JPS61278729A - Pressure detecting device - Google Patents
Pressure detecting deviceInfo
- Publication number
- JPS61278729A JPS61278729A JP12010785A JP12010785A JPS61278729A JP S61278729 A JPS61278729 A JP S61278729A JP 12010785 A JP12010785 A JP 12010785A JP 12010785 A JP12010785 A JP 12010785A JP S61278729 A JPS61278729 A JP S61278729A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- container
- temperature
- signal
- pressure sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体を使用した圧力検出装置の感度の向上
と温度補償手段の改善に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improving the sensitivity of a pressure detection device using a semiconductor and improving temperature compensation means.
半導体をセンサに用いた圧力検出装置は、ピエゾ抵抗効
果を利用したものが最も多い。このピエゾ抵抗効果を利
用したセンサは、外力による歪みで半導体の結晶内に応
力変化が生じ、これに起因して電子のエネルギー順位が
変化する。その結果、抵抗値が変るのである。Most pressure detection devices using semiconductors as sensors utilize piezoresistance effects. In a sensor that utilizes this piezoresistance effect, stress changes occur within the semiconductor crystal due to strain caused by external force, and this changes the energy level of electrons. As a result, the resistance value changes.
従って、H1測しようとする圧力の測定感度を充分に得
るためには、如何に半導体圧力せンサに歪みを与えるよ
うに工夫するかが、圧力検出装置の設計上のポイントと
なる。そして、一般には、第5図に示すように、ダイア
フラム11に半導体ピエゾ抵抗素子10を接着して構成
するような手段が多く用いられている。Therefore, in order to obtain sufficient measurement sensitivity for the pressure to be measured by H1, the key point in designing a pressure detection device is how to apply distortion to the semiconductor pressure sensor. Generally, as shown in FIG. 5, a method is often used in which a semiconductor piezoresistive element 10 is bonded to a diaphragm 11.
(発明が解決しようとする問題点)
しかし、第5図のような従来の圧力検出装置は、1個の
半導体をセンサとして用いているので、後3 −シ
ー
述する丁−丁および8 2に□ の項を消去することが
困難なこと(温度補償が困難)、及び充分な圧力−導電
度変化を得ることができないこと(圧力感度不足)等で
問題があった。(Problems to be Solved by the Invention) However, since the conventional pressure detection device as shown in FIG. 5 uses one semiconductor as a sensor, There were problems such as difficulty in eliminating the term □ (difficulty in temperature compensation) and inability to obtain a sufficient pressure-conductivity change (insufficient pressure sensitivity).
本発明の目的は、半導体でそれぞれ構成された略同様の
特性を有する2つの圧カセンリ゛を組合ゼ、簡単な構造
で、かつ温度補正の容易な圧力検出装置を提供すること
である。SUMMARY OF THE INVENTION An object of the present invention is to provide a pressure detection device that combines two pressure sensors each made of semiconductor and having substantially similar characteristics, has a simple structure, and is easy to correct for temperature.
本発明は、上記問題点を解決するために、静水圧に対す
る抵抗変化が略同様の特性を有する半導体で構成された
第1および第2の圧力センサを有し、第1の圧力センサ
を圧力伝達媒体を充満した第1の容器内に配置し、第2
の圧力センサを第1の容器内を含む容器の近傍に配置す
るとともに、第2の容器内の圧力を一定とし、温度のみ
第1の容器と同様に変化するように構成し、これら第1
および第2の圧力センサの抵抗を比率演輝し、温度信号
で除算することにより、温度の影響を除き、圧力に比例
した信号を得るようにしたものである。In order to solve the above-mentioned problems, the present invention has first and second pressure sensors made of semiconductors having substantially the same resistance change characteristics with respect to hydrostatic pressure, and the first pressure sensor is connected to the first pressure sensor for pressure transmission. placed in a first container filled with medium;
A pressure sensor is arranged in the vicinity of the containers including the inside of the first container, and the pressure inside the second container is kept constant and only the temperature changes in the same way as in the first container.
By performing a ratio calculation on the resistance of the second pressure sensor and dividing it by the temperature signal, the influence of temperature is removed and a signal proportional to pressure is obtained.
以下、図面を用いて本発明の詳細な説明づる。 Hereinafter, the present invention will be explained in detail using the drawings.
第1図は、本発明に係る圧力検出装置の要部構成例(圧
力検出端)を示した図である。同図において、1は第1
の容器である。2は前記第1の容器1内に封入された圧
力伝達媒体であり、例えば実施例では、非圧縮性流体で
あるシリコン油を用いている。R+は加えられた静水圧
の変化に応じて、例えばInSbのように抵抗値がプラ
スの極性に変化する感圧半導体材料で構成された第1の
圧力センサである(この様な感圧半導体の材料としては
、圧力の増加にたいして抵抗値がプラスになるものとし
てGarbやGaASがあり、抵抗値がマイナスになる
ものとして黒燐、Se、Te等がある。例えば[n3b
のバンドギャップ圧力係数(dEQ/dP)Tは15〜
20X10’(ev/bar)であり、シリコンは−0
,3〜−1,5X10’ (ev/bar)11度であ
る)。FIG. 1 is a diagram showing an example of the main part configuration (pressure detection end) of a pressure detection device according to the present invention. In the same figure, 1 is the first
It is a container. 2 is a pressure transmission medium sealed in the first container 1, and for example, in the embodiment, silicone oil, which is an incompressible fluid, is used. R+ is the first pressure sensor made of a pressure-sensitive semiconductor material, such as InSb, whose resistance value changes to positive polarity in response to changes in applied hydrostatic pressure (such pressure-sensitive semiconductor materials As for materials, there are materials such as Garb and GaAS whose resistance value becomes positive with respect to an increase in pressure, and materials whose resistance value becomes negative such as black phosphorus, Se, Te, etc. For example, [n3b
The bandgap pressure coefficient (dEQ/dP) T is 15~
20X10' (ev/bar) and silicon is -0
, 3 to -1,5X10' (ev/bar) 11 degrees).
9は第1の容器1内に配置された第2の容器で、この第
2の容器9内には温度伝達媒体(実施例ではシリコン油
)5が封入され、この温度伝達媒体5中に第1の圧力セ
ンサと略同様の特性を有する第2の圧力セン+JR2が
配置されている。12は第2の容器9内に設けられた空
間(真空状態が望ましい)で、温度伝達媒体の熱膨張に
よる圧力上昇を吸収する為のものである。TCは第1の
容器1内に配置された温度検出素子であり、例えば熱雷
対のようなものである。なお、温度検出素子下Cは、第
1および第2の圧力センサR1,R2の温度を測定する
ためのものであるから、必ずしも容器1内に配置しなく
とも良い。4はハーメチックシール部であり、圧力セン
サR+、R2へ電気的に接続されたリード線68〜8b
を第1の容器1の外部に取出す上において、圧力伝達媒
体2が漏れ出さないようにするためのものである。Reference numeral 9 denotes a second container disposed within the first container 1. A temperature transfer medium (silicone oil in the embodiment) 5 is sealed in the second container 9. A second pressure sensor +JR2 having substantially the same characteristics as the first pressure sensor is arranged. Reference numeral 12 denotes a space (preferably in a vacuum state) provided within the second container 9 to absorb the pressure increase due to thermal expansion of the temperature transfer medium. TC is a temperature detection element arranged in the first container 1, such as a thermal lightning pair, for example. Note that the lower temperature detection element C does not necessarily have to be placed inside the container 1, since it is for measuring the temperatures of the first and second pressure sensors R1 and R2. 4 is a hermetic seal part, and lead wires 68 to 8b are electrically connected to pressure sensors R+ and R2.
This is to prevent the pressure transmission medium 2 from leaking when taking it out of the first container 1.
なお、図では省略するがこのハーメチックシールは第2
の容器9からリード線を取出す場合にも適用される。第
1の容器1の1a部には、測定対象の圧力が印加される
が、内部に封入された圧力伝達媒体2が流出しないよう
に耐食性かつ弾性レンジの広いダイアフラムが設けられ
ている。Although not shown in the figure, this hermetic seal is the second hermetic seal.
This also applies when taking out the lead wire from the container 9. The pressure to be measured is applied to the portion 1a of the first container 1, but a diaphragm that is corrosion resistant and has a wide elastic range is provided to prevent the pressure transmission medium 2 sealed therein from flowing out.
第2図は第1図におけるリード線68〜8bが接続され
る電気回路であり、この回路の出力端子からは、加えら
れた圧力に対応した信号eo u tを得ることができ
る。FIG. 2 shows an electric circuit to which the lead wires 68 to 8b in FIG. 1 are connected, and from the output terminal of this circuit, a signal eout corresponding to the applied pressure can be obtained.
第2図において、20は定電圧源、Uは増幅器である。In FIG. 2, 20 is a constant voltage source, and U is an amplifier.
R+は第1図で示した第1の圧力センサの抵抗値、R2
は同じく第2の圧カセン勺の抵抗値である。Cは対数変
換器、Dは除算器、Fは加算器である。R+ is the resistance value of the first pressure sensor shown in FIG. 1, R2
Similarly, is the resistance value of the second pressure sensor. C is a logarithmic converter, D is a divider, and F is an adder.
第1の圧力センサR+は増幅器Uの反転入力端子に接続
され、増幅器の出力端子と反転入力端子の間には、第2
の圧力センサR2が接続される。The first pressure sensor R+ is connected to the inverting input terminal of the amplifier U, and the second pressure sensor R+ is connected between the output terminal and the inverting input terminal of the amplifier U.
pressure sensor R2 is connected.
第1の圧力センサR+の他端と増幅器Uの非反転入力端
子の間に定電圧源20が接続される。増幅器Uの出力端
子と非反転入力端子は対数変換器Cに接続される。対数
変換器Cの出力電圧e2と加算器Fの出力電圧(−A)
は直列に接続されて除算器りに導入される。また、除算
器りのもう一つの入力端子には、温度検出素子TOから
の信号が導入される。A constant voltage source 20 is connected between the other end of the first pressure sensor R+ and the non-inverting input terminal of the amplifier U. The output terminal and non-inverting input terminal of amplifier U are connected to logarithmic converter C. Output voltage e2 of logarithmic converter C and output voltage (-A) of adder F
are connected in series and introduced into the divider. Further, a signal from the temperature detection element TO is introduced into another input terminal of the divider.
以上のように構成された第1図の圧力検出端と第2図の
電気回路とが組合された圧力検出装置の動作を以下に説
明する。The operation of the pressure detecting device in which the pressure detecting end shown in FIG. 1 and the electric circuit shown in FIG. 2 configured as described above are combined will be described below.
第1図、第2図に示した第1および第2の圧力センサを
同一特性の静水圧感度のある真性半導体とし、第1の容
器に圧力が印加されない状態で第1の圧力センサと第2
の圧力センサに加わる圧力が同一になるように調整する
。この結果、第1および第2の圧力センサR+ 、R2
の導電率σは(1)(1)式で表わされる。The first and second pressure sensors shown in FIGS. 1 and 2 are made of intrinsic semiconductors having the same characteristics and sensitivity to hydrostatic pressure.
Adjust so that the pressure applied to both pressure sensors is the same. As a result, the first and second pressure sensors R+, R2
The electrical conductivity σ is expressed by equations (1) and (1).
σ−nL*e・(μe+μp ) (1)(2)
ここで、e は電子素電荷
μ は電子秤#J度
μpは正孔移動度
(1)式中におけるn工は半導体材料の真性キャリアミ
#度であり、次式で表わされる。σ−nL*e・(μe+μp) (1)(2)
Here, e is the electron elementary charge μ is the electron balance #J degree μp is the hole mobility In the equation (1), n is the intrinsic carrier power of the semiconductor material, which is expressed by the following equation.
ここで、noは温度、バンドエネルギーに関係しない物
質定数
Eoはバンドギャップエネルギー
T は絶対温度
K はボルツマン定数
半導体材料の静水圧かに対し、抵抗値、即ち、導電率が
変化するのは、主としてバンドギャップエネルギーEo
が圧力によって変化舊るがらである。圧力変化による圧
力センサの抵抗値(R)は次式で現される。Here, no is the temperature, Eo is the material constant that is not related to band energy, band gap energy T is the absolute temperature, K is the Boltzmann constant, and is the hydrostatic pressure of the semiconductor material.The resistance value, that is, the conductivity changes mainly because Band gap energy Eo
However, it varies depending on the pressure. The resistance value (R) of the pressure sensor due to pressure change is expressed by the following equation.
ここで、
Cは圧力センサの形状2寸法によって決まる定数
Roは定数
したがって圧力センサR+ 、R2を第1図のようにシ
リコン油の中に浸し、第1の容器中の第1の圧力センサ
に圧力変化を与えると、各圧力センサR+ 、R2の抵
抗1a(R+、R2と表わ寸)が次のように変化する。Here, C is a constant determined by the shape and dimensions of the pressure sensor Ro is a constant Therefore, the pressure sensors R+ and R2 are immersed in silicone oil as shown in Figure 1, and the pressure is applied to the first pressure sensor in the first container. When a change is given, the resistance 1a (represented as R+, R2) of each pressure sensor R+, R2 changes as follows.
これを第2図の増幅器Uで増幅すると、増幅器Uの出力
e1は(6)式で表わされる。When this is amplified by the amplifier U shown in FIG. 2, the output e1 of the amplifier U is expressed by equation (6).
Roλ
” ”” R#leo (
6)eoは定電圧源20の電圧
第1図に示す第1の容器1内の温度が一様であれば、(
6)式は、(4)及び(9式を使用して(7)式と書換
えることができる。Roλ ” ”” R#leo (
6) eo is the voltage of the constant voltage source 20.If the temperature inside the first container 1 shown in FIG. 1 is uniform, (
Equation (6) can be rewritten as Equation (7) using Equations (4) and (9).
九21
e+ = eo −eXl” 1teT (Eo
2 Ea + ) )12り1
・・・(7)
以上のように、抵抗比(R2/R1)をとることで、第
1の温度の影1?(T−■)を消去した信号e1を得る
ことができる。921 e+ = eo −eXl” 1teT (Eo
2 Ea + ))12ri1...(7) As described above, by taking the resistance ratio (R2/R1), the first temperature shadow 1? A signal e1 with (T-■) deleted can be obtained.
elを対数変′Mk器Cに通すと(8)式で表わされる
信号e2が得られる。When el is passed through a logarithmic variable 'Mk unit C, a signal e2 expressed by equation (8) is obtained.
e2=ln l e+ l
なお、l1nQoz e、 −A
Ro+
このe2信号に加′n器Fから−Aの一定信号を加える
と、除算器りへの入力は、
x*r (E G 2 E o + >となる。この
信号を温度検出素子TCからの潤度信号(1/丁)で除
算すると、(9)式で表わされる信号eoutが得られ
る。e2=ln l e+ l Note that l1nQoz e, -A Ro+ When a constant signal of -A is added from the adder F to this e2 signal, the input to the divider is x*r (E G 2 E o + >.If this signal is divided by the humidity signal (1/ton) from the temperature detection element TC, a signal eout expressed by equation (9) is obtained.
eo uL =ac−(EG2 EG + )
(9)このように2つの略同様の特性を有する感圧
半導体材料からなる圧力センサを用い、一方を圧力が変
化する容器に、他方を圧力の変化しない容器に配置する
ことで、単一の感圧半導体圧力センサで第3図は他の実
施例を示づものである。第1図と同一要素には同一符号
を付して重複する説明は省略するが、この例においては
第2の容器を第1の容器の外壁に固定し、容器の一辺を
大気解放にしたものである。この場合、第2の容器の中
の温度伝達は容器の外壁を通じて行なわれる。この例は
第2の圧力センサが小型・で熱容量的に充分小さい場合
、構造が簡素化できるという利点がある。eo uL = ac-(EG2 EG + )
(9) In this way, by using two pressure sensors made of pressure-sensitive semiconductor materials with substantially similar characteristics and placing one in a container where the pressure changes and the other in a container where the pressure does not change, a single pressure sensor can be used. FIG. 3 shows another embodiment of the pressure-sensitive semiconductor pressure sensor. The same elements as in Fig. 1 are given the same reference numerals and redundant explanations are omitted, but in this example, the second container is fixed to the outer wall of the first container, and one side of the container is open to the atmosphere. It is. In this case, temperature transfer within the second container takes place through the outer wall of the container. This example has the advantage that the structure can be simplified if the second pressure sensor is small and has a sufficiently small heat capacity.
て、R+ 、R2は圧力センサである。, R+ and R2 are pressure sensors.
また、第2図では、第1の圧力センナR+を増幅器Uの
反、転入力端子と定電圧源20との間に接続し、第2の
圧力センサR2を増幅器Uの入出力端子間に接続すると
して説明したが、各圧力センサR+ 、R2の接続配置
を取替えCも本発明が成立することは、明らかである。In addition, in FIG. 2, the first pressure sensor R+ is connected between the inverting input terminal of the amplifier U and the constant voltage source 20, and the second pressure sensor R2 is connected between the input and output terminals of the amplifier U. Although the explanation has been made assuming that the pressure sensors R+ and R2 are connected to each other, it is clear that the present invention can also be implemented by changing the connection arrangement of the pressure sensors R+ and R2.
以上述べたように、本発明によれば、次の効果が得られ
る。As described above, according to the present invention, the following effects can be obtained.
■ 抵抗素子として同様の特性をもつ半導体材料を2個
使用し、それらの抵抗比率変化を求めることにより、温
度補償を容易に行なうことができる。(2) Temperature compensation can be easily performed by using two semiconductor materials having similar characteristics as resistive elements and determining the change in their resistance ratio.
■ ダイアフラム等の圧力変換器を必要とせず、機械的
構成が簡単になる。■ No pressure transducer such as a diaphragm is required, simplifying the mechanical configuration.
第1図は本発明に係る圧力検出装置の要部構成例を示し
た図、 第2図は第1図で示した各リード線6a〜8a
が接続される電気回路図、 第3図は他の実施例を示す
圧力検出装置の要部構成側図、第4図は増幅器Uを必要
としない場合の例を示す図′、第5図はダイアフラム1
1に半導体ピエゾ抵抗素子10を接着して構成した従来
手段を示す図である。
1・・・第1の容器、2・・・圧力伝達媒体、4・・・
ハーメチックシール部、5・・・温度伝達媒体、68〜
8b・・・リード線、9・・・第2の容器、R1・・・
第1の圧力センサ、R2・・・第2の圧力センサ、TC
・・・温度検出素子、U・・・増11/A器、C・・・
対数変Mka、D・・・除痒器、F・・・加痺器。
第1図
第2図
第3図
第4図 第5図FIG. 1 is a diagram showing an example of the main part configuration of a pressure detection device according to the present invention, and FIG. 2 is a diagram showing each lead wire 6a to 8a shown in FIG. 1.
3 is a side view of the main part configuration of the pressure detection device showing another embodiment, FIG. 4 is a diagram showing an example where the amplifier U is not required, and FIG. Diaphragm 1
1 is a diagram showing a conventional means configured by bonding a semiconductor piezoresistive element 10 to a semiconductor piezoresistive element 1. DESCRIPTION OF SYMBOLS 1... First container, 2... Pressure transmission medium, 4...
Hermetic seal portion, 5... Temperature transmission medium, 68-
8b... Lead wire, 9... Second container, R1...
First pressure sensor, R2...Second pressure sensor, TC
...Temperature detection element, U...Additional 11/A unit, C...
Logarithmic variable Mka, D... depruritic device, F... numbing device. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5
Claims (2)
媒体が封入された第1の容器と、 前記第1の容器内に配置され、静水圧に応じて抵抗が変
化する第1の半導体圧力センサと、前記第1の容器内を
含む容器の近傍に配置され、前記静水圧の影響を受けな
い構造とされ、その内部に温度伝達媒体が封入された第
2の容器と、前記第2の容器内に配置された第2の半導
体圧力センサと、 前記第1および第2の半導体圧力センサの抵抗比を演算
する手段と、 を備えたことを特徴とする圧力検出装置。(1) A first container to which a pressure to be measured is applied and a pressure transmission medium sealed inside the container; and a first semiconductor disposed within the first container and whose resistance changes depending on the hydrostatic pressure. a pressure sensor, a second container disposed near the container including the inside of the first container, having a structure that is not affected by the hydrostatic pressure, and having a temperature transfer medium sealed therein; A pressure detection device comprising: a second semiconductor pressure sensor disposed in a container; and means for calculating a resistance ratio of the first and second semiconductor pressure sensors.
と、前記抵抗比を演算する手段の出力信号を対数変換す
る手段とを備え、この温度検出素子で得られた信号に基
づく信号を用いて前記対数変換手段からの信号の温度成
分を補正するようにした特許請求の範囲第1項記載の圧
力検出装置。(2) A temperature detection element for detecting the temperature inside the first container, and means for logarithmically converting the output signal of the means for calculating the resistance ratio, and a signal based on the signal obtained by the temperature detection element. 2. The pressure detection device according to claim 1, wherein the temperature component of the signal from the logarithmic conversion means is corrected using the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12010785A JPS61278729A (en) | 1985-06-03 | 1985-06-03 | Pressure detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12010785A JPS61278729A (en) | 1985-06-03 | 1985-06-03 | Pressure detecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61278729A true JPS61278729A (en) | 1986-12-09 |
Family
ID=14778101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12010785A Pending JPS61278729A (en) | 1985-06-03 | 1985-06-03 | Pressure detecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61278729A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH067033U (en) * | 1991-09-25 | 1994-01-28 | 日本電気株式会社 | Water pressure gauge mounting structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5655831A (en) * | 1979-10-15 | 1981-05-16 | Hitachi Ltd | Mounting method for pressure-sensor assembly |
JPS585233U (en) * | 1981-07-02 | 1983-01-13 | 本田技研工業株式会社 | Push button type circuit breaker |
JPS6070328A (en) * | 1983-09-27 | 1985-04-22 | Mitsubishi Electric Corp | Pressure measuring device |
-
1985
- 1985-06-03 JP JP12010785A patent/JPS61278729A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5655831A (en) * | 1979-10-15 | 1981-05-16 | Hitachi Ltd | Mounting method for pressure-sensor assembly |
JPS585233U (en) * | 1981-07-02 | 1983-01-13 | 本田技研工業株式会社 | Push button type circuit breaker |
JPS6070328A (en) * | 1983-09-27 | 1985-04-22 | Mitsubishi Electric Corp | Pressure measuring device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH067033U (en) * | 1991-09-25 | 1994-01-28 | 日本電気株式会社 | Water pressure gauge mounting structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01141328A (en) | Differential pressure transmitter | |
GB1601547A (en) | Force detector | |
JP3166015B2 (en) | Force conversion element and pressure detection circuit using the same | |
US3402609A (en) | Semiconductor mechanical-to-electrical transducer | |
US3482197A (en) | Pressure sensitive device incorporating semiconductor transducer | |
US4172387A (en) | Pressure responsive apparatus | |
JPS6061637A (en) | Composite function type differential pressure sensor | |
US3168826A (en) | Atmospheric pressure compensation of load cells | |
JPS61278729A (en) | Pressure detecting device | |
JPH0665974B2 (en) | Method for manufacturing pressure sensor unit | |
US2969514A (en) | Differential transducer | |
CN215893878U (en) | High-temperature-resistant oil-filled pressure detection device | |
JPH0447244A (en) | Semiconductor pressure sensor | |
US11359985B2 (en) | Oil filled transducers with isolated compensating capsule | |
JP3607420B2 (en) | Dry type pressure detector | |
CN113624368A (en) | High-temperature-resistant oil-filled SOI pressure sensor | |
JPS62226031A (en) | Pressure sensor unit | |
JPS6155789B2 (en) | ||
JPH041472Y2 (en) | ||
JPS61239136A (en) | Pressure detector | |
JPS61243339A (en) | Pressure detector | |
JPS601402Y2 (en) | Capacitive differential pressure transmitter | |
JPS60164230A (en) | Force converter | |
JP2536073Y2 (en) | Acceleration sensor | |
SU428233A1 (en) | SENSOR OF DYNAL1 EFFORTS |