JPS61243339A - Pressure detector - Google Patents

Pressure detector

Info

Publication number
JPS61243339A
JPS61243339A JP8597285A JP8597285A JPS61243339A JP S61243339 A JPS61243339 A JP S61243339A JP 8597285 A JP8597285 A JP 8597285A JP 8597285 A JP8597285 A JP 8597285A JP S61243339 A JPS61243339 A JP S61243339A
Authority
JP
Japan
Prior art keywords
pressure
temperature
pressure sensors
pairs
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8597285A
Other languages
Japanese (ja)
Inventor
Yoji Takeuchi
洋二 竹内
Masaaki Yamaguchi
正明 山口
Haruo Hosomatsu
細松 春夫
Toshio Aga
阿賀 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP8597285A priority Critical patent/JPS61243339A/en
Publication of JPS61243339A publication Critical patent/JPS61243339A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0002Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using variations in ohmic resistance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To facilitate the correction of temperature along with an increase in the output sensitivity, by arranging a plurality of pressure sensors different in the property to determine the product of resistance ratios as pairs after the computation thereof. CONSTITUTION:A plurality of semiconductor pressure sensors RA, rB, Ra, rb which are different in the resistance change with respect to the hydrostatic pressure are provided in a pressure container 1 sealed with a pressure transmission medium 2. The outputs of the pressure sensors are drawn from leads 4-7 to compute resistance ratios as proper pairs (for example, RA/rB) of the pressure sensors. THen, the product of the outputs of the resistance ratios as pairs is determined. The value of the product is converted into a logarithmic value, which is divided by a temperature signal T obtained from a temperature detection element TC to obtain the outputs of the pressure sensors with the corrected temperature. This can increase the final output thereby facilitating the correction of the temperature.

Description

【発明の詳細な説明】 イ、「発明の目的」 〔産業上の利用分野〕 本発明は、半導体を使用した圧力検出装置の圧力検出感
度の向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention [Field of Industrial Application] The present invention relates to improving the pressure detection sensitivity of a pressure detection device using a semiconductor.

〔従来の技術〕[Conventional technology]

半導体をセンサに用いた圧力検出装置は、ピエゾ抵抗効
果を利用したものが最も多い。このピエゾ抵抗効果を利
用したセンサは、外力による歪みで半導体の結晶内に応
力変化が生じ、これに起因して電子のエネルギー順位が
変化する。その結果、抵抗値が変るのである。
Most pressure detection devices using semiconductors as sensors utilize piezoresistance effects. In a sensor that utilizes this piezoresistance effect, stress changes occur within the semiconductor crystal due to strain caused by external force, and this changes the energy level of electrons. As a result, the resistance value changes.

従って、計測しようとする圧力の検出感度を充分に得る
ためには、如何に半導体圧力センサに歪みを与えるよう
に工夫するかが、圧力検出装置の設計上のポイントとな
る。そして、一般には、金属ダイアフラムに半導体ピエ
ゾ抵抗素子を接着して構成するような手段が多く用いら
れている。
Therefore, in order to obtain sufficient detection sensitivity for the pressure to be measured, the key point in designing a pressure detection device is how to apply distortion to the semiconductor pressure sensor. In general, a method in which a semiconductor piezoresistance element is bonded to a metal diaphragm is often used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、以上のような従来の圧力検出装置は、ダイアフ
ラムを使用しているため、機械的構造が複雑となり、過
大圧保護機構が必要であることから、更にその構造が複
雑となる問題点がある。
However, since the conventional pressure detection device described above uses a diaphragm, the mechanical structure is complicated, and an overpressure protection mechanism is required, which makes the structure even more complicated. .

また、圧力センサとして、感圧特性を有した半導体を用
いれば構成は簡単になるが、通常の半導体を圧力センサ
に用いただけでは、測定圧力に対する抵抗の変化が少な
いので、検出感度不足となり、実用化に供することはで
きない。
In addition, if a semiconductor with pressure-sensitive characteristics is used as a pressure sensor, the configuration becomes simpler, but if a normal semiconductor is used as a pressure sensor, the resistance changes little with respect to the measured pressure, so the detection sensitivity will be insufficient and it will not be practical. It cannot be submitted to the public.

本発明の目的は、感圧特性を持つ半導体を複数個組合せ
ることで、出力感度を倍加することができる圧力検出装
置を提供することである。
An object of the present invention is to provide a pressure detection device that can double the output sensitivity by combining a plurality of semiconductors having pressure-sensitive characteristics.

口、「発明の構成」 〔問題点を解決するための手段〕 本発明は、上記問題点を解決するために、静水圧に対す
る抵抗変化が互いに異なる半導体でそれぞれ構成された
対となる圧力センサ(例えばRaとrBが対となる圧力
センサ)を複数対備え、これを圧力伝達媒体を充満した
圧力容器内に配置し、対になる圧力センサの抵抗比(例
えばR^/ra)を演算することにより、温度の第1の
影響を除去しく n o + T 2 ・exp  (
−一!9−)のT;?金除去すKT ること)、更に各組の抵抗比の出力の積を求め、その積
の値を対数変換することにより、1/Tなる温度補正の
演算を容易にし、最終出力が、一対の圧力センサの複数
倍の感度が得られるようにしたものである。
``Structure of the Invention'' [Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a pair of pressure sensors ( For example, a plurality of pairs of pressure sensors such as Ra and rB are provided, and these are placed in a pressure vessel filled with a pressure transmission medium, and the resistance ratio (for example, R^/ra) of the paired pressure sensors is calculated. The first effect of temperature is removed by n o + T 2 ・exp (
-One! 9-) T;? Furthermore, by calculating the product of the outputs of each pair of resistance ratios and logarithmically converting the value of the product, the temperature correction calculation of 1/T is facilitated, and the final output is It is designed to provide multiple times the sensitivity of a pressure sensor.

(実施例) 以下、図面を用いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明に係る圧力検出装置の要部構成例(圧
力検出端)を示した図である。同図において、1は圧力
容器である。2は前記圧力容器1内に封入された圧力伝
達媒体であり、例えば実施例では、非圧縮性流体である
シリコン油を用いている。
FIG. 1 is a diagram showing an example of the main part configuration (pressure detection end) of a pressure detection device according to the present invention. In the figure, 1 is a pressure vessel. Reference numeral 2 denotes a pressure transmission medium sealed in the pressure vessel 1, and for example, in the embodiment, silicone oil, which is an incompressible fluid, is used.

RA、Raは加えられた静水圧の変化に応じて、抵抗値
が変化する感圧半導体材料で構成された圧力センサであ
る。なお、この圧力センサのそれぞれの抵抗値をRA、
Raと記す。
RA and Ra are pressure sensors made of a pressure-sensitive semiconductor material whose resistance value changes according to changes in applied hydrostatic pressure. In addition, each resistance value of this pressure sensor is RA,
It is written as Ra.

rB、rbは加えられた静水圧の変化に応じて、抵抗値
が変化する感圧半導体材料で構成された圧力センサであ
って、前記圧力センサRA、Raの抵抗変化とは、異な
る変化特性を有するものである。この圧力センサのそれ
ぞれの抵抗値をrB。
rB and rb are pressure sensors made of a pressure-sensitive semiconductor material whose resistance value changes according to a change in applied hydrostatic pressure, and have different change characteristics from the resistance change of the pressure sensors RA and Ra. It is something that you have. The resistance value of each pressure sensor is rB.

rbと記す。It is written as rb.

TCは温度検出素子であり、例えば熱電対のようなもの
である。以上の4つの圧力センサR^〜rbと温度検出
素子TOは圧力容器1内に配置される。なお、温度検出
素子TCは、圧力センサRA、j%bの温度を測定する
ためのものであるから、温度検出素子TCは、必ずしも
圧力容器1内に配置しなくとも良い。
TC is a temperature detection element, such as a thermocouple. The above four pressure sensors R^ to rb and the temperature detection element TO are arranged inside the pressure vessel 1. Note that since the temperature detection element TC is for measuring the temperature of the pressure sensor RA, j%b, the temperature detection element TC does not necessarily have to be placed inside the pressure vessel 1.

10はハーメチックシール部であり、圧力センサRA−
rbへ電気的に接続されたリード線4〜8を圧力容器1
の外部に取出す上において、圧力伝達媒体2が漏れ出さ
ないようにするためのものである。
10 is a hermetic seal part, and pressure sensor RA-
Lead wires 4 to 8 electrically connected to rb are connected to pressure vessel 1.
This is to prevent the pressure transmission medium 2 from leaking when taken out to the outside.

なお、圧力容器1の1a部には、測定対象の圧力が印加
されるが、内部に封入された圧力伝達媒体2が流出しな
いように耐食性かつ弾性レンジの広いダイアフラムが設
けられている。
Although the pressure to be measured is applied to the portion 1a of the pressure vessel 1, a diaphragm that is corrosion resistant and has a wide elastic range is provided to prevent the pressure transmission medium 2 sealed therein from flowing out.

第2図は第1図におけるリード線4〜8が接続される電
気回路であり、この回路の出力端子から加えられた圧力
に対応した信号eo u Lを得ることができる。第2
図において、20.21は定電圧源、U+ 、U2は増
幅器である。RA〜rbは第1図でも示した圧力センサ
である。Mは乗算器、Cは対数変yA器、Dは除算器、
Fは加算器である。
FIG. 2 shows an electric circuit to which the lead wires 4 to 8 in FIG. 1 are connected, and it is possible to obtain a signal eo u L corresponding to the pressure applied from the output terminal of this circuit. Second
In the figure, 20 and 21 are constant voltage sources, and U+ and U2 are amplifiers. RA to rb are pressure sensors also shown in FIG. M is a multiplier, C is a logarithmic variable yA unit, D is a divider,
F is an adder.

圧力センサrBは増幅器U1の反転入力端子に接続され
、増幅器の出力端子と反転入力端子の間には、圧力セン
サRAが接続される。圧力センサr9の他端と増幅器U
1の非反転入力端子の間に定電圧源20が接続される。
Pressure sensor rB is connected to the inverting input terminal of amplifier U1, and pressure sensor RA is connected between the output terminal and the inverting input terminal of the amplifier. The other end of pressure sensor r9 and amplifier U
A constant voltage source 20 is connected between the two non-inverting input terminals.

増幅器U1の出力端子と非反転入力端子の間の信@e1
は乗算器Mに導入される。
The signal between the output terminal and the non-inverting input terminal of amplifier U1 @e1
is introduced into multiplier M.

また、圧力センサRa、rbと増幅器U、と定電圧源2
1の接続は、上記した圧カセンサRA、増幅器U+等と
同じであるので、その説明を省略する。
In addition, pressure sensors Ra and rb, an amplifier U, and a constant voltage source 2
1 is the same as the above-mentioned pressure sensor RA, amplifier U+, etc., so the explanation thereof will be omitted.

乗算器Mの出力e3は対数変換器Cに導入され、対数変
換器Cの出力電圧e4と加算器Fの出力電圧(−A )
は直列に接続されて除算器りに導入される。また、除算
器りのもう一つの入力端子には、温度検出素子TCに基
づく信号1/Tが導入される。
The output e3 of the multiplier M is introduced into the logarithmic converter C, and the output voltage e4 of the logarithmic converter C and the output voltage (-A) of the adder F are
are connected in series and introduced into the divider. Further, a signal 1/T based on the temperature detection element TC is introduced into another input terminal of the divider.

以上のように構成された第1図の圧力検出端と第2図の
電気回路とが組合された圧力検出装置の動作を以下に説
明する。
The operation of the pressure detecting device in which the pressure detecting end shown in FIG. 1 and the electric circuit shown in FIG. 2 configured as described above are combined will be described below.

第1図、第2図に示した圧力センサを静水圧感度のある
真性半導体と仮定すれば、圧力センサRA、Raの導電
率σ1は、(1)式で、r9.rbの導電率σ2は、(
2)式で表わされる。
Assuming that the pressure sensors shown in FIGS. 1 and 2 are intrinsic semiconductors sensitive to hydrostatic pressure, the electrical conductivity σ1 of the pressure sensors RA and Ra can be expressed as r9. The conductivity σ2 of rb is (
2) It is expressed by the formula.

σ+”’ni+  ・q・(μe、十μp + >  
  (1)σz=niz  ・q・(μC2十μP 2
 )    (2)ここで、qは電子素電荷 μeは電子易動度 μpは正孔易動度 0)、(2)式中におけるnjlとn□2は、それぞれ
半導体材料の真性キャリアllr!1であり、次式で表
わされる。
σ+”'ni+ ・q・(μe, 10 μp + >
(1) σz=niz ・q・(μC20μP 2
) (2) Here, q is the electron elementary charge μe is the electron mobility μp is the hole mobility 0), and njl and n□2 in equation (2) are the intrinsic carriers llr! of the semiconductor material, respectively. 1, and is expressed by the following formula.

n、、2=no2−7zexp (”L)   (4)
KT ごこで、not、n02は温度、バンドエネルギーに関
係しない物質定数 EQl、EQ2はバンドギャップエネルギー半導体材料
の静水圧力に対し、抵抗値、即ち、導電率が変化するの
は、主としてバンドギャップエネルギーEoが圧力Pに
よって変化するからである。従って、圧力センサRA〜
rbの抵抗値は、(5)〜(8)式で表わされる。
n,, 2=no2-7zexp (”L) (4)
KT Here, not, n02 is a material constant EQl that is not related to temperature or band energy, and EQ2 is band gap energy. The resistance value, that is, the conductivity changes with respect to the hydrostatic pressure of the semiconductor material, mainly due to the band gap energy. This is because Eo changes depending on the pressure P. Therefore, pressure sensor RA~
The resistance value of rb is expressed by equations (5) to (8).

なお、 ROI〜Roaは寸法、構造で決定される定数C+”C
2−は抵抗素子の幾何学形状で決まる定数であり、R,
、、、p −J、−、I =L−となる。
Note that ROI~Roa is a constant C+”C determined by the dimensions and structure.
2- is a constant determined by the geometrical shape of the resistance element, R,
,,p −J,−,I =L−.

S    Scr  ケ l:長さ、 S:lli面積 この圧力センサRA〜rbを第1図のようにシリコン油
の中に浸し、圧力変化を与えると、抵抗値はバンドギャ
ップエネルギーEaにより変化する。この場合、圧力容
器1の容積が小さいので、容器1内では温度分布が無く
、温度変化は、これら圧力センサに等しく影響する。圧
力センサを第2図に示すようなRAと’aqRaとrb
の対となる組合せで増幅器U1.U2に接続し、そこで
増幅すると、増幅器LI1.LI2の出力e、とC2は
(9)、00)式で表わされる。
S Scr: Length, S: Area When the pressure sensors RA to rb are immersed in silicone oil as shown in FIG. 1 and a pressure change is applied, the resistance value changes depending on the band gap energy Ea. In this case, since the volume of the pressure vessel 1 is small, there is no temperature distribution within the vessel 1, and temperature changes affect these pressure sensors equally. The pressure sensors are RA, 'aqRa and rb as shown in Figure 2.
The pairwise combination of amplifiers U1. When connected to U2 and amplified there, amplifier LI1. The output e of LI2 and C2 are expressed by equations (9) and 00).

RA e + −−He o            (9)
C2=−腎eo          (1■eoは定電
圧源20.21の電圧 第1図に示す圧力容器1内の温度が一様であれば、(9
)、(to)式は、(5)〜(8)式を使用して(+I
)、04式と書換えることができる。
RA e + --He o (9)
C2=-kidney eo (1■eo is the voltage of the constant voltage source 20.21 If the temperature inside the pressure vessel 1 shown in Fig. 1 is uniform, (9
), (to) expressions are (+I
), it can be rewritten as formula 04.

e + = −臂eo −eXI’ (春([EGIC
P)  EQI(P) ) )・・・(11) e 2−−トeo −exp 壷(E、1(P) −E
、CP)) )・・・0a eI + C2を乗算器Mに導入し、(13)式で示す
信号e3を1りる。
e + = -臂eo -eXI' (Spring ([EGIC
P) EQI(P) ) )...(11) e 2--toeo -exp pot(E, 1(P) -E
, CP)) )...0a eI + C2 is introduced into the multiplier M, and the signal e3 shown by equation (13) is multiplied by 1.

C3=el−C2 =肚”e o ” eXD (、、、、(Ec+CP)
 −E(,2(Pう))−へ38叫 ・・・(13 乗算器Mの出力e3を対数変換3Cに入力づると(一式
で表わされる信号e4が得られる。
C3=el-C2=肚"e o" eXD (,,,,(Ec+CP)
-E(,2(P))-38...(13) When the output e3 of the multiplier M is input to the logarithmic transformation 3C, a signal e4 expressed as a set is obtained.

ea =ln l ez  I −八 −F−、、−r  E、、(P、)  −’Eb
z(P)  )   )              
’υなお、八−In五−−・6o2 Roi ’ R’64 このe4信号に加算器Fから(−八)の一定信号を加え
ると、除算器りへの入力は、 五〒(E、、(P) −E、□(P))となる。この信
号を温度検出素子TCからの温度信号(1/T)で除算
すると、(Q式で表わされる信8 e。utがflられ
る。
ea = ln l ez I -8 -F-,, -r E,, (P,) -'Eb
z(P)))
'υIn addition, if we add a constant signal of (-8) from adder F to this e4 signal, the input to the divider is 5〒(E,, (P) −E, □(P)). When this signal is divided by the temperature signal (1/T) from the temperature detection element TC, the signal expressed by the Q formula 8e.ut is fl.

eo u t =C・2 (E41(P)E6z(P)
)     ’J9以上のことから、静水圧感度の異な
る半導体素子を2組以上使用することにより、1組の時
に得られた静水圧感度の2IrEI以上の感度が得られ
ることが分る。そして、圧力センサの信号が有づる温度
特性を容易に補正することができる。
eo ut =C・2 (E41(P)E6z(P)
) 'J9 From the above, it can be seen that by using two or more sets of semiconductor elements with different hydrostatic pressure sensitivities, it is possible to obtain a sensitivity that is 2IrEI or more of the hydrostatic pressure sensitivity obtained when using one set. In addition, the temperature characteristics of the signal from the pressure sensor can be easily corrected.

具体例を用いて説明する。例えば圧力センサー1A、R
aに黒燐を、圧力センサrB、rbにInSbを選んだ
とする。
This will be explained using a specific example. For example, pressure sensor 1A, R
Assume that black phosphorus is selected for a, and InSb is selected for pressure sensors rB and rb.

一組の時の圧力感度は、(10式を用いて、04式と表
わすことができる。
The pressure sensitivity for one set can be expressed as equation 04 using equation 10.

−F−チ=吉・杏(E、1(P) −EQ□CP)) 
  (14ここで、 黒燐は+(E(,1(P) ) =  24X 10−
 ’ ”%a−あり、は次のようになる。
-F-Chi=Kichi・An (E, 1(P) -EQ□CP))
(14Here, black phosphorus is +(E(,1(P)) = 24X 10-
'``%a-Yes'' is as follows.

−0,9x10−3/bar 即ち、O〜1000 ttg /Cm”位の変化で90
%の変化になる。従って、2組(対)の使用によって、
その変化は次のようになる。
-0.9x10-3/bar, that is, 90 with a change of 0~1000 ttg/Cm"
% change. Therefore, by using two sets (pairs),
The changes are as follows.

−2X O,9x 1−0−3/bar= 1,8X 
IPコ/bar 従ンて、2組(対)の圧力センサの使用によって、圧力
感度を2倍にすることができる。
-2X O,9x 1-0-3/bar= 1,8X
IP Co/bar Therefore, by using two sets (pairs) of pressure sensors, the pressure sensitivity can be doubled.

なお、以上では、2組(対)の例で説明したが、2組に
限定せず、複数組の使用によって、感度の向上が計られ
る。例えば、0組(対)にすれば、圧力感度は、n倍と
することができる。
Note that although the above example has been explained using two sets (pairs), the sensitivity is not limited to two sets, and sensitivity can be improved by using a plurality of sets. For example, if there are 0 sets (pairs), the pressure sensitivity can be increased by n times.

また、第2図では、圧力センサr9を増幅器Uの反転入
力端子と定電圧源20との間に接続し、圧力センサRA
を7増幅器Uの入出力端子間に接続するとして説明した
が、圧力センサRA+ ’aの接続配置を取替えても本
発明が成立することは、明らかである。
In addition, in FIG. 2, pressure sensor r9 is connected between the inverting input terminal of amplifier U and constant voltage source 20, and pressure sensor RA
Although the explanation has been made assuming that the pressure sensor RA+'a is connected between the input and output terminals of the amplifier U, it is clear that the present invention can be applied even if the connection arrangement of the pressure sensor RA+'a is changed.

(発明の効果J 以上述べたように、本発明によれば、感圧特性を持つ半
導体を複数個組合せることで、出力感度を倍加すること
ができる。更に、半導体圧力センサが有する温度特性を
容易に補正することができる。
(Effect of the Invention J As described above, according to the present invention, output sensitivity can be doubled by combining a plurality of semiconductors having pressure-sensitive characteristics.Furthermore, the temperature characteristics of a semiconductor pressure sensor can be doubled. Can be easily corrected.

【図面の簡単な説明】[Brief explanation of drawings]

jf!1図は本発明に係る圧力検出装置の要部構成例を
示した図、 第2図は第1図で示した各リード線4〜8
が接続される電気回路を示す図である。 1・・・圧力容器、2・・・圧力伝達媒体、4〜8・・
・リード線、10・・・ハーメチックシール部、RA−
rb・・・圧力センサ、゛丁C・・・温度検出素子、U
+ 、U2・・・増幅器、M・・・乗算器、C・・・対
数変換器、D・・・除算器、F・・・加算器。 第1図 第2図 A
jf! Figure 1 is a diagram showing an example of the main part configuration of the pressure detection device according to the present invention, and Figure 2 is a diagram showing each lead wire 4 to 8 shown in Figure 1.
FIG. 2 is a diagram showing an electric circuit to which the 1...Pressure vessel, 2...Pressure transmission medium, 4-8...
・Lead wire, 10...Hermetic seal part, RA-
rb...Pressure sensor, ゛C...Temperature detection element, U
+, U2...amplifier, M...multiplier, C...logarithmic converter, D...divider, F...adder. Figure 1 Figure 2 A

Claims (2)

【特許請求の範囲】[Claims] (1)測定対象の圧力が加えられ、その内部に圧力伝達
媒体が封入された圧力容器と、 前記圧力容器内に配置され、静水圧に対する抵抗変化が
互いに異なる半導体でそれぞれ構成された対となる圧力
センサの複数対と、 前記各対を構成する圧力センサの抵抗比を演算する手段
と、 前記抵抗比同士の積を求める手段と、 を備えたことを特徴とする圧力検出装置。
(1) A pair consisting of a pressure vessel to which the pressure to be measured is applied and a pressure transmission medium sealed inside the vessel, and a semiconductor placed within the pressure vessel and having different resistance changes with respect to hydrostatic pressure. A pressure detection device comprising: a plurality of pairs of pressure sensors; a means for calculating a resistance ratio of the pressure sensors constituting each pair; and a means for calculating a product of the resistance ratios.
(2)前記圧力センサの温度を検出する温度検出素子と
、前記積を求める手段の出力信号を対数変換する手段と
を備え、この温度検出素子で得られた信号に基づく信号
を用いて前記対数変換手段からの信号の温度成分を補正
するようにした特許請求の範囲第1項記載の圧力検出装
置。
(2) comprising a temperature detection element for detecting the temperature of the pressure sensor; and means for logarithmically converting the output signal of the means for calculating the product; 2. The pressure detection device according to claim 1, wherein the temperature component of the signal from the conversion means is corrected.
JP8597285A 1985-04-22 1985-04-22 Pressure detector Pending JPS61243339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8597285A JPS61243339A (en) 1985-04-22 1985-04-22 Pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8597285A JPS61243339A (en) 1985-04-22 1985-04-22 Pressure detector

Publications (1)

Publication Number Publication Date
JPS61243339A true JPS61243339A (en) 1986-10-29

Family

ID=13873637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8597285A Pending JPS61243339A (en) 1985-04-22 1985-04-22 Pressure detector

Country Status (1)

Country Link
JP (1) JPS61243339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518041A (en) * 2003-02-18 2006-08-03 ドレッサ、インク Pressure measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518041A (en) * 2003-02-18 2006-08-03 ドレッサ、インク Pressure measurement

Similar Documents

Publication Publication Date Title
US4320664A (en) Thermally compensated silicon pressure sensor
US10129676B2 (en) MEMS microphone, apparatus comprising a MEMS microphone and method for fabricating a MEMS microphone
US3440873A (en) Miniature pressure transducer
US6448621B1 (en) Sensor apparatus using an electrochemical cell
JPS58182276A (en) Semiconductor pressure sensor
US3482197A (en) Pressure sensitive device incorporating semiconductor transducer
CN211013319U (en) MEMS pressure sensor
JPS61243339A (en) Pressure detector
RU2603446C1 (en) Device for pressure and temperature measuring
US3320532A (en) Logarithmic micro-microammeter having field effect transistor in feedback path
JPS61278729A (en) Pressure detecting device
US4106349A (en) Transducer structures for high pressure application
JP2022176611A (en) Diaphragm vacuum gauge
JPS61239136A (en) Pressure detector
CN210571073U (en) CVD diamond material thermocouple device
JPS60151526A (en) Temperature sensor
JPS60219529A (en) Semiconductor type pressure sensor
RU2342642C1 (en) Pressure detector
JP7089109B2 (en) A measuring circuit for capturing and processing a signal and a measuring device for using the measuring circuit.
SU433694A3 (en)
JPH041470Y2 (en)
JPS59163533A (en) Pressure trnsducer and its driving method
JPH07114288B2 (en) Semiconductor strain measuring device
SU805186A1 (en) Device for conversion of physical parameters into electric signals
JPS601381Y2 (en) Flow rate/flow rate detection device