JPH0362478B2 - - Google Patents

Info

Publication number
JPH0362478B2
JPH0362478B2 JP17995784A JP17995784A JPH0362478B2 JP H0362478 B2 JPH0362478 B2 JP H0362478B2 JP 17995784 A JP17995784 A JP 17995784A JP 17995784 A JP17995784 A JP 17995784A JP H0362478 B2 JPH0362478 B2 JP H0362478B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
water
containing gas
fresh water
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17995784A
Other languages
Japanese (ja)
Other versions
JPS6157292A (en
Inventor
Naohiko Ugawa
Tsumoru Nakamura
Masahiro Matsubayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17995784A priority Critical patent/JPS6157292A/en
Publication of JPS6157292A publication Critical patent/JPS6157292A/en
Publication of JPH0362478B2 publication Critical patent/JPH0362478B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は蒸発法による海水の淡水化装置で生成
した淡水に硬度成分を添加して飲料水を得る方法
に関する。 蒸発式海水淡水化装置で得られる淡水は蒸留水
であるため各種のイオン及び溶存ガス類を殆んど
含まず、カルシウムやマグネシウムの硬度成分も
殆んど無い。このため上記淡水をそのまま汎用の
送水設備を使用して送水した場合には、送水設備
に使用されている鋼管の腐食、コンクリート材の
溶出現象が起こり、送水設備の機能を損う恐れが
ある。一方飲料水として使用した場合には前述理
由により無味であり飲料水としての飲み味が悪い
ばかりでなく心臓病の原因となり得ることが指摘
されている。 〔従来の技術〕 このため従来より例えば文献「Desalination、
39(1981)503−520」に紹介されているように硬
度増加剤として生石灰、消石灰、石灰石、ドロマ
イト等が使用され、これらを淡水に溶解させる方
法が行なわれてきたが、このうち石灰石及び/又
はドロマイトを用いる場合、これ等を粒状にして
充填したフイルター(飲料水化装置では石灰石及
び/又はドロマイトの充填層を通常フイルターと
呼称)にあらかじめ炭酸ガスを吹き込んだ淡水を
導き、カルシウムあるいはマグネシウムを重炭酸
塩として溶出させて水の硬度を増す方法が一般的
である。 炭酸ガス源としては、別途燃料を燃焼させて得
た排ガス中の炭酸ガスを回収する方法、炭酸ガス
ボンベで搬入する方法等が提案されているが中で
も最近、淡水化装置自体から発生する炭酸ガスを
有効利用する方法が、経済性の面からも魅力のあ
るものとして注目されている。 〔発明が解決しようとする問題点〕 しかしながら淡水化装置から発生する炭酸ガス
は、元来海水中に含まれる重炭酸塩が下記(1)式の
反応により分解して発生するものであり、 2HCO- 3→CO2+CO3 2-+H2O (1) この重炭酸塩濃度が海水の環境すなわち気温、
水温、風速等に左右され必ずしも一定ではない。 加えて前記(1)式の反応速度は温度の影響を受け
るため、淡水化装置の運転条件すなわち負荷変動
によつても炭酸ガスの発生量は増減する。 この結果、淡水化装置より発生する炭酸ガス含
有ガスの量及び炭酸ガス濃度が変動してしまう。
量又は組成の変動した炭酸ガス含有ガスをそのま
ま淡水に吹き込んで炭酸含有水とすれば水中の炭
酸濃度も変動してしまう。生石石及び/又はドロ
マイトを充填したフイルター内を前記炭酸含有水
が通過すると下記(2)及び/又は(3)式に従つて溶解
する。 CaCO3+CO2+H2OCa(HCO32 (2) Ca・Mg(CO32+2CO2+2H2O Ca(HCO32+Mg(HCO32 (3) よつて、溶解後の淡水中のカルシウム及び/又
はマグネシウム、重炭酸根とも炭酸含有水中の炭
酸濃度の変動にともなつて変動してしまう。 処理後・飲料水中の上記溶出成分の変動は、処
理水の腐食性を低減し安定化させるという飲料水
化本来の目的に逆行するものであり、飲み味の改
善面からみても不完全である。又、フイルターに
充填した石灰石及び/又はドロマイトの消費量も
変動し、補充充填操作面でも不都合であつた。蒸
発法海水淡水化装置で生成される炭酸ガスを利用
するシステム自体が比較的新しいものであり、従
来は上記不都合点を解消する方法が見あたらなか
つた。 〔問題点を解決するための手段〕 本発明は、上記従来法の問題点を解消するため
に提案するもので、その骨子とするところは、炭
酸含有水中の全炭酸濃度が所定値となるようフイ
ルター通過前の淡水に吹き込む炭酸ガス含有ガス
の吹き込み量を調整する淡水の飲料水化方法であ
る。 詳しくは、蒸発法による海水の淡水化装置で生
成した淡水に、該淡水化装置より発生する炭酸ガ
ス含有ガスを吹き込んで炭酸含有水としたのち、
石灰石及び/又はドロマイトの粒状物を充填した
フイルターを通過させて飲料水を得る方法に於い
て、前記炭酸含有水中の全炭酸濃度を検知し、該
検知値が所定値となるよう前記炭酸ガス含有ガス
の吹き込み量を調整することを特徴とする淡水の
飲料水化方法を提案するものである。 〔作用〕 本発明法では、フイルター入口の炭酸含有水中
の全炭酸濃度を連続的又は間欠的に検知してこの
値が所定値となるよう淡水化装置で発生する炭酸
ガス含有ガスをフイルター入口の淡水に吹き込む
量をフイードバツク調整するため、先述の原因に
より前記炭酸ガス含有ガス量又はガス組成が変動
してもフイルター出口の処理水性状を安定して保
持できる。 〔実施例〕 図は本発明を海水の多段フラツシユ蒸発法から
得られる淡水の飲料化に適用した場合を示す。ラ
インaより海水が多段フラツシユ蒸発装置1に供
給され製造された淡水はラインbにより炭酸ガス
吸収塔2に圧送される。一方濃縮された海水はラ
インCより系外に排出され、蒸発にともなつて発
生した炭酸ガス含有ガスのうち、飲料水化に使用
されるガスはラインdを通つてコンプレツサー3
により昇圧されたのち流量制御弁8を通過後ライ
ンfにより炭酸ガス吸収塔2に送入される。余剰
の炭酸ガス含有ガスはエジエクター(図示なし)
によりラインeを通つて系外に排出される。 炭酸ガス吸収塔2ではラインbより送入された
淡水に所定量の炭酸ガスが溶解された後、ライン
hを通つてフイルター4に送り込まれる。未溶解
の炭酸及び窒素、酸素等のガスはラインgより系
外に排出される。炭酸ガス吸収塔2としては充填
塔が適用できる。また吸収条件によつては吸収塔
2の代わりにラインミキサーの使用も可能であ
る。ラインhより送入された炭酸含有水はフイル
ター4内を通過する間にフイルター4内に充てん
された石灰石を溶解し、硬度及び全アルカリ度を
増した後ラインiより抜き出される。ラインhに
は全炭酸濃度検出端5が設置されており、フイル
ター4入口での全炭酸濃度が全炭酸濃度測定器6
により連続的に測定されその出力は調節計7に入
力される。 検出端5としてはイオン電極等が適用可能であ
る。調節計7からはラインiには比抵抗の検出端
5が設置されており処理水の比抵抗が連続的に測
定されその出力は調節計6に入力される。検出端
5としては通常電極が用いられる。調節計6から
はあらかじめ設定してある比抵抗値との差異に応
じた信号がラインjより出力され吸収塔2に送入
される炭酸ガス含有ガスの流量が調節弁8によつ
て調節される。すなわち検出端5により測定され
た全炭酸濃度が設定値より低ければ調節弁8が開
けられ、全炭酸濃度が設定値より高ければ調節弁
8が閉じられる。このような制御により硬度、全
アルカリ、TDS(全溶解固形分)を所定値に設定
された水はラインiより系外にとり出される。と
り出された水はアルカリを添加されてPHを調整
(図示なし)されて腐食性のない安定な水となる。 なお図では、多段フラツシユ蒸発装置1にて製
造された淡水全量がラインbにより抜き出されて
飲料水化処理されているが、本発明の適用はこれ
に限定されるものではなく、製造された淡水の一
部を飲料水化処理する場合も適用可能である。 次に本発明の実験例を示す。この実験例では、
海水の多段フラツシユ蒸発装置1より製造された
淡水と、炭酸ガス含有ガスを分取し図に示す態様
の飲料水化方法により処理した。又、淡水分取量
は200/hrであり、炭酸ガス含有ガスは多段フ
ラツシユ蒸発装置1の第1段目と第7段目より抽
出され、その流量は調節弁8により調節した。 吸収塔7としてはラシヒリング充てん塔を使用
し、フイルター4にはふるい径1mmから4mmの石
灰石を充填した。 処理後の全硬度が炭酸カルシウム基準で70mg/
となるよう調節計7の設定値を決めラインiよ
りとり出される製造水の全硬度と全アルカリ度を
2時間毎に12のサンプルをサンプリングした。 その分析結果は次のとおりであつた。
[Industrial Application Field] The present invention relates to a method for obtaining drinking water by adding a hardness component to fresh water produced in a seawater desalination apparatus using an evaporation method. Since the fresh water obtained by the evaporative seawater desalination device is distilled water, it contains almost no various ions and dissolved gases, and almost no hardness components such as calcium or magnesium. For this reason, if the above-mentioned fresh water is directly conveyed using general-purpose water conveyance equipment, corrosion of the steel pipes used in the water conveyance equipment and elution of concrete materials may occur, which may impair the function of the water conveyance equipment. On the other hand, when used as drinking water, it has been pointed out that it is tasteless for the reasons mentioned above, and not only does it taste bad, but can also cause heart disease. [Prior art] For this reason, for example, the literature “Desalination,
39 (1981) 503-520, quicklime, slaked lime, limestone, dolomite, etc. have been used as hardness increasing agents, and a method of dissolving these in fresh water has been used. Or, when dolomite is used, fresh water into which carbon dioxide gas has been blown is introduced into a filter filled with granulated dolomite (in drinking water production equipment, a packed bed of limestone and/or dolomite is usually called a filter), and calcium or magnesium is added to the filter. A common method is to increase the hardness of water by eluting it as bicarbonate. As a source of carbon dioxide, methods have been proposed, such as recovering carbon dioxide from exhaust gas obtained by separately burning fuel, and transporting carbon dioxide gas in carbon dioxide cylinders. Methods of effective utilization are attracting attention as they are attractive from an economical perspective. [Problems to be solved by the invention] However, the carbon dioxide gas generated from desalination equipment is generated when bicarbonate originally contained in seawater is decomposed by the reaction of formula (1) below, and 2HCO - 3 →CO 2 +CO 3 2- +H 2 O (1) This bicarbonate concentration is determined by the seawater environment, i.e. temperature,
It is not necessarily constant as it depends on water temperature, wind speed, etc. In addition, since the reaction rate of equation (1) above is affected by temperature, the amount of carbon dioxide gas generated increases or decreases depending on the operating conditions of the desalination device, that is, load fluctuations. As a result, the amount of carbon dioxide-containing gas and the concentration of carbon dioxide gas generated from the desalination device fluctuate.
If a carbon dioxide-containing gas whose amount or composition has changed is directly blown into fresh water to produce carbonated water, the carbon dioxide concentration in the water will also vary. When the carbonated water passes through a filter filled with raw stone and/or dolomite, it dissolves according to the following equations (2) and/or (3). CaCO 3 +CO 2 +H 2 OCa(HCO 3 ) 2 (2) Ca・Mg(CO 3 ) 2 +2CO 2 +2H 2 O Ca(HCO 3 ) 2 +Mg(HCO 3 ) 2 (3) Therefore, fresh water after dissolution Both calcium and/or magnesium and bicarbonate radicals in the water fluctuate as the carbonate concentration in the carbonate-containing water fluctuates. The above-mentioned fluctuations in the eluted components in drinking water after treatment go against the original purpose of making drinking water, which is to reduce and stabilize the corrosivity of treated water, and are incomplete from the perspective of improving drinking taste. . Furthermore, the consumption amount of limestone and/or dolomite filled in the filter also varied, which was inconvenient in terms of replenishment operation. The system itself, which utilizes carbon dioxide gas produced by an evaporative seawater desalination device, is relatively new, and so far no method has been found to solve the above-mentioned disadvantages. [Means for Solving the Problems] The present invention is proposed to solve the problems of the above-mentioned conventional method. This is a method for converting fresh water into drinking water by adjusting the amount of carbon dioxide-containing gas blown into the fresh water before it passes through a filter. Specifically, after blowing carbon dioxide-containing gas generated from the desalination device into fresh water produced by a seawater desalination device using the evaporation method to make carbonated water,
In a method for obtaining drinking water by passing it through a filter filled with limestone and/or dolomite particles, the total carbon dioxide concentration in the carbonated water is detected, and the carbonic acid gas-containing water is adjusted so that the detected value becomes a predetermined value. This paper proposes a method for converting fresh water into drinking water, which is characterized by adjusting the amount of gas blown into the water. [Operation] In the method of the present invention, the total carbon dioxide concentration in the carbonated water at the filter inlet is detected continuously or intermittently, and the carbon dioxide-containing gas generated in the desalination equipment is transferred to the filter inlet so that this value becomes a predetermined value. Since the amount blown into the fresh water is adjusted by feedback, the properties of the treated water at the filter outlet can be stably maintained even if the amount of carbon dioxide gas or the gas composition changes due to the above-mentioned causes. [Example] The figure shows a case in which the present invention is applied to drinking fresh water obtained from a multi-stage flash evaporation method of seawater. Seawater is supplied to the multi-stage flash evaporator 1 through line a, and the produced fresh water is pumped to the carbon dioxide absorption tower 2 through line b. On the other hand, the concentrated seawater is discharged to the outside of the system through line C, and among the carbon dioxide-containing gas generated as a result of evaporation, the gas used to make drinking water is pumped through line d to compressor 3.
After passing through the flow rate control valve 8, it is fed into the carbon dioxide absorption tower 2 through line f. Excess carbon dioxide-containing gas is removed by an ejector (not shown)
is discharged out of the system through line e. In the carbon dioxide absorption tower 2, a predetermined amount of carbon dioxide gas is dissolved in the fresh water fed through the line b, and then fed into the filter 4 through the line h. Undissolved carbon dioxide and gases such as nitrogen and oxygen are discharged from the system through line g. As the carbon dioxide absorption tower 2, a packed tower can be used. Furthermore, depending on the absorption conditions, a line mixer may be used instead of the absorption tower 2. While passing through the filter 4, the carbonated water fed through the line h dissolves the limestone filled in the filter 4, increasing its hardness and total alkalinity, and then is extracted from the line i. A total carbonic acid concentration detection end 5 is installed in the line h, and the total carbonic acid concentration at the inlet of the filter 4 is measured by a total carbonic acid concentration measuring device 6.
The output is continuously measured by the controller 7 and its output is input to the controller 7. As the detection end 5, an ion electrode or the like can be used. A resistivity detection end 5 is installed on line i from the controller 7, and the resistivity of the treated water is continuously measured and its output is input to the controller 6. As the detection end 5, an electrode is usually used. A signal corresponding to the difference from a preset specific resistance value is outputted from the controller 6 via line j, and the flow rate of the carbon dioxide-containing gas sent to the absorption tower 2 is adjusted by the control valve 8. . That is, if the total carbonic acid concentration measured by the detection end 5 is lower than the set value, the regulating valve 8 is opened, and if the total carbonic acid concentration is higher than the set value, the regulating valve 8 is closed. Through such control, water whose hardness, total alkali, and TDS (total dissolved solids) are set to predetermined values is taken out of the system through line i. The extracted water has an alkali added thereto to adjust its pH (not shown), making it stable and non-corrosive. In the figure, the entire amount of fresh water produced in the multi-stage flash evaporator 1 is extracted through line b and treated to make it into drinking water, but the application of the present invention is not limited to this, and the produced It can also be applied when a portion of fresh water is treated to make it into drinking water. Next, an experimental example of the present invention will be shown. In this example experiment,
Fresh water and carbon dioxide-containing gas produced by the multi-stage flash evaporator 1 of seawater were separated and treated according to the method shown in the figure for producing drinking water. The amount of fresh water taken was 200/hr, and the carbon dioxide-containing gas was extracted from the first and seventh stages of the multi-stage flash evaporator 1, and the flow rate was regulated by the control valve 8. A Raschig ring packed tower was used as the absorption tower 7, and the filter 4 was filled with limestone having a sieve diameter of 1 mm to 4 mm. Total hardness after treatment is 70mg/based on calcium carbonate.
The set value of the controller 7 was determined so that the total hardness and total alkalinity of the produced water taken out from line i were sampled every 2 hours for 12 samples. The analysis results were as follows.

【表】 なお上記サンプリング期間に分取した炭酸ガス
含有ガス量の平均流量は4.9N/hであつた。 図に於いて、調節計6をマニアル設定とし、吸
収塔2に送入する炭酸ガス含有ガス流量を実施例
のサンプリング期間中の平均値に固定設定した。
他は実施例と全く同一条件としラインiよりとり
出される製造水の全硬度と全アルカリ度を上述の
実験例と同様2時間毎に12のサンプルをサンプリ
ングした。 その分析結果は次のとおりであつた。
[Table] The average flow rate of the carbon dioxide-containing gas collected during the above sampling period was 4.9 N/h. In the figure, the controller 6 was set to manual, and the flow rate of the carbon dioxide-containing gas sent to the absorption tower 2 was fixed to the average value during the sampling period of the example.
The other conditions were exactly the same as in the example, and the total hardness and total alkalinity of the produced water taken out from line i were sampled every 2 hours, as in the above-mentioned experimental example. The analysis results were as follows.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明方法によれば淡水化
発生装置での炭酸ガス発生量が増加した場合に
も、石灰石及び/又はドロマイトが所定値以上に
淡水中に溶解して石灰石、ドロマイトの消費量を
必要以上に増加させることもなく、又炭酸ガス発
生量が減少した場合には炭酸ガス含有ガスの吹き
込み量を増加させることにより所定量の石灰石及
び/又はドロマイトを溶解させることができ、良
好な飲料水が得られる効果がある。
As described above, according to the method of the present invention, even when the amount of carbon dioxide gas generated in the desalination generator increases, limestone and/or dolomite dissolves in the fresh water to a level exceeding a predetermined value, resulting in consumption of limestone and dolomite. It is possible to dissolve a predetermined amount of limestone and/or dolomite without increasing the amount more than necessary, and when the amount of carbon dioxide gas generated decreases, by increasing the amount of carbon dioxide-containing gas blown, it is good. This has the effect of providing safe drinking water.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の淡水の飲料水化方法を説明するた
めのブロツク図である。 1……多段フラツシユ蒸発装置、2……炭酸ガ
ス吸収塔、3……コンプレツサー、4……フイル
ター、5……全炭酸濃度検出端、6……全炭酸濃
度測定器、7……調節計、8……流量調節弁。
The figure is a block diagram for explaining the method of converting fresh water into drinking water according to the present invention. 1... Multi-stage flash evaporator, 2... Carbon dioxide absorption tower, 3... Compressor, 4... Filter, 5... Total carbon dioxide concentration detection end, 6... Total carbon dioxide concentration measuring device, 7... Controller, 8...Flow control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発法による海水の淡水化装置で生成した淡
水に、該淡水化装置より発生する炭酸ガス含有ガ
スを吹き込んで炭酸含有水としたのち、石灰石及
び/又はドロマイトの粒状物を充填したフイルタ
ーを通過させて飲料水を得る方法に於いて、前記
炭酸含有水中の全炭酸濃度を検知し、該検知値が
所定値となるよう前記炭酸ガス含有ガスの吹き込
み量を調整することを特徴とする淡水の飲料水化
方法。
1 Fresh water produced by a seawater desalination device using the evaporation method is made into carbonated water by blowing carbon dioxide-containing gas generated from the desalination device, and then passed through a filter filled with limestone and/or dolomite granules. In the method for obtaining drinking water, the total carbon dioxide concentration in the carbonated water is detected, and the amount of the carbon dioxide-containing gas blown is adjusted so that the detected value becomes a predetermined value. How to make drinking water.
JP17995784A 1984-08-29 1984-08-29 Method for converting fresh water to drinking water Granted JPS6157292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17995784A JPS6157292A (en) 1984-08-29 1984-08-29 Method for converting fresh water to drinking water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17995784A JPS6157292A (en) 1984-08-29 1984-08-29 Method for converting fresh water to drinking water

Publications (2)

Publication Number Publication Date
JPS6157292A JPS6157292A (en) 1986-03-24
JPH0362478B2 true JPH0362478B2 (en) 1991-09-26

Family

ID=16074917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17995784A Granted JPS6157292A (en) 1984-08-29 1984-08-29 Method for converting fresh water to drinking water

Country Status (1)

Country Link
JP (1) JPS6157292A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253895A (en) * 1989-03-28 1990-10-12 Kyoto Suiken Kk Production of brewing water for refined sake
KR100990486B1 (en) 2010-08-18 2010-11-29 케이씨삼양정수(주) Potabilization method and apparatus for producing potable water from desalinated seawater
KR101294608B1 (en) * 2011-10-13 2013-08-08 그린엔텍 주식회사 Lime dosing system of seawater desalination plant
EP3428128A1 (en) * 2017-07-12 2019-01-16 Omya International AG Method for increasing the magnesium ion concentration in feed water

Also Published As

Publication number Publication date
JPS6157292A (en) 1986-03-24

Similar Documents

Publication Publication Date Title
CA1048231A (en) Process for the removal of oxides of sulfur from a gaseous stream
US7419643B1 (en) Methods and apparatus for recovering gypsum and magnesium hydroxide products
EP0536908A1 (en) Method of improving city water and an apparatus therefor
JPH1170316A (en) Desulfurization method for exhaust gas
JPH0362478B2 (en)
US4539190A (en) Method for the treatment of exhaust gases
ES448536A1 (en) Manufacture of magnesium carbonate and calcium sulphate from brine mud
Lisitsin et al. The potential of CO2 stripping for pretreating brackish and wastewater desalination feeds
JPH0361518B2 (en)
US20030175193A1 (en) FGD gypsum dewatering improvement through crystal habit modification by carboxylic acids
US5266286A (en) Flue gas desulfurization process
US4092402A (en) Method for removing sulfur dioxide from exhaust gas
JP2014516308A (en) Method for monitoring and controlling the chemical reaction of a ZLD process in a power plant
JPS6157293A (en) Method for converting fresh water to drinking water
JPS61283392A (en) Treatment of fresh water made by reverse osmosis apparatus
JPS61114792A (en) Method for making drinking water from fresh water
Migliorini et al. 40 MIGD potabilization plant at Ras Laffan: design and operating experience
CN110339691B (en) Flue gas desulfurization system and method
CA2240765A1 (en) Process for removing sulfur dioxide from flue gasses
US5269944A (en) Method for removing hydrogen sulfide from untreated water
JPS58159892A (en) Treatment of fresh water
JPS62121694A (en) Method for controlling drinking water making apparatus using carbon dioxide
JPS6339696A (en) Penetrating water neutralizing method in seawater desalination by means of reverse osmosis
WO2003066525A1 (en) Improvement of flue gas desulfurization gypsum-dewatering through crystal habit modification by carboxylic acids
JPS6034791A (en) Process for improving quality of water

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term