possible to generate an aqueous solution and bring carbon dioxide into gas-liquid contact with the aqueous solution by bubbling or the like to immobilize carbon dioxide on the alkaline earth metal oxide.
 本発明によれば、海水又はかん水は上述のとおり複数イオンを含む水溶液であることから、上記各工程において水(純水)、塩、石膏、塩化カリウム等を副産物として得ることができる。そのため、CO固定化の他に、様々な副産物が生産され、これらをより環境に配慮した製品に利用することが期待できる。また、本発明は、かん水として上述のとおり廃液を用いることができるため、廃液処理として利用でき、廃液処理費の削減にも貢献することが考えられる。さらに、二酸化炭素を固定化した炭酸マグネシウムは建築材料としても利用可能である。したがって本発明は、前述の二酸化炭素の固定化方法を用いた、アルカリ土類金属炭酸塩の製造方法をも提供することができる。 According to the present invention, since seawater or brine is an aqueous solution containing a plurality of ions as described above, water (pure water), salt, gypsum, potassium chloride and the like can be obtained as by-products in each of the above steps. Therefore , in addition to CO 2 immobilization, various by-products are produced, and it can be expected that these will be used in more environmentally friendly products. Further, since the present invention can use the waste liquid as the brackish water as described above, it can be used as the waste liquid treatment, and it is considered that the present invention also contributes to the reduction of the waste liquid treatment cost. Furthermore, magnesium carbonate on which carbon dioxide is immobilized can also be used as a building material. Therefore, the present invention can also provide a method for producing an alkaline earth metal carbonate using the above-mentioned method for immobilizing carbon dioxide.
S1 第1工程
S11 製塩工程
S12 合流工程
S13 pH調整工程
S2 第2工程
S21 第1の濃縮晶析工程
S22 第2の濃縮晶析工程
S23 冷却晶析工程
S3 第3工程
S4 第4工程
S1 1st step S11 Salt making step S12 Confluence step S13 pH adjustment step S2 2nd step S21 1st concentrated crystallization step S22 2nd concentrated crystallization step S23 Cooling crystallization step S3 3rd step S4 4th step

Claims (11)

  1.  海水又はかん水をナノろ過膜に通水することにより、前記ナノろ過膜を透過せずに濃縮されたNF膜濃縮液を生成する第1工程と、
     前記第1工程で生成されたNF膜濃縮液から、硫酸カルシウム、塩化ナトリウム、塩化カリウム及び硫酸ナトリウムから選択される少なくとも一種の結晶を析出させて回収する第2工程と、
     前記第2工程を経たNF膜濃縮液からアルカリ土類金属酸化物を得る第3工程と、
     前記第3工程で得られたアルカリ土類金属酸化物に二酸化炭素を反応させ、該二酸化炭素を炭酸塩として固定する第4工程とを備える二酸化炭素の固定化方法。
    The first step of producing a concentrated NF membrane concentrate without permeating the nanofiltration membrane by passing seawater or brine through the nanofiltration membrane.
    A second step of precipitating and recovering at least one crystal selected from calcium sulfate, sodium chloride, potassium chloride and sodium sulfate from the NF membrane concentrate produced in the first step.
    The third step of obtaining an alkaline earth metal oxide from the NF membrane concentrate that has undergone the second step, and
    A method for immobilizing carbon dioxide, which comprises a fourth step of reacting carbon dioxide with an alkaline earth metal oxide obtained in the third step and fixing the carbon dioxide as a carbonate.
  2.  前記第2工程は、NF膜濃縮液に種晶として硫酸カルシウムを添加して蒸発濃縮することにより、硫酸カルシウム結晶を析出させて回収する第1の濃縮晶析工程を備える請求項1に記載の二酸化炭素の固定化方法。 The second step is according to claim 1, further comprising a first concentrated crystallization step of precipitating and recovering calcium sulfate crystals by adding calcium sulfate as seed crystals to the NF membrane concentrate and evaporating and concentrating the crystals. Calcium immobilization method.
  3.  前記第1の濃縮晶析工程は、回収した硫酸カルシウム結晶を種晶として使用する請求項2に記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to claim 2, wherein the first concentrated crystallization step uses the recovered calcium sulfate crystals as seed crystals.
  4.  前記第2工程は、硫酸カルシウム結晶を回収した後のNF膜濃縮液を更に蒸発濃縮することにより、塩化ナトリウム結晶を析出させて回収する第2の濃縮晶析工程を備える請求項2又は3に記載の二酸化炭素の固定化方法。 The second step comprises the second concentrated crystallization step of precipitating and recovering sodium chloride crystals by further evaporating and concentrating the NF membrane concentrate after recovering the calcium sulfate crystals, according to claim 2 or 3. The method for immobilizing carbon dioxide as described.
  5.  前記第2工程は、NF膜濃縮液を冷却晶析することにより析出した結晶を回収する冷却晶析工程を備える請求項1から4のいずれかに記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to any one of claims 1 to 4, wherein the second step comprises a cooling crystallization step of recovering the precipitated crystals by cooling crystallization of the NF membrane concentrate.
  6.  前記冷却晶析工程は、NF膜濃縮液を冷却晶析することにより析出した塩化カリウム結晶を回収する第1の冷却晶析工程と、前記第1の冷却晶析工程を経たNF膜濃縮液を、前記第1の冷却晶析工程の冷却晶析温度よりも低温で冷却晶析することにより析出した硫酸ナトリウム結晶を回収する第2の冷却晶析工程とを備える請求項5に記載の二酸化炭素の固定化方法。 In the cooling crystallization step, a first cooling crystallization step of recovering potassium chloride crystals precipitated by cooling crystallization of the NF film concentrate and an NF film concentrate that has undergone the first cooling crystallization step are used. The carbon dioxide according to claim 5, further comprising a second cooling crystallization step of recovering the precipitated sodium sulfate crystals by cooling crystallization at a temperature lower than the cooling crystallization temperature of the first cooling crystallization step. Immobilization method.
  7.  前記第1工程は、生成されたNF膜濃縮液に、酸を添加してpHを調整するpH調整工程を備える請求項1から6のいずれかに記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to any one of claims 1 to 6, wherein the first step comprises a pH adjusting step of adding an acid to the produced NF membrane concentrate to adjust the pH.
  8.  前記第1工程は、前記ナノろ過膜を透過したNF膜透過液を濃縮して析出した塩化ナトリウム結晶を回収する製塩工程を備える請求項1から7のいずれかに記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to any one of claims 1 to 7, wherein the first step comprises a salt-making step of concentrating the NF membrane permeate that has permeated the nanofiltration membrane and recovering the precipitated sodium chloride crystals. ..
  9.  前記第1工程は、生成されたNF膜濃縮液に、前記製塩工程で塩化ナトリウム結晶が回収された後のブロー液を合流させる合流工程を備える請求項8に記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to claim 8, wherein the first step comprises a merging step of merging the generated NF membrane concentrate with a blow liquid after the sodium chloride crystals have been recovered in the salt-making step.
  10.  前記第1工程は、前記製塩工程で生成された塩化ナトリウム結晶の溶解液を電気透析して得られた酸溶液を、生成されたNF膜濃縮液に添加してpHを調整するpH調整工程を備える請求項8又は9のいずれかに記載の二酸化炭素の固定化方法。 The first step is a pH adjusting step of adding an acid solution obtained by electrodialysis of a solution of sodium chloride crystals produced in the salt-making step to the produced NF membrane concentrate to adjust the pH. The method for immobilizing carbon dioxide according to any one of claims 8 or 9.
  11.  前記第3工程で得られるアルカリ土類金属酸化物には、酸化マグネシウムが含まれる請求項1から10のいずれかに記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to any one of claims 1 to 10, wherein the alkaline earth metal oxide obtained in the third step contains magnesium oxide.
PCT/JP2021/023286 2020-06-22 2021-06-21 Method for fixing carbon dioxide WO2021261410A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022531952A JPWO2021261410A1 (en) 2020-06-22 2021-06-21
AU2021295775A AU2021295775A1 (en) 2020-06-22 2021-06-21 Method for fixing carbon dioxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020106905 2020-06-22
JP2020-106905 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021261410A1 true WO2021261410A1 (en) 2021-12-30

Family

ID=79281381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023286 WO2021261410A1 (en) 2020-06-22 2021-06-21 Method for fixing carbon dioxide

Country Status (3)

Country Link
JP (1) JPWO2021261410A1 (en)
AU (1) AU2021295775A1 (en)
WO (1) WO2021261410A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140055A1 (en) * 2022-01-24 2023-07-27 学校法人早稲田大学 Method for fixing carbon dioxide

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292371A (en) * 2001-01-23 2002-10-08 Goshu Yakuhin Kk Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
JP2003088863A (en) * 2001-09-19 2003-03-25 Toray Ind Inc Method for producing mineral-containing liquid and equipment therefor
JP2004033848A (en) * 2002-07-01 2004-02-05 Mitsubishi Heavy Ind Ltd Salt water manufacturing apparatus using reverse osmosis membrane, and salt water manufacturing method
JP2008100219A (en) * 2006-09-22 2008-05-01 Toray Ind Inc Desalination method and desalination apparatus
WO2012008013A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Concentration plant, plant for producing fresh water by concentration and for generating electric power, concentration method, and method for operating plant for producing fresh water by concentration and for generating electric power
JP2012120943A (en) * 2010-12-06 2012-06-28 Toray Ind Inc Alkali metal separation and recovery method, and alkali metal separation and recovery apparatus
JP2012213767A (en) * 2011-03-31 2012-11-08 Solt Industry Center Of Japan Method and apparatus for recovering k and mg
WO2014174647A1 (en) * 2013-04-25 2014-10-30 三菱重工業株式会社 Water treatment method and water treatment system
JP2020175344A (en) * 2019-04-19 2020-10-29 学校法人早稲田大学 Method for fixing carbon dioxide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292371A (en) * 2001-01-23 2002-10-08 Goshu Yakuhin Kk Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
JP2003088863A (en) * 2001-09-19 2003-03-25 Toray Ind Inc Method for producing mineral-containing liquid and equipment therefor
JP2004033848A (en) * 2002-07-01 2004-02-05 Mitsubishi Heavy Ind Ltd Salt water manufacturing apparatus using reverse osmosis membrane, and salt water manufacturing method
JP2008100219A (en) * 2006-09-22 2008-05-01 Toray Ind Inc Desalination method and desalination apparatus
WO2012008013A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Concentration plant, plant for producing fresh water by concentration and for generating electric power, concentration method, and method for operating plant for producing fresh water by concentration and for generating electric power
JP2012120943A (en) * 2010-12-06 2012-06-28 Toray Ind Inc Alkali metal separation and recovery method, and alkali metal separation and recovery apparatus
JP2012213767A (en) * 2011-03-31 2012-11-08 Solt Industry Center Of Japan Method and apparatus for recovering k and mg
WO2014174647A1 (en) * 2013-04-25 2014-10-30 三菱重工業株式会社 Water treatment method and water treatment system
JP2020175344A (en) * 2019-04-19 2020-10-29 学校法人早稲田大学 Method for fixing carbon dioxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUBUKU YOHEI, TSUBUKU YOHEI, MYERS COREY, NAKAGAKI TAKAO: "Feasibility Study of Net CO2 Sequestration Using Seawater Desalination Brine with Profitable Polyproduction of Commodities", SSRN ELECTRONIC JOURNAL, SOCIAL SCIENCE RESEARCH NETWORK, US, 4 April 2019 (2019-04-04), US , pages 1 - 8, XP055895803, ISSN: 1556-5068, DOI: 10.2139/ssrn.3365716 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140055A1 (en) * 2022-01-24 2023-07-27 学校法人早稲田大学 Method for fixing carbon dioxide

Also Published As

Publication number Publication date
JPWO2021261410A1 (en) 2021-12-30
AU2021295775A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
CA2726222C (en) Method for removing dissolved solids from aqueous waste streams
US8641992B2 (en) Process for recovering lithium from a brine
JP5495403B2 (en) Concentration plant, concentrated water production power plant, concentration method, and operation method of concentrated water production plant
US9822021B2 (en) Forward osmosis separation processes
Quist-Jensen et al. Perspectives on mining from sea and other alternative strategies for minerals and water recovery–The development of novel membrane operations
CN108472695B (en) Method and apparatus for recovering salt
JP4737670B2 (en) Method and apparatus for treating wastewater containing calcium and sulfuric acid
Turek et al. Salt production from coal-mine brine in ED–evaporation–crystallization system
JP2008223115A (en) Method for treating salt water
CN111484178A (en) Comprehensive treatment method for seawater or strong brine
CN105906126A (en) Salt-containing wastewater resource recycling and disposal system and method
WO2022030529A1 (en) Method for fixing carbon dioxide
CN105906128A (en) Method and system for recovering sodium chloride from high salinity wastewater
US20170036937A1 (en) Method for treating aqueous saline streams
TWI619676B (en) Process and system for producing sodium chloride brine
CN109179867A (en) The method of high-salt wastewater reuse and zero-emission
WO2021261410A1 (en) Method for fixing carbon dioxide
WO2016160810A1 (en) Osmotic separation systems and methods
CN106673019A (en) Method for producing sodium carbonate with salt-containing wastewater and CO2
Ramasamy Short review of salt recovery from reverse osmosis rejects
JP7313002B2 (en) Carbon dioxide fixation method
KR101860331B1 (en) Method for treating seawater desalination concentrates
WO2024080132A1 (en) Method for fixing carbon dioxide
WO2023140055A1 (en) Method for fixing carbon dioxide
CN109607582B (en) Method and system for recovering magnesium salt from desulfurization wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021295775

Country of ref document: AU

Date of ref document: 20210621

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21828850

Country of ref document: EP

Kind code of ref document: A1