JPS6070328A - Pressure measuring device - Google Patents

Pressure measuring device

Info

Publication number
JPS6070328A
JPS6070328A JP18170183A JP18170183A JPS6070328A JP S6070328 A JPS6070328 A JP S6070328A JP 18170183 A JP18170183 A JP 18170183A JP 18170183 A JP18170183 A JP 18170183A JP S6070328 A JPS6070328 A JP S6070328A
Authority
JP
Japan
Prior art keywords
light
diaphragm
short wavelength
photoelastic element
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18170183A
Other languages
Japanese (ja)
Inventor
Shuichi Tai
田井 修市
Kazuo Hisama
和生 久間
Toshio Aranishi
新西 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18170183A priority Critical patent/JPS6070328A/en
Publication of JPS6070328A publication Critical patent/JPS6070328A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means

Abstract

PURPOSE:To improve accuracy, by bonding the sealed end of a diaphragm to the upper surface of a photoelastic element, and bonding the other open end of the diaphragm to a case, which is sealed in an airtight manner. CONSTITUTION:The bottom of a diaphragm is bonded to the pressure receiving surface of a photoelastic element 5. A case 11 of a pressure sensor part is strictly sealed in an airtight manner so the internal pressure always becomes one atm. In this case, the sealed end of the diaphragm 6 is bonded to the upper surface of the photoelastic element 5, and the other open end of the diaphragm is bonded to the case, which is sealed in the airtight manner. In this constitution, the pressure is efficiently applied to the photoelastic element and high accuracy is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は悪電磁環境下における圧力測定装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a pressure measuring device in a bad electromagnetic environment.

〔従来技術〕[Prior art]

従来この種の装置として第1図に示すものがあった。図
において、(1)は光送信機、H(2b)は光ファイバ
、(8a)(8b)は屈折率分布型レンズ、(4)は偏
光子、(6)は光弾性素子、(6)はダイヤフラム、(
7)は7波長板、(8)は検光子、(9)は光受信機で
ある。
A conventional device of this type is shown in FIG. In the figure, (1) is an optical transmitter, H (2b) is an optical fiber, (8a) and (8b) are gradient index lenses, (4) is a polarizer, (6) is a photoelastic element, (6) is the diaphragm, (
7) is a 7-wave plate, (8) is an analyzer, and (9) is an optical receiver.

次に動作について説明する。光送信機(1)からの光を
光ファイバ(2a)を介してセンサ部へと導びく。
Next, the operation will be explained. Light from an optical transmitter (1) is guided to a sensor section via an optical fiber (2a).

センサ部ではこの光を屈折率分布型レンズ(8a)でコ
リメートしたのち、偏光子(4)で直線偏光にし、光弾
性素子(5)、1波長板(7)、検光子(8)を通し、
屈折率分布型レンズ(8b)で再び光ファイバ(2b)
に入射させ、光受信機(9)へと導びく。偏光子(4)
の光軸と光弾性素子(5)の応力印加軸とは45度の角
度を成しており、偏光子(4)と検光子(8)の光軸は
直交している。7波長板(7)は光学的バイアスを与え
るためのものである。光弾性素子(5)は例えばガラス
やエポキシ樹脂等の非晶質体で構成している。この光弾
性素子は無応力状態では光学的に等方体であるが、応力
が印加されると光弾性効果により応力印加方向とそれと
垂直な方向とで屈折率が異なるという、いわゆる複屈折
性を呈する。従って、応力印加時に入射した直線偏光は
出射側では楕円側光となる。この楕円偏光を7波長板(
7)、検光子(8)で光強度信号に変換し、光受信機(
9)で電気信号に変換する。この電気信号の大きさと印
加応力とは、はぼ比例関係にあるため、電気信号をモニ
タすることにより、光弾性素子(5)に加えられた応力
、すなわち圧力がわかる。光弾性素子(5)への応力は
ダイヤフラム(6)を通じて加えられている。
In the sensor section, this light is collimated by a gradient index lens (8a), then made into linearly polarized light by a polarizer (4), and passed through a photoelastic element (5), a 1-wavelength plate (7), and an analyzer (8). ,
Optical fiber (2b) again with gradient index lens (8b)
and guide it to the optical receiver (9). Polarizer (4)
The optical axis of the photoelastic element (5) and the stress application axis of the photoelastic element (5) form an angle of 45 degrees, and the optical axes of the polarizer (4) and the analyzer (8) are perpendicular to each other. The 7-wave plate (7) is for providing optical bias. The photoelastic element (5) is made of an amorphous material such as glass or epoxy resin. This photoelastic element is optically isotropic in the stress-free state, but when stress is applied, it exhibits so-called birefringence, in which the refractive index differs in the direction of stress application and in the direction perpendicular to it due to the photoelastic effect. present. Therefore, the linearly polarized light incident upon stress application becomes elliptical light on the exit side. This elliptically polarized light is transferred to a 7-wavelength plate (
7), convert it into a light intensity signal with an analyzer (8), and transmit it to an optical receiver (
9) to convert it into an electrical signal. Since the magnitude of this electrical signal and the applied stress are approximately proportional to each other, by monitoring the electrical signal, the stress, that is, the pressure, applied to the photoelastic element (5) can be determined. Stress on the photoelastic element (5) is applied through the diaphragm (6).

従来の圧力測定装置は以上のように構成されているので
、光ファイバの曲げや、光源と光ファイバの結合効率の
変化などによる光フアイバ伝搬光パワーの変動が測定誤
差を招くという欠点があった。また、圧力がダイヤフラ
ムを介して応力として加えられているが、効率よく応力
が印加されないという欠点も有していた。
Conventional pressure measurement devices are configured as described above, but have the disadvantage that fluctuations in the optical power propagating through the optical fiber due to bending of the optical fiber or changes in the coupling efficiency between the light source and the optical fiber can lead to measurement errors. . Further, although pressure is applied as stress through the diaphragm, there is also a drawback that stress is not applied efficiently.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、光源を2個用い、2波長方式にす
ることにより、測定精度を高め、かつダイヤフラムと光
弾性素子との組合せに工夫を加え、効率的に応力が印加
できる装置を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by using two light sources and a two-wavelength method, it improves measurement accuracy and improves the combination of a diaphragm and a photoelastic element. The aim is to provide a device that can apply stress efficiently by adding innovations.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第2
図において、(2a)(2b)は光ファイバ(8a)(
8b)は屈折率分布型レンズ、(4)は偏光子、(5)
は光弾性素子、(6)はダイヤフラム、(7)は1/4
波長板、(8)は検光子、(10a)(10b)はダイ
クロイックミラー、αυはセンサ部のケースである。
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, (2a) and (2b) are optical fibers (8a) (
8b) is a gradient index lens, (4) is a polarizer, (5)
is a photoelastic element, (6) is a diaphragm, and (7) is 1/4
A wavelength plate, (8) an analyzer, (10a) and (10b) dichroic mirrors, and αυ a sensor case.

光弾性素子(5)への圧力印加法は、以下に示すとおり
である。第2図に示すようにダイヤフラム(6)の底は
光弾性素子(5)の受圧面に接着してあり、圧力センサ
部のケースOυは厳重に気密シールされておき、常に内
部の圧力が一気圧となるようにしである。センサ部のケ
ースON)外部の圧力が一気圧以上のときはダイヤフラ
ム(6)が伸び、光弾性素子(5)には下向きの応力が
働き、−気圧以下のときはダイヤフラムが縮み、光弾性
素子(5)には上向きの応力が働くことになる。
The method of applying pressure to the photoelastic element (5) is as shown below. As shown in Figure 2, the bottom of the diaphragm (6) is adhered to the pressure receiving surface of the photoelastic element (5), and the case Oυ of the pressure sensor section is tightly sealed, so that the internal pressure is always maintained. This is done so that the atmospheric pressure becomes the same. When the external pressure is above 1 atmosphere, the diaphragm (6) expands and downward stress acts on the photoelastic element (5), and when the external pressure is below -atmosphere, the diaphragm contracts and the photoelastic element An upward stress will act on (5).

この応力により光弾性素子(5)は複屈折性を呈するが
、この複屈折の大きさを知ることにより、印加応力、す
なわち圧力がわかる。複屈折の大きさは以下に示すよう
にしてめられる。短波長λ1と長波長λ2なる2種類の
光源からの光を、1本の光ファイバ(2a)を通してセ
ンサ部へ導びく。センサ部では、ダイクロイックミラー
(10a)により、λ1の光は透過させλ2の光は反射
させる。ス、の光は偏光ビームスプリッタで構成した偏
光子(4)を経て、光弾性素子(5)、7波長板(7)
、偏光ビームスプリッタで構成した検光子(8)を経て
、第2のダイクロイックミラー(10b)でλ2の光と
再結合され、出射光ファイバ(2b)に入射される。い
ま、ダイヤフラム(6)により、光弾性素子(5)に応
力が印加されたとすると、λ1の光は応力に比例した強
度変調を受けるが、λ2の光はそのまま何の便化もなく
センサ部を通過することになる。従って、光受信機によ
り、λ1、^2の光を分離し、λ1とλ2の光による信
号の比を取ることにより、光ファイバの曲げや光コネク
タの損失変動などによる光強度変化が生じてもそれらの
影響を受けることな(圧力のみに比例した信号が得られ
る。
This stress causes the photoelastic element (5) to exhibit birefringence, and by knowing the magnitude of this birefringence, the applied stress, ie, pressure, can be determined. The magnitude of birefringence can be measured as shown below. Light from two types of light sources, short wavelength λ1 and long wavelength λ2, is guided to the sensor section through one optical fiber (2a). In the sensor section, the dichroic mirror (10a) transmits the light of λ1 and reflects the light of λ2. The light passes through a polarizer (4) composed of a polarizing beam splitter, then passes through a photoelastic element (5) and a 7-wave plate (7).
The light passes through an analyzer (8) composed of a polarizing beam splitter, is recombined with the light of λ2 by a second dichroic mirror (10b), and enters an output optical fiber (2b). Now, if stress is applied to the photoelastic element (5) by the diaphragm (6), the light at λ1 undergoes intensity modulation proportional to the stress, but the light at λ2 passes through the sensor section without any modification. It will pass. Therefore, by separating the λ1 and ^2 lights using an optical receiver and taking the ratio of the signals of the λ1 and λ2 lights, even if the light intensity changes due to bending of the optical fiber or loss fluctuation of the optical connector, etc. A signal proportional only to pressure can be obtained without being influenced by these factors.

λ1とλ2の信号の分離は、例えば、各々の光源を交互
にパルス駆動しておき、光受信機でそのパルスに同期さ
せて、λ1、λ2の信号をサンプルホールドすることに
より行なえる。
Separation of the λ1 and λ2 signals can be performed, for example, by alternately driving each light source with pulses, and sampling and holding the λ1 and λ2 signals in synchronization with the pulses in an optical receiver.

また、光弾性素子(5)としては、エポキシ樹脂などの
高分子材料、各種のガラス材料、およびLiNbO3、
Bi 12G’eO□。などの単結晶材料を用いること
ができる。
In addition, as the photoelastic element (5), polymer materials such as epoxy resin, various glass materials, LiNbO3,
Bi 12G'eO□. A single crystal material such as can be used.

なお、上記実施例では、参照光λ2の光はそのままセン
サ内を伝搬させているが、第8図のように^2の光も偏
光子(4a)光弾性素子(5a) 、”波長板(7a)
 、検光子(8b)を通過させても良い。このようにす
れば、光弾性素子の温度特性を補償できるため、更lζ
測定精度が上昇する。
In the above embodiment, the reference light λ2 is propagated as it is in the sensor, but as shown in FIG. 7a)
, an analyzer (8b). In this way, the temperature characteristics of the photoelastic element can be compensated for, so that even lζ
Measurement accuracy increases.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、ダイヤフラムのつけ
方を工夫したため、効率よく圧力が光弾性素子へ印加さ
れ、また2波長方式を採用した。ため、精度の高いもの
が得られるという効果がある。
As described above, according to the present invention, the method of attaching the diaphragm is devised so that pressure can be efficiently applied to the photoelastic element, and a two-wavelength method is adopted. Therefore, there is an effect that a highly accurate product can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の圧力測定装置の構成図、第2図はこの発
明の一実施例1こよる圧力測定装置の構成図、第8図は
この発明の他の実施例による装置の構成図である。 (1)・・・光送信機、(2a)(2b)・・・光ファ
イバ、(aa)(sb)・・・屈折率分布型レンズ、(
4)(4a)・・・偏光子、(b) (5a)・・・光
弾性素子、(6)・・・ダイヤフラム、(7)(7a)
・・・−波長板、(8)(8a)・・・検光子、(9)
・・・先受m機、(10a)(10b)−・・グイクロ
イックミラー、aυ・・・センサ部のケース。 なお、図中、同一符号は同一、又は相当部分を示す。 代理人 大岩増雄 第1図 第21′ 点 手続補正器 特許庁長官殿 1 事件の表示 1・1願昭58−181701号2、
発明の名称 圧力測定装置 3、補正をする者 代表者片山仁へ部 4代理人 5、補正の対象 明細書の発明の詳細な説明の欄。 6、 補正の内容 (1)明細書をつぎのとおり訂正する。
FIG. 1 is a block diagram of a conventional pressure measuring device, FIG. 2 is a block diagram of a pressure measuring device according to Embodiment 1 of the present invention, and FIG. 8 is a block diagram of a device according to another embodiment of the present invention. be. (1)... Optical transmitter, (2a) (2b)... Optical fiber, (aa) (sb)... Gradient index lens, (
4) (4a)...Polarizer, (b) (5a)...Photoelastic element, (6)...Diaphragm, (7) (7a)
...-wave plate, (8) (8a) ... analyzer, (9)
...First receiver m machine, (10a) (10b)--Gicroic mirror, aυ...Sensor part case. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent: Masuo Oiwa, Figure 1, Figure 21', Proceedings Corrector, Commissioner of the Patent Office, 1. Indication of the case: 1.1 Application No. 181701/1982, 2.
Name of the invention Pressure measuring device 3, Person making the amendment Representative Hitoshi Katayama Department 4 Agent 5 Column for detailed description of the invention in the specification to be amended. 6. Contents of amendment (1) The description will be amended as follows.

Claims (4)

【特許請求の範囲】[Claims] (1)光弾性素子の用液率がそれに加わる圧力により変
化する事を利用してその圧力を測定するものに於て一端
を封じ込んだダイヤムラの封じ込んだ一端を光弾性素子
の上面に接着し、上記ダイヤムラの開放されている他端
を気密シールがほどこされたケースに接着し、かつ、上
記ダイヤフラムの測定装置。
(1) In devices that measure the pressure by utilizing the fact that the liquid rate of a photoelastic element changes depending on the pressure applied to it, one end of a diamura with one end sealed is glued to the top surface of the photoelastic element. and the other open end of the diaphragm is adhered to a hermetically sealed case, and a measuring device for the diaphragm.
(2)光源として短波長と長波長の2波長を用い、セン
サ部内の第1のダイクロイックミラーで短波長と長波長
の光を分離し、短波長の光は偏光子、ダイヤムラに接着
された光弾性素子、1波長板、検光子を通り、第2のダ
イクロイックミラーで、測定装置。
(2) Two wavelengths, a short wavelength and a long wavelength, are used as a light source, and the first dichroic mirror in the sensor section separates the short wavelength and long wavelength light, and the short wavelength light is the light that is glued to the polarizer and diamura. The measuring device passes through an elastic element, a single wavelength plate, an analyzer, and a second dichroic mirror.
(3)短波長、長波長の2つの光源は交互にパルス駆動
され、光受信機において、それと同期させてサンプルホ
ールドされたのち、電気的に2つの光による信号の比を
とることを特徴とする特許請求の範囲第1項記載の圧力
測定装置。
(3) The two light sources of short wavelength and long wavelength are pulse-driven alternately, sampled and held in synchronization with the light sources in the optical receiver, and then the ratio of the signals from the two lights is electrically calculated. A pressure measuring device according to claim 1.
(4)光源は短波長と長波長の2波長を用い、センサ部
内に設けられた第1のダイクロイックミラーで短波長と
長波長の光を分離し、短波長の光は偏光子、ダイヤフラ
ムに接着された光弾性素子、7波長板、検光子を通り、
長波長の光は別の偏光子、自由な状態にしである光弾性
素子、7波長板、検光子を通った後、第2のダイクロイ
ックミラーで短波長の光と長波長の光を合成し、光受信
機へと導びくことを特徴とする特許請求の範囲第1項記
載の圧力測定装置。
(4) The light source uses two wavelengths, a short wavelength and a long wavelength, and the first dichroic mirror installed in the sensor unit separates the short wavelength and long wavelength light, and the short wavelength light is glued to the polarizer and diaphragm. passed through a photoelastic element, a 7-wave plate, and an analyzer.
The long wavelength light passes through another polarizer, a photoelastic element in a free state, a 7-wave plate, and an analyzer, and then a second dichroic mirror combines the short wavelength light and long wavelength light. A pressure measuring device according to claim 1, characterized in that it leads to an optical receiver.
JP18170183A 1983-09-27 1983-09-27 Pressure measuring device Pending JPS6070328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18170183A JPS6070328A (en) 1983-09-27 1983-09-27 Pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18170183A JPS6070328A (en) 1983-09-27 1983-09-27 Pressure measuring device

Publications (1)

Publication Number Publication Date
JPS6070328A true JPS6070328A (en) 1985-04-22

Family

ID=16105343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18170183A Pending JPS6070328A (en) 1983-09-27 1983-09-27 Pressure measuring device

Country Status (1)

Country Link
JP (1) JPS6070328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278729A (en) * 1985-06-03 1986-12-09 Yokogawa Electric Corp Pressure detecting device
EP0224943A2 (en) * 1985-10-01 1987-06-10 Philips Patentverwaltung GmbH Method to measure selectively, according to wavelength, the diminution in radiation intensity in an optical transmission system
CN102680161A (en) * 2012-06-07 2012-09-19 北京航空航天大学 Fiber brag grating atmospheric pressure sensing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786730A (en) * 1980-09-26 1982-05-29 United Technologies Corp Pressure measuring apparatus
JPS57123497A (en) * 1980-12-17 1982-07-31 Siemens Ag Measuring apparatus utilizing optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786730A (en) * 1980-09-26 1982-05-29 United Technologies Corp Pressure measuring apparatus
JPS57123497A (en) * 1980-12-17 1982-07-31 Siemens Ag Measuring apparatus utilizing optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278729A (en) * 1985-06-03 1986-12-09 Yokogawa Electric Corp Pressure detecting device
EP0224943A2 (en) * 1985-10-01 1987-06-10 Philips Patentverwaltung GmbH Method to measure selectively, according to wavelength, the diminution in radiation intensity in an optical transmission system
EP0224943A3 (en) * 1985-10-01 1989-03-15 Philips Patentverwaltung GmbH Method to measure selectively, according to wavelength, the diminution in radiation intensity in an optical transmission system
CN102680161A (en) * 2012-06-07 2012-09-19 北京航空航天大学 Fiber brag grating atmospheric pressure sensing system

Similar Documents

Publication Publication Date Title
US4740081A (en) Optical measuring apparatus
US4598996A (en) Temperature detector
US4970385A (en) Temperature measuring device utilizing birefringence in photoelectric element
JP2001041983A5 (en)
JP2001041983A (en) Photo-voltage sensor
US4556791A (en) Photoelastic sensor using a variable intensity light source as a feedback means
US5589931A (en) System to determine environmental pressure and birefringent-biased cladded optical sensor for use therein
JPS6070328A (en) Pressure measuring device
US5016957A (en) Photoelastic optical switch and optical systems employing the optical switch and a method of use thereof
CN208171487U (en) A kind of optical-fiber laser pressure sensor
US4911015A (en) Non-electrical monitoring of a physical condition
JP3228862B2 (en) Optical voltage sensor
JP2509692B2 (en) Optical measuring device
RU2032181C1 (en) Fiber-optic electric-field strength and voltage meter
JPS60216315A (en) Optical device
JPS61118633A (en) Optical fiber sensor
JPH05157640A (en) Optical waveguide type stress sensor
JP2580443B2 (en) Optical voltage sensor
JPS61118899A (en) Optical fiber sensor
JPH02244920A (en) Polarized plane controller
JP2648431B2 (en) Optical temperature sensor
JPS5885124A (en) Temperature detecting device
JPH0124604Y2 (en)
JPS59220652A (en) Acceleration measuring apparatus
JPH01153924A (en) Coherent light measuring instrument