JPS61277385A - Ultrasonic wave motor - Google Patents

Ultrasonic wave motor

Info

Publication number
JPS61277385A
JPS61277385A JP60120011A JP12001185A JPS61277385A JP S61277385 A JPS61277385 A JP S61277385A JP 60120011 A JP60120011 A JP 60120011A JP 12001185 A JP12001185 A JP 12001185A JP S61277385 A JPS61277385 A JP S61277385A
Authority
JP
Japan
Prior art keywords
piezoelectric
stator
electrode
transducer
elastic unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60120011A
Other languages
Japanese (ja)
Inventor
Akira Tokushima
晃 徳島
Ritsuo Inaba
律夫 稲葉
Osamu Kawasaki
修 川崎
Hiroshi Ouchi
宏 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60120011A priority Critical patent/JPS61277385A/en
Publication of JPS61277385A publication Critical patent/JPS61277385A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/166Motors with disc stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain the flat temperature characteristic of output, by using the substance of the equal coefficient of linear expansion for the piezoelectric unit and the elastic unit organizing the stator of a motor. CONSTITUTION:Eight electrodes 1a are arranged by dividing the surface of the first disc-shaped piezoelectric transducer 1, and are polarized in different polarities in the direction of the disc thickness electrode by electrode. The second piezoelectric transducer 2 is also formed in the same way, and both piezoelectric transducers are put together so that the electrode transition of the second transducer 2 may be positioned near the center of the electrode of the first transducer 1. An elastic unit 3 forming a stator by fitting the transducers 1, 2 is provided with the projection 3a of an oscillation-transmitting member and with a central shaft 5, and a rotor 14 is fitted to organize an ultrasonic wave motor. In this case, the elastic unit 3 and the piezoelectric transducers 1, 2 are formed by using the substance of the equal coefficient of linear expansion. For example, for the elastic unit 3, the alloy of 42% nickel is used, and for the piezoelectric transducers 1, 2, the material of three- component system is used. As the result, the characteristic of flat temperature can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電体等の電気−機械変換子を用いて駆動力
を発生するモータに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a motor that generates driving force using an electro-mechanical transducer such as a piezoelectric body.

従来の技術 従来のこの種の圧電体等の電気−機械変換子を用いたモ
ータは、例えば特開公59−39801号公報に示され
ているように、第4図のような構成になっていた。すな
わち、2つの円形の圧電振動子・1,2と円形の弾性体
3を厚み方向に重ねて構成したステータと、そのステー
タに面接触する円形のロータ4を備え、前記ステータ表
面には振動エネルギーを作用させるためのリング状の突
起3aを有しておシ、圧電振動子1,2に互いに位相の
ずれた電気信号を印加することによシ回転力を得るよう
になっている。
2. Description of the Related Art A conventional motor using an electro-mechanical transducer such as a piezoelectric material has a structure as shown in FIG. Ta. That is, the stator is constructed by stacking two circular piezoelectric vibrators 1 and 2 and a circular elastic body 3 in the thickness direction, and a circular rotor 4 is in surface contact with the stator. The piezoelectric vibrators 1 and 2 are provided with a ring-shaped protrusion 3a for applying a rotational force to the piezoelectric vibrators 1 and 2 by applying electric signals out of phase with each other.

発明が解決しようとする問題点 しかし、このような構造のものではステータを構成する
弾性体と圧電体等の電気−機械変換子の線膨張率が異な
るために、温度特性が悪くて温度変化によシモータ特性
が変化するという問題があった。これは下記の理由によ
る。
Problems to be Solved by the Invention However, with this type of structure, the linear expansion coefficients of the elastic body that constitutes the stator and the electro-mechanical transducer such as the piezoelectric body are different, so the temperature characteristics are poor and it does not respond well to temperature changes. There was a problem that the simulator characteristics changed. This is due to the following reasons.

第3図の(alに一り6℃〜+90″Cの各温度におけ
る回転数の変化を示した。例えば弾性体にアルミニュウ
ムのような金属材料を用いて、樹脂接着剤により圧電磁
器と120℃程度の温度で貼合せると、アルミニュウム
は0.26%程度の寸法増加を示し、圧電磁器は0.0
6%の、前記アルミニュラムの%程度の寸法増加となる
ので、室温においては熱ストレスが加わったままステー
タを使用することとなる。さらに−36℃程度の低温で
は、この熱ストレスがさらに増して超音波モータの機械
振幅が減少するので、回転数の低下をまねいた。
Figure 3 (al) shows the change in rotational speed at each temperature from 6°C to +90''C. When laminated at a temperature of
Since the size increases by about 6% of the aluminum, the stator is used with thermal stress applied at room temperature. Furthermore, at a low temperature of about -36° C., this thermal stress increases further and the mechanical amplitude of the ultrasonic motor decreases, resulting in a decrease in the rotational speed.

問題点を解決するための手段 本発明は、ステータを構成する弾性体及び圧電体の線膨
張率を接着温度となる+120°C〜−35℃の比較的
低い温度の内において、同等程度を示す物質を用いる。
Means for Solving the Problems The present invention provides that the linear expansion coefficients of the elastic body and the piezoelectric body constituting the stator exhibit approximately the same coefficient of linear expansion within a relatively low temperature range of +120°C to -35°C, which is the bonding temperature. Use substances.

作  用 貼合せ工程において生じる熱ストレスが無くなるととも
に、超音波モータの実用温度範囲(−36°C〜+90
℃)において、温度特性が悪くて温度変化によシモータ
特性が変化するということが皆無となり、はぼフラット
な回転特性を得ることが可能となる。
Function: It eliminates the heat stress that occurs during the bonding process, and also reduces the practical temperature range of ultrasonic motors (-36°C to +90°C).
℃), the temperature characteristics are poor and the shimotor characteristics do not change due to temperature changes, making it possible to obtain substantially flat rotation characteristics.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

超音波モータのステータは例えば第1図に示すような構
造を有する。円板形状の第1圧電振動子1の表面には例
えば46°毎の領域に分割された8個の電極1aが設け
られている。この電極1aは銀などの導電材料を用いて
、第1圧電振動子1の表面に形成されている。裏面に具
備される電極(図示せず)は前記表面電極のように分割
されてはいす、全面電極となっている。以上のように構
成された第1圧電振動子1の相隣合う電罹毎に、板厚方
向に分極方向が互いに異なるようにして分極を行なう。
The stator of an ultrasonic motor has a structure as shown in FIG. 1, for example. On the surface of the disk-shaped first piezoelectric vibrator 1, eight electrodes 1a are provided, which are divided into regions of 46 degrees, for example. This electrode 1a is formed on the surface of the first piezoelectric vibrator 1 using a conductive material such as silver. The electrodes (not shown) provided on the back surface are divided like the front electrodes to form full-surface electrodes. Polarization is performed in each adjacent electric beam of the first piezoelectric vibrator 1 configured as described above so that the polarization directions are different from each other in the plate thickness direction.

この結果第1図において示すように互い違いにプラス極
性あるいはマイナス極性を有する領域からなる8極、4
組の振動子が構成される。電極1aは、分極後は分割さ
れている必要はなく、一括して電圧を印加できるように
接続される。円板形状の第2圧電振動子2も第1圧電振
動子1と同様の構造であり、互い違いにプラス極性ある
いはマイナス極性を有する8極、4組の振動子が構成さ
れている。
As a result, as shown in Figure 1, 8 poles, 4
A set of oscillators is configured. After polarization, the electrodes 1a do not need to be divided and are connected so that a voltage can be applied all at once. The disk-shaped second piezoelectric vibrator 2 has the same structure as the first piezoelectric vibrator 1, and includes four sets of eight poles each having alternating positive or negative polarity.

前記第1圧電振動子1あるいは第2圧電振動子2の周方
向の縦振幅の最小振幅位置は、各々相隣合う電極どうし
の境界位置近傍となり、最大振幅位置は各々の電極の中
央近傍位置となる。そして、両圧電振動子1,2は、第
1圧電振動子1の最大振幅位置となる電極中央近傍に、
第2圧電振動子2の最小振幅位7−−隣合う電極どうし
の境界が位置するよう重ね合わされている。
The minimum amplitude position of the longitudinal amplitude in the circumferential direction of the first piezoelectric vibrator 1 or the second piezoelectric vibrator 2 is near the boundary position between adjacent electrodes, and the maximum amplitude position is near the center of each electrode. Become. Both piezoelectric vibrators 1 and 2 are placed near the center of the electrode, which is the maximum amplitude position of the first piezoelectric vibrator 1.
Minimum amplitude level 7 of the second piezoelectric vibrator 2 -- Adjacent electrodes are superimposed so that their boundaries are located.

以上のように構成された第1圧電振動子1及び第2圧電
振動子2は、圧電振動子と同等ないし100倍程度の厚
みを有する弾性体3に重ね合わせて取付けられる。この
弾性体3は、例えば42%ニッケル合金等の金属を用い
て形成されている。また前記ステータとなる弾性体3の
表面には、例えば直径の約H程度となる位置近傍に振動
伝達部材である突起3a、中心に軸6が形成されている
The first piezoelectric vibrator 1 and the second piezoelectric vibrator 2 configured as described above are attached to overlap with an elastic body 3 having a thickness equal to or about 100 times that of the piezoelectric vibrator. This elastic body 3 is formed using a metal such as a 42% nickel alloy. Further, on the surface of the elastic body 3 serving as the stator, a projection 3a serving as a vibration transmitting member is formed near a position having a diameter of about H, for example, and a shaft 6 is formed at the center.

以上のように構成したものを第2図において示すステー
タ6として用いる。第2図に示すようにステータ6によ
シ定まる駆動周波数にて発振器7によシ発振された出力
信号を分岐し、一方を直接増幅器8に、他方を位相器9
を介して増幅器10に入力する。前記位相器9では正方
向回転あるいは逆方向回転に使用する±100 ないし
±170゜の範囲で位相シフトした信号が整形される。
The structure constructed as described above is used as the stator 6 shown in FIG. As shown in FIG. 2, the output signal oscillated by the oscillator 7 at the drive frequency determined by the stator 6 is branched, one of which is directly sent to the amplifier 8 and the other to the phase shifter 9.
is input to the amplifier 10 via. The phase shifter 9 shapes a signal whose phase is shifted within a range of ±100 to ±170°, which is used for forward or reverse rotation.

前記発振器7の出力信号を直接増幅器8に入力して増幅
した信号をリード線11及び12によシ第1圧に 電振動子1に印加する。それ9よりステータ6には8第
1圧電振動子1の分極方向が互いに異なるプラス極性あ
るいはマイナス極性を有する領域の一対を1波長として
8極、4組の振動子に対応する4波長の励振波が発生さ
れる。第2圧電振動子2も増幅器10の出力をリード線
12.13を介して印加することによシ同様に駆動され
る。
The output signal of the oscillator 7 is directly input to the amplifier 8, and the amplified signal is applied to the electric vibrator 1 at a first voltage through the lead wires 11 and 12. Therefore, the stator 6 is provided with excitation waves of 4 wavelengths corresponding to 8 poles and 4 sets of oscillators, with each wavelength being a pair of regions in which the polarization directions of the first piezoelectric oscillator 1 have mutually different positive polarity or negative polarity. is generated. The second piezoelectric vibrator 2 is similarly driven by applying the output of the amplifier 10 via the lead wires 12, 13.

上述のようにステータ6を駆動すると、ステータ6にお
けるロータ4に面する側の振動の頂点がロータ4に接触
し、しかもその頂点が時間とともに移動するため、ロー
タ4には横方向成分を有する力が加えられることになる
。かくしてロータ4は、ステータ6によシ定まる駆動周
波数により横方向成分による位置移動を繰シ返す結果、
はぼ1分間に数回転ないし数千回転程度の範囲での回転
運動を得ることができる。
When the stator 6 is driven as described above, the apex of the vibration on the side of the stator 6 facing the rotor 4 comes into contact with the rotor 4, and since the apex moves with time, a force having a lateral component is applied to the rotor 4. will be added. As a result, the rotor 4 repeatedly moves in position due to the lateral component due to the drive frequency determined by the stator 6.
It is possible to obtain rotational motion in the range of several to several thousand revolutions per minute.

第3図の(b)に弾性体に例えば42憾ニッケル合金(
exlo−6)を用い、圧電磁器に三成分系の材料(6
X10−6)等を用いることにより、線膨張率を同等程
度にして構成したステータを用いたモータ回転数の温度
特性を示した。−35℃〜+90°Cの各温度において
、はぼフラットな特性を得ることができた。
In Fig. 3(b), the elastic body is made of, for example, 42 nickel alloy (
exlo-6) is used, and a three-component material (6) is applied to the piezoelectric ceramic.
By using X10-6), etc., the temperature characteristics of the motor rotation speed using stators configured with similar linear expansion coefficients were shown. At each temperature from -35°C to +90°C, substantially flat characteristics could be obtained.

発明の効果 本発明による超音波モータは、モータのステータを構成
する弾性体及び圧電体の線膨張率が同等の物質を用いて
いるので、熱ストレスが皆無となり、超音波モータ出力
の温度特性がほぼフラットな特性を実現できた。
Effects of the Invention In the ultrasonic motor according to the present invention, since the elastic body and the piezoelectric body constituting the motor stator are made of materials with the same coefficient of linear expansion, there is no thermal stress and the temperature characteristics of the ultrasonic motor output are improved. We were able to achieve almost flat characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における超音波モータのステ
ータとロータの分解斜視図、第2図はステータとロータ
を用いた超音波モータの概要とその駆動回路を示す断面
図、第3図は第1図及び第2図の超音波モータの温度特
性を示す図、第4図は従来例の超音波モータの分解斜視
図である。 1.2・・・・・・圧電振動子、1a・・・・・・電極
、3・・・・・・弾性体、3a・・・・・・突起、4・
・・・・・ロータ、6・・パ゛ステータ、7・・・・・
・発振器、8,10・・・・・・増幅器、9・・・・・
・移相器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 温攬(初
Fig. 1 is an exploded perspective view of the stator and rotor of an ultrasonic motor according to an embodiment of the present invention, Fig. 2 is a sectional view showing an outline of an ultrasonic motor using a stator and rotor and its drive circuit, and Fig. 3 1 is a diagram showing the temperature characteristics of the ultrasonic motor shown in FIGS. 1 and 2, and FIG. 4 is an exploded perspective view of the conventional ultrasonic motor. 1.2... Piezoelectric vibrator, 1a... Electrode, 3... Elastic body, 3a... Protrusion, 4...
...Rotor, 6...Pyster, 7...
・Oscillator, 8, 10...Amplifier, 9...
・Phase shifter. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Onten (first time)

Claims (2)

【特許請求の範囲】[Claims] (1)弾性体と電気−機械変換振動子とから成るステー
タと、そのステータに接触するロータを備え、前記ステ
ータの弾性体及び振動子はその線膨張率が同等程度の物
質を用いて構成されていることを特徴とする超音波モー
タ。
(1) A stator consisting of an elastic body and an electro-mechanical transducer, and a rotor in contact with the stator, and the elastic body and the vibrator of the stator are constructed using materials whose linear expansion coefficients are approximately the same. An ultrasonic motor characterized by:
(2)電気−機械変換振動子が圧電体からなることを特
徴とする特許請求の範囲第1項記載の超音波モータ。
(2) The ultrasonic motor according to claim 1, wherein the electro-mechanical transducer is made of a piezoelectric material.
JP60120011A 1985-06-03 1985-06-03 Ultrasonic wave motor Pending JPS61277385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60120011A JPS61277385A (en) 1985-06-03 1985-06-03 Ultrasonic wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120011A JPS61277385A (en) 1985-06-03 1985-06-03 Ultrasonic wave motor

Publications (1)

Publication Number Publication Date
JPS61277385A true JPS61277385A (en) 1986-12-08

Family

ID=14775689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120011A Pending JPS61277385A (en) 1985-06-03 1985-06-03 Ultrasonic wave motor

Country Status (1)

Country Link
JP (1) JPS61277385A (en)

Similar Documents

Publication Publication Date Title
JPH07163162A (en) Ultrasonic oscillator
JPS63171175A (en) Driver for ultrasonic motor
JPH01129782A (en) Ultrasonic motor
JPS61277385A (en) Ultrasonic wave motor
JPS61277386A (en) Ultrasonic wave motor
JPS61277380A (en) Ultrasonic wave motor
JPS60207467A (en) Supersonic motor
JPS62277079A (en) Piezoelectric driving device
JPH07107756A (en) Ultrasonic motor
JPS60183981A (en) Supersonic wave motor
JP2614612B2 (en) Ultrasonic transducer
JPS60190178A (en) Piezoelectric motor
JPS60226781A (en) Supersonic wave motor
SU799054A1 (en) Vibromotor reversible motor
JPS6122777A (en) Piezoelectric motor
JPH0251379A (en) Ultrasonic motor
JPS62293977A (en) Ultrasonic motor
JPS61224885A (en) Vibration wave motor
JP2669013B2 (en) Electrode structure of ultrasonic motor
JPH0650949B2 (en) Method for manufacturing piezoelectric actuator
JP3155339B2 (en) Ultrasonic motor
JPH0628951Y2 (en) Piezoelectric actuator
JPH0458272B2 (en)
JPH0479236B2 (en)
JPH056430B2 (en)