JPS6128215B2 - - Google Patents

Info

Publication number
JPS6128215B2
JPS6128215B2 JP52073445A JP7344577A JPS6128215B2 JP S6128215 B2 JPS6128215 B2 JP S6128215B2 JP 52073445 A JP52073445 A JP 52073445A JP 7344577 A JP7344577 A JP 7344577A JP S6128215 B2 JPS6128215 B2 JP S6128215B2
Authority
JP
Japan
Prior art keywords
electrode
applying
electrical stress
electronic devices
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52073445A
Other languages
Japanese (ja)
Other versions
JPS547877A (en
Inventor
Kyoshi Futagawa
Nobukatsu Manabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7344577A priority Critical patent/JPS547877A/en
Publication of JPS547877A publication Critical patent/JPS547877A/en
Publication of JPS6128215B2 publication Critical patent/JPS6128215B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 従来、トランジスタ、IC等の半導体デバイス
の様に製造途中段階まで単一基板上に複数個の同
一パターンがくり返し形成されている電子デバイ
スにおいて、この製造途中段階において行なう電
気的試験は探針を個別のデバイス毎にあてて特性
を測定するという方法に頼つており、この段階に
おいて長時間の電気的ストレス印加試験を実施す
ることはほとんどなかつた。これは長時間各デバ
イスに電気的ストレス印加試験を行なうのに、前
述のごとく短時間の試験(測定)に用いられてい
た探針を用る方法を適用する場合、探針とデバイ
スとの接触の不安定性、探針を基板上のデバイス
と同一の規則性で取り付ける。もしくは連続操作
する際の複雑性の面から、不可能もしくは可能で
あつても経済面で有効でないと考えられたためで
ある。
[Detailed Description of the Invention] Conventionally, in electronic devices such as semiconductor devices such as transistors and ICs, in which a plurality of identical patterns are repeatedly formed on a single substrate until the mid-manufacturing stage, electrical The conventional tests relied on the method of measuring the characteristics by applying a probe to each individual device, and at this stage, long-term electrical stress application tests were rarely performed. This is because when applying the method using a probe, which was used for short-time tests (measurements) as described above, to conduct long-term electrical stress application tests on each device, contact between the probe and the device instability, attaching the probe with the same regularity as the device on the substrate. Or, because of the complexity involved in continuous operation, it was considered impossible, or even if it was possible, it was not economically effective.

この発明の目的はこれらの欠点を含まない経済
的な試験方法を提供することにある。本発明によ
れば、ウエハー段階における電子デバイスに電気
的ストレスを印加することを特徴とする電子デバ
イスの試験方法が得られる。
The aim of the invention is to provide an economical test method which does not have these drawbacks. According to the present invention, there is provided a method for testing an electronic device characterized by applying electrical stress to the electronic device at the wafer stage.

本発明の特徴は、半導体ウエハーの一主面側に
複数の電子デバイスが形成されたウエハー段階に
おいて、該複数の電子デバイスの各々の所望電極
に所望電圧を印加することにより該複数の電子デ
バイスに電気的ストレスを与えるに際し、半導体
基板の一主面上に絶縁物を介して前記複数の電子
デバイスの電極をそれぞれ対応せる平担な上面を
有する電圧印加用電極を設け、該電圧印加用電極
はその平面より細い配線部により該半導体基板に
接続された電気的ストレス印加装置部を用意し、
該複数の電子デバイスの各々の電極の上面と該電
気的ストレス印加装置部の電圧印加用電極の上面
をそれぞれ当接せしめ、該半導体ウエハーの他主
面および該電気的ストレス印加装置部の半導体基
板の他主面にそれぞれ電気的ストレス印加のため
の電極を設け、かかる状態で前記複数の電子デバ
イスに電気的ストレスを与える電子デバイスの試
験方法にある。とくに本発明によればトランジス
タ、IC等の半導体デバイスの様に、製造途中段
階まで単一基板上に複数個の同一パターンのデバ
イスが規則的にくり返し形成されている電子デバ
イスの所望電極に、この電極と同一のくり返し規
則を有する導電体装置を介して電気的ストレスを
印加することを特徴とする電子デバイスの試験方
法が得られる。この発明による試験方法を実現す
る為の装置に必要な要件は、 (イ) その装置と被試験デバイスとの電気的接続の
為の電極が被試験デバイスの電極と同一規則性
をもつてくり返されている事。
A feature of the present invention is that, at the wafer stage where a plurality of electronic devices are formed on one main surface side of a semiconductor wafer, a desired voltage is applied to a desired electrode of each of the plurality of electronic devices. When applying electrical stress, a voltage applying electrode having a flat upper surface corresponding to each of the electrodes of the plurality of electronic devices is provided on one main surface of the semiconductor substrate via an insulator, and the voltage applying electrode is preparing an electrical stress applying device section connected to the semiconductor substrate through a wiring section thinner than the plane;
The upper surface of each electrode of the plurality of electronic devices and the upper surface of the voltage applying electrode of the electrical stress applying device section are brought into contact with each other, and the other main surface of the semiconductor wafer and the semiconductor substrate of the electrical stress applying device section are brought into contact with each other. The method for testing an electronic device includes providing an electrode for applying electrical stress on each of the other main surfaces, and applying electrical stress to the plurality of electronic devices in this state. In particular, according to the present invention, this method can be applied to a desired electrode of an electronic device such as a semiconductor device such as a transistor or an IC, in which a plurality of devices with the same pattern are regularly and repeatedly formed on a single substrate until the mid-manufacturing stage. A method for testing an electronic device is obtained, which is characterized in that electrical stress is applied via a conductor device having the same repeating rule as an electrode. The requirements necessary for an apparatus for realizing the test method according to the present invention are as follows: (a) The electrodes for electrical connection between the apparatus and the device under test must repeat with the same regularity as the electrodes of the device under test. What is being done.

(ロ) その装置と外部電源との接続が容易な事。(b) It is easy to connect the device to an external power source.

(ハ) 被試験デバイスの一部に予期せぬ特性を示す
ものであつても、試験中他のデバイスに影響を
与えない工夫がなされている事。である。
(c) Even if a part of the device under test exhibits unexpected characteristics, measures must be taken to ensure that it does not affect other devices during the test. It is.

以下、半導体モノリシツクICを例に取り、こ
れら3つの要件を満たす実施例を図面を参照して
詳述する。半導体モノリシツクICはその製造途
中段階において第1図に概念図で示す様に、〓そ
の1つ1つは、外部と電気的接続を行なえばその
機能を果し得る「チツプ」11が規則的にくり返
されている「ウエハー」10〓(以下ウエハーと
略す。)の段階がある。さらにそのチツプ11の
1つ1つを見れば第2図に概念図で示す様に、内
部素子及び内部回路の部分21と、これをチツプ
外部と電気的に接続する為の電極であるボンデイ
ングパツド22とに分けられる。この実施例は半
導体モノリシツクICをウエハー10の段階で試
験する方法にかかわるものであるが、この試験に
おける装置で上記要件(イ)を満たす為には第3図に
示すようにボンデイングパツド22と同じ規則を
もつた電極32を電気的ストレス印加装置側に各
チツプ11と対応して形成する事が必要である。
電気的ストレス印加用電極チツプの部分31はそ
の試験の目的によつて一部省略または修正する事
も出来る。ウエハー10におけるチツプ11の規
則性に対応させて第3図に示した電極チツプ部分
31をくり返したパターンを作る事によつて第4
図に概念的に示すような電気的ストレス印加装置
40が構成される。
Hereinafter, using a semiconductor monolithic IC as an example, an embodiment that satisfies these three requirements will be described in detail with reference to the drawings. As shown in the conceptual diagram in Figure 1 during the manufacturing stage of a semiconductor monolithic IC, each of them is made up of regular "chips" 11 that can perform their functions by electrically connecting them to the outside. There is a stage of "wafer" 10 (hereinafter abbreviated as wafer) that is repeated. Furthermore, if we look at each of the chips 11, as shown in the conceptual diagram in FIG. It is divided into 22 parts. This embodiment relates to a method for testing a semiconductor monolithic IC at the wafer 10 stage, but in order to satisfy the above requirement (a) with the equipment used in this test, the bonding pad 22 and the bonding pad 22 as shown in FIG. It is necessary to form electrodes 32 having the same rules on the electrical stress applying device side in correspondence with each chip 11.
Part 31 of the electrode chip for applying electrical stress can be partially omitted or modified depending on the purpose of the test. By creating a pattern in which the electrode chip portions 31 shown in FIG. 3 are repeated in accordance with the regularity of the chips 11 on the wafer 10,
An electrical stress applying device 40 is configured as conceptually shown in the figure.

第5図は第1図のウエハー10と第4図に示す
電気的ストレス印加装置40とを電気的に接続し
た状態の断面の一部を拡大した図である。電気的
ストレス印加装置部40の構造及び前述の要件(イ)
は被試験デバイス部10を作る技術で容易に実施
可能である。すなわち半導体基板51に絶縁物5
3を介して電極32を設けた構成となる。前述の
要件(ハ)は、電極32の拡大平面図(第6図)に示
すように細い配線部64を広い電極部65と半導
体基板51へのコンタクト部分66との間に入れ
る事により満たされる。すなわち、被試験デバイ
ス10の一部が他のデバイスに最も大きく影響を
与える原因は過電流による発熱であるが細い配線
部64を設ける事により過電流が流れた場合には
細い配線部64が溶断する為、過電流の流れたデ
バイスを瞬間的に切断し、予期せぬ発熱を防ぐ事
が出来る。また前述の要件(ロ)は、第5図に示した
ように電気的ストレス印加装置部40および被試
験デバイスの基板側に金属の平板54(電気的ス
トレス印加側)および55(接地側)をそれぞれ
配置し、外部から機械的に密着させるだけで容易
に実現できる。ここで基板51として半導体基板
を用いた理由は、これによりこの電気的ストレス
印加装置40が通常の半導体ウエハー加工技術を
用いて製作できるからである。たとえば絶縁物5
3は半導体基板を熱酸化してその一主面に形成さ
れる熱酸化膜とすることができる。そしてこの絶
縁物53の開孔、その上の電極32は通常のPR
技術を用いて形成すればよい。一方、この基板を
絶縁体で構成した場合、基板の他主面の裏面電極
54と一主面の各電極32とを接続する貫通孔を
各電極ごとにこの絶縁体基板に設け、この貫通孔
を通して裏面電極54と各電極32とを接続した
くてはならず、その製作が困難となる。本発明に
よれば、たとえば半導体ウエハーの裏面電極55
を接地させて、電気的ストレス印加装置40の他
主面の裏面電極54にストレス印加のための電圧
を印加する。この電圧は、裏面電極54→半導体
基板51→各電極32につたわり、この各電極3
2により、半導体ウエハー10の各電極32に上
記ストレス電圧が印加される。以上述べたような
発明による方法を実施した場合と、従来の寿命試
験、スクリーニング等において、電気的ストレス
印加試験がケース封止等の組立後行なわれていた
場合とを比較すると、 (a) 組立後まで試験の実施を待つ必要がない為、
デバイスの欠陥を早く発見する事ができ、すみ
やかな是正処理を取る事ができる。
FIG. 5 is an enlarged view of a part of the cross section of the state in which the wafer 10 of FIG. 1 and the electrical stress applying device 40 shown in FIG. 4 are electrically connected. Structure of the electrical stress applying device section 40 and the above-mentioned requirements (a)
can be easily implemented using the technology for manufacturing the device under test section 10. That is, the insulator 5 is placed on the semiconductor substrate 51.
The structure is such that an electrode 32 is provided through the electrode 3. The above-mentioned requirement (c) is satisfied by inserting the thin wiring portion 64 between the wide electrode portion 65 and the contact portion 66 to the semiconductor substrate 51, as shown in the enlarged plan view of the electrode 32 (FIG. 6). . In other words, the cause of the greatest effect on other devices by a part of the device under test 10 is heat generation due to overcurrent, but by providing the thin wiring section 64, the thin wiring section 64 will melt if an overcurrent flows. Therefore, it is possible to instantly disconnect devices that have overcurrent flowing through them, and prevent unexpected heat generation. In addition, the above-mentioned requirement (b) requires that metal flat plates 54 (electrical stress application side) and 55 (ground side) be installed on the electrical stress application unit 40 and the substrate side of the device under test, as shown in FIG. This can be easily achieved by simply arranging them and mechanically adhering them from the outside. The reason why a semiconductor substrate is used here as the substrate 51 is that this allows the electrical stress applying device 40 to be manufactured using normal semiconductor wafer processing technology. For example, insulator 5
3 can be a thermal oxide film formed on one main surface of the semiconductor substrate by thermally oxidizing the semiconductor substrate. The hole in this insulator 53 and the electrode 32 above it are the same as the normal PR.
It can be formed using technology. On the other hand, when this substrate is made of an insulator, a through hole connecting the back electrode 54 on the other main surface of the substrate and each electrode 32 on one main surface is provided in the insulator substrate for each electrode, and the through hole It is necessary to connect the back surface electrode 54 and each electrode 32 through the wire, which makes manufacturing difficult. According to the present invention, for example, the back electrode 55 of a semiconductor wafer
is grounded, and a voltage for stress application is applied to the back electrode 54 on the other main surface of the electrical stress application device 40. This voltage is transmitted from the back electrode 54 to the semiconductor substrate 51 to each electrode 32.
2, the stress voltage is applied to each electrode 32 of the semiconductor wafer 10. Comparing the case where the method according to the invention as described above is implemented and the case where the electrical stress application test is performed after the case sealing etc. is assembled in the conventional life test, screening, etc., (a) Assembly There is no need to wait until later to conduct the test.
Defects in devices can be discovered early and corrective action can be taken quickly.

(b) 試験が破壊試験である場合従来は必要であつ
た被試験デバイスの組立時の工数、組立材料等
が不要となる。
(b) If the test is a destructive test, the man-hours and materials required for assembling the device under test, which were previously necessary, are no longer required.

(c) 組立後行なう試験においては、組立材料、治
具の面から試験温度に制限があつたが、これが
緩和される。
(c) For tests conducted after assembly, there were restrictions on test temperature due to assembly materials and jigs, but these will be relaxed.

(d) 試験に用いる空間(場所)が縮小される。(d) The space (location) used for testing is reduced.

等の効果がある。There are other effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は被試験デバイスとしてウエハーの概念
図。第2図はウエハー内のチツプの概念図、第3
図は本発明による電気的ストレス印加装置側のチ
ツプに対応する部分の概念図。第4図は本発明に
よる電気的ストレス印加用装置の概念図。第5図
は本発明の一実施例による電気的ストレス印加装
置と被試験デバイスとの接合状態の一部を拡大し
た概略断面図。第6図は本発明による電極の拡大
平面図。 10……ウエハー、11……チツプ、21……
内部素子および回路部、22……ボンデイングパ
ツド(電極)、31……電気的ストレス印加装置
側の電極チツプ部分、32……電極、40……電
気的ストレス印加装置、51……半導体基板、5
3……絶縁物、54,55……電気的ストレス印
加のための電極、64……細い配線部、65……
広い電極部、66……基板とのコンタクト部。
Figure 1 is a conceptual diagram of a wafer as a device under test. Figure 2 is a conceptual diagram of the chips inside the wafer, Figure 3
The figure is a conceptual diagram of the part corresponding to the chip on the side of the electrical stress applying device according to the present invention. FIG. 4 is a conceptual diagram of an apparatus for applying electrical stress according to the present invention. FIG. 5 is a schematic sectional view enlarging a part of the bonded state between the electrical stress applying device and the device under test according to an embodiment of the present invention. FIG. 6 is an enlarged plan view of an electrode according to the present invention. 10...wafer, 11...chip, 21...
Internal element and circuit section, 22... Bonding pad (electrode), 31... Electrode chip portion on the electrical stress applying device side, 32... Electrode, 40... Electrical stress applying device, 51... Semiconductor substrate, 5
3... Insulator, 54, 55... Electrode for applying electrical stress, 64... Thin wiring part, 65...
Wide electrode part, 66...Contact part with the substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体ウエハーの一主面側に複数の電子デバ
イスが形成されたウエハー段階において、該複数
の電子デバイスの各々の所望電極に所望電圧を印
加することにより該複数の電子デバイスに長時間
の電気的ストレスを与えるに際し、半導体基板の
一主面上に絶縁物を介して、前記複数の電子デバ
イスの電極にそれぞれ対応せる平担な上面を有す
る電圧印加用電極を設け、該電圧印加用電極はそ
の平面より細い配線部により該半導体基板の該一
主面に接続された電気的ストレス印加装置部を用
意し、該複数の電子デバイスの各々の電極の上面
と該電気的ストレス印加装置部の電圧印加用電極
の上面とをそれぞれ当接せしめ、該半導体ウエハ
ーの他主面および該電気的ストレス印加装置部の
半導体基板の他主面にそれぞれ電気的ストレス印
加のための電極を設け、かかる状態で前記複数の
電子デバイスに長時間の電気的ストレスを与える
ことを特徴とする電子デバイスの試験方法。
1. At the wafer stage where a plurality of electronic devices are formed on one main surface side of a semiconductor wafer, a desired voltage is applied to a desired electrode of each of the plurality of electronic devices to provide long-term electrical power to the plurality of electronic devices. When applying stress, a voltage applying electrode having a flat upper surface corresponding to each of the electrodes of the plurality of electronic devices is provided on one main surface of the semiconductor substrate via an insulator, and the voltage applying electrode is An electrical stress applying device section connected to the one main surface of the semiconductor substrate by a wiring section thinner than a plane is prepared, and a voltage is applied between the upper surface of each electrode of the plurality of electronic devices and the electrical stress applying device section. electrodes for applying electrical stress are respectively provided on the other main surface of the semiconductor wafer and the other main surface of the semiconductor substrate of the electrical stress applying device section, and in this state, the An electronic device testing method characterized by applying long-term electrical stress to multiple electronic devices.
JP7344577A 1977-06-20 1977-06-20 Test method for electronic device Granted JPS547877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7344577A JPS547877A (en) 1977-06-20 1977-06-20 Test method for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7344577A JPS547877A (en) 1977-06-20 1977-06-20 Test method for electronic device

Publications (2)

Publication Number Publication Date
JPS547877A JPS547877A (en) 1979-01-20
JPS6128215B2 true JPS6128215B2 (en) 1986-06-28

Family

ID=13518426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7344577A Granted JPS547877A (en) 1977-06-20 1977-06-20 Test method for electronic device

Country Status (1)

Country Link
JP (1) JPS547877A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599734A (en) * 1979-01-26 1980-07-30 Hitachi Ltd Pattern-sheet for characteristic test of semiconductor element
US5637925A (en) * 1988-02-05 1997-06-10 Raychem Ltd Uses of uniaxially electrically conductive articles
JP2919757B2 (en) * 1994-11-14 1999-07-19 ローム株式会社 Insulated gate semiconductor device

Also Published As

Publication number Publication date
JPS547877A (en) 1979-01-20

Similar Documents

Publication Publication Date Title
US5319224A (en) Integrated circuit device having a geometry to enhance fabrication and testing and manufacturing method thereof
US4223337A (en) Semiconductor integrated circuit with electrode pad suited for a characteristic testing
JP3337901B2 (en) Integrated circuit test board with limited thermal expansion characteristics
JPH1056093A (en) Semiconductor device and electronic device where the semiconductor device is incorporated
JPH0773106B2 (en) Method for manufacturing semiconductor device
JP6231279B2 (en) Semiconductor device
JPS6128215B2 (en)
JPH07122604A (en) Semiconductor integrated circuit device
US20060273422A1 (en) Switching element for characteristic inspection, and characteristic inspection method
JP3093216B2 (en) Semiconductor device and inspection method thereof
JP2657315B2 (en) Probe card
KR100396344B1 (en) Monitoring resistor element and measuring method of relative preciseness of resistor elements
JP2592524B2 (en) Aging method for semiconductor device, aging power supply board, and aging device
JPS62183134A (en) Semiconductor device
JPH0555327A (en) Screening method of semiconductor element
JPS618939A (en) Semiconductor device
JPH0989981A (en) Chip carrier
JPS6298633A (en) Semiconductor device
JPH0729950A (en) Measuring method for temperature characteristic of semiconductor wafer
JPS62149150A (en) Accelerated-life testing method of semiconductor device
JPS63184078A (en) Semiconductor device tester
JPS62193137A (en) Manufacture of semiconductor device
JPH053740B2 (en)
JP2989504B2 (en) Evaluation method of semiconductor chip in semiconductor package
JPH04333251A (en) Semiconductor wafer