JPS61277386A - Ultrasonic wave motor - Google Patents

Ultrasonic wave motor

Info

Publication number
JPS61277386A
JPS61277386A JP60120012A JP12001285A JPS61277386A JP S61277386 A JPS61277386 A JP S61277386A JP 60120012 A JP60120012 A JP 60120012A JP 12001285 A JP12001285 A JP 12001285A JP S61277386 A JPS61277386 A JP S61277386A
Authority
JP
Japan
Prior art keywords
stator
electrode
piezoelectric transducer
rotor
transducers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60120012A
Other languages
Japanese (ja)
Other versions
JPH0636674B2 (en
Inventor
Akira Tokushima
晃 徳島
Ritsuo Inaba
律夫 稲葉
Osamu Kawasaki
修 川崎
Hiroshi Ouchi
宏 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60120012A priority Critical patent/JPH0636674B2/en
Publication of JPS61277386A publication Critical patent/JPS61277386A/en
Publication of JPH0636674B2 publication Critical patent/JPH0636674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/166Motors with disc stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To prevent heat from being generated and improve the efficiency of a motor, by reversing the polarization of piezoelectric units set at the position confronting a nodal circle, at the angle of 180 deg. in the direction of the thickness. CONSTITUTION:The surface of the first disc piezoelectric transducer 1 is provided with eight divided electrodes 1a and 1b, and is polarized in different polarities electrode by electrode. The second piezoelectric transducer 2 is also formed in the same way, and both transducers are put together so that the electrode transition of the second piezoelectric transducer 2 may be positioned near the center of the electrode of the first piezoelectric transducer 1. An elastic unit 3 forming a stator by fitting the transducers is provided with the projection 3a of an oscillation-transmitting member and with a central shaft 5, and a rotor 14 is fitted to organize an ultrasonic wave motor. In this case, the polarization of the sections of electrodes 1b outside the nodal circle of the transducers 1, 2 is reversed at the angle of 180 deg.. As the result, the point of the rotor 14 in contact with the stator is positioned near the peak of the positive-directional displacement section of the flexible oscillation of the stator, and mechanical displacement is enlarged and thrust can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電体等の電気−機械変換振動子を用いて駆
動力を発生するモータに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a motor that generates driving force using an electro-mechanical transducer such as a piezoelectric body.

従来の技術 従来のこの種の圧電体等の電気−機械変換振動子を用い
たモータは、例えば特開公59−39801号公報に示
されているように、第4図のような構成になっていた。
2. Description of the Related Art A conventional motor using an electro-mechanical transducer such as a piezoelectric material has a configuration as shown in FIG. was.

すなわち、2つの円形の圧電振動子1,2と円形の弾性
体3とを厚み方向に重ねて構成したステータと、そのス
テータに面接触する円形のロータを備え、前記ステータ
表面には振動工、ネルギーを作用させるためのリング状
の突起3aを有しておシ、圧電体振動子1,2に互いに
位相のずれた電気信号を印加することにより回転力を得
るようになっている。
That is, it includes a stator formed by stacking two circular piezoelectric vibrators 1 and 2 and a circular elastic body 3 in the thickness direction, and a circular rotor that makes surface contact with the stator. It has a ring-shaped protrusion 3a for applying energy, and rotational force is obtained by applying electrical signals out of phase with each other to the piezoelectric vibrators 1 and 2.

発明が解決しようとする問題点 しかし、このような構造のものでは所定のドライブ周波
数の電気信号を印加して機械振動を励起すると、ステー
タが発熱して、モータ効率が悪いという問題があった。
Problems to be Solved by the Invention However, with such a structure, there is a problem in that when an electric signal of a predetermined drive frequency is applied to excite mechanical vibration, the stator generates heat, resulting in poor motor efficiency.

これは下記の理由による。This is due to the following reasons.

無ツー幽−円板形の振動子に高次モードのたわみ振動を
励起したときの面に垂直な方向の歪の分布を一1gI−
=たが、たわみによる変位は、約6/6 半径近傍とな
る節円を境にして位相が反転している。
The distribution of strain in the direction perpendicular to the plane when high-order mode flexural vibration is excited in a disc-shaped vibrator is 1gI-
However, the phase of the displacement due to deflection is reversed at the nodal circle which is approximately 6/6 radius.

従来例のように、振動の位相関係を考慮することなく、
円板形状の弾性体と二つの円板形状の一様に分極された
圧電振動子を同一寸法で貼合わすと、約6/6半径より
外側となる、圧電振動子の26チ程度にあたる領域が、
有効な振動に対して逆方向の無効なドライブを行なうこ
と罠なって、このために不要な振動の発生、及びロスに
よる発熱や、効率の低下を生じた。
Unlike the conventional example, without considering the phase relationship of vibration,
When a disc-shaped elastic body and two disc-shaped uniformly polarized piezoelectric vibrators are pasted together with the same dimensions, the area outside the approximately 6/6 radius, which corresponds to about 26 inches of the piezoelectric vibrator, is ,
An ineffective drive in the opposite direction to the effective vibration results in generation of unnecessary vibration, heat generation due to loss, and reduction in efficiency.

そこで本発明は、無効な超音波振動を励起することなく
、発熱を防いで、モータ効率の向上をはかろうとするも
のである。
Therefore, the present invention aims to improve motor efficiency by preventing heat generation without exciting ineffective ultrasonic vibrations.

問題点を解決するための手段 振動子における圧電体の分極方向を、ステータの約6/
6 半径となる節円内の圧電体と、節円によシ対向した
位置(節円外)に設けられた圧電体の分極方向を、厚み
方向に1800反転させて構成する。
Means for solving the problem The polarization direction of the piezoelectric material in the vibrator is set to about 6/6 of the stator.
6. The polarization directions of the piezoelectric body within the nodal circle serving as the radius and the piezoelectric body provided at a position facing the nodal circle (outside the nodal circle) are reversed by 1800 degrees in the thickness direction.

作  用 本構成ではステータとなる振動子の超音波振動は、全領
域においてたわみと同方向の有効な振動を(位相が反転
する領域はその方向にドライブ)励起することができる
ので、これまでの全入力信号の内の約25%を占める、
逆位相により相殺されて消費されたエネルギーが有効に
寄与して順方向の振動成分となるので従来例に比べてほ
ぼ半分程度以下の電気入力で、同程度の機械出力を得る
ことが可能となり、数倍程度の効率アップを行なえる。
Function: In this configuration, the ultrasonic vibration of the vibrator that becomes the stator can excite effective vibration in the same direction as the deflection in the entire region (the region where the phase is reversed is driven in that direction), which is different from the conventional method. It accounts for about 25% of the total input signal,
Since the energy consumed by being canceled out by the opposite phase effectively contributes to the forward vibration component, it is possible to obtain the same mechanical output with less than half the electrical input compared to the conventional example. Efficiency can be increased several times.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

超音波モータのステータは例えば第1図に示すような構
造を有する。円板形状の第1圧電振動子1の表面には例
えば460毎の領域に分割された8個の電極1a及び外
側に同様に分割された8個の電極1bが設けられている
。この電極1a及び1bは銀などの導電材料を用いて、
第1圧電振動子1及び第2圧電振動子2の表面に形成さ
れている。裏面に具備される電極(図示せず)は前記表
面電極のように分割されてはいす、全面電極となってい
る。以上のように構成された第1圧電振動子1の相隣合
う電極毎に、板厚方向に分極方向が互いに異なるように
して分極を行なう。この結果第1図において示すように
互い違いにプラス極性あるいはマイナス極性を有する領
域からなる16極、8組の振動子が構成される。電極1
a及び1bは、分極後は分割されている必要はなく、一
括して電圧を印加できるように接続される。円板形状の
第2圧電振動子2も第1圧電振動子1と同様の構造であ
シ、互い違いにプラス極性あるいはマイナス極性を有す
る16極、8.組の振動子が構成されている。
The stator of an ultrasonic motor has a structure as shown in FIG. 1, for example. The surface of the disk-shaped first piezoelectric vibrator 1 is provided with eight electrodes 1a divided into, for example, 460 areas, and eight electrodes 1b similarly divided on the outside. These electrodes 1a and 1b are made of a conductive material such as silver,
It is formed on the surfaces of the first piezoelectric vibrator 1 and the second piezoelectric vibrator 2. The electrodes (not shown) provided on the back surface are divided like the front electrodes to form full-surface electrodes. Polarization is performed so that the polarization directions of adjacent electrodes of the first piezoelectric vibrator 1 configured as described above are different from each other in the thickness direction. As a result, as shown in FIG. 1, eight sets of vibrators with 16 poles each consisting of regions having alternately positive or negative polarity are constructed. Electrode 1
After polarization, a and 1b do not need to be divided, and are connected so that a voltage can be applied all at once. The disk-shaped second piezoelectric vibrator 2 has the same structure as the first piezoelectric vibrator 1, and has 16 poles having alternately positive or negative polarity, 8. A set of transducers is configured.

前記第1圧電振動子1あるいは第2圧電振動子2の周方
向の縦振幅の最小振幅位置は、各々相隣合う電極どうし
の境界位置近傍となり、最大振幅位置は各々の電極の中
央近傍位置となる。そして、両圧電振動子1,2は、第
1圧電振動子1の最大振幅位置となる電極中央近傍に、
第2圧電振動子2の最小振幅位置となる相隣合う電極ど
うしの境界が位置するよう重ね合わされている・以上の
ように構成された第1圧電振動子1及び第2圧電振動子
2は、圧電振動子と同等ないし100倍程度の厚みを有
する弾性体3に重ね合わせて取付けられる。この弾性体
3は、アルミニウム、黄銅、ステンレス等の金属を用い
て形成されている。また前記ステータとなる弾性体3の
表面には、例えば直径の約%程度となる位置近傍に振動
伝達部材である突起3a、中心に軸6が形成されている
The minimum amplitude position of the longitudinal amplitude in the circumferential direction of the first piezoelectric vibrator 1 or the second piezoelectric vibrator 2 is near the boundary position between adjacent electrodes, and the maximum amplitude position is near the center of each electrode. Become. Both piezoelectric vibrators 1 and 2 are placed near the center of the electrode, which is the maximum amplitude position of the first piezoelectric vibrator 1.
The first piezoelectric vibrator 1 and the second piezoelectric vibrator 2 configured as described above are overlapped so that the boundary between adjacent electrodes is located at the minimum amplitude position of the second piezoelectric vibrator 2. It is attached to overlap an elastic body 3 having a thickness equal to or about 100 times that of the piezoelectric vibrator. This elastic body 3 is formed using metal such as aluminum, brass, and stainless steel. Further, on the surface of the elastic body 3 serving as the stator, a protrusion 3a serving as a vibration transmitting member is formed in the vicinity of a position corresponding to, for example, approximately % of the diameter, and a shaft 6 is formed at the center.

また第1圧電振動子1及び第2圧電振動子2の径方向の
電極配置は、前記弾性体3の直径(例えば40W′II
)に対して約5/6半径となる節円位置(例えば331
111)を最大外径とする。例えば正方向振動の領域と
、節円をはさんで例えば負方向となる振動の複数の領域
からなり、その分極の方向は互いに異なるように配置さ
れている。
Further, the electrode arrangement in the radial direction of the first piezoelectric vibrator 1 and the second piezoelectric vibrator 2 is based on the diameter of the elastic body 3 (for example, 40 W'II
), the nodal circle position is about 5/6 radius (for example, 331
111) is the maximum outer diameter. For example, it consists of a region of positive direction vibration and a plurality of regions of, for example, negative direction vibration across the nodal circle, and the directions of polarization thereof are arranged so as to be different from each other.

以上のように構成したものを第2図において示すステー
タ6として用いる。第2図に示すように、ステータ6に
より定まる駆動周波数にて発振器7によシ発振された出
力信号を分岐し、一方を直−増幅器8に、他方を位相器
9を介して増幅器1゜に入力する。前記位相器9では正
方向回転あるいは逆方向回転に使用する±100ないし
±17oOの範囲で位相シフトした信号が整形される。
The structure constructed as described above is used as the stator 6 shown in FIG. As shown in FIG. 2, the output signal oscillated by the oscillator 7 at a driving frequency determined by the stator 6 is branched, one of which is sent to a direct amplifier 8, and the other to an amplifier 1° via a phase shifter 9. input. The phase shifter 9 shapes a signal whose phase is shifted within the range of ±100 to ±17oO for use in forward or reverse rotation.

前記発振器7の出力信号を直接増幅器8に入力して増幅
した信号をリード線11及び12によシ第1圧電振動子
1に印加する。それによりステータ6には、第1圧電振
動子1の分極方向が互いに異なるプラス極性あるいはマ
イナス極性を有する領域の一対を1波長として周方向に
8極、4組の振動子に対応する4波長の励振波が発生さ
れる。第2圧電振動子2も増幅器10の出力をリード線
12゜13を介して印加することによシ同様に駆動され
る。
The output signal of the oscillator 7 is directly input to the amplifier 8, and the amplified signal is applied to the first piezoelectric vibrator 1 through lead wires 11 and 12. As a result, the stator 6 has 8 poles in the circumferential direction, with 4 wavelengths corresponding to 4 sets of oscillators, with a pair of regions in which the polarization directions of the first piezoelectric vibrator 1 have mutually different positive polarity or negative polarity as one wavelength. An excitation wave is generated. The second piezoelectric vibrator 2 is similarly driven by applying the output of the amplifier 10 through the lead wires 12 and 13.

上述のようにステータ6を駆動すると、ステータ6にお
けるロータ4に面する側の振動の頂点がロータ4に接触
し、しかもその頂点が時間とともに移動するため、ロー
タ4には横方向成分を有する力が加えられることになる
。かくしてロータ4は、ステータ6により定まる駆動周
波数により横方向成分による位置移動を繰り返す結果、
はぼ1分間に数回転ないし数千回転程度の範囲での回転
運動を得ることができる。このさいのステータとロータ
の接触位置は、ステータ6のたわみ振動の正方向の変位
部(例えば上向き方向)の頂点付近近傍となる。第3図
に本発明によるステータ6に電気信号を印加した駆動時
のたて方向の歪を、仮想像にて示すステータ6′の断面
方向に対する変化として測定した結果を示す。soV印
加時、振動伝達部材である突起4近傍において1.8線
種度の最大振幅を示した。振幅の位相折シ返し点いわゆ
る振動の節(節円)は、直径を100%とすると、80
〜90チの位置となシはぼ直線的に変化しており終端は
2.6μ隅程度の振幅となった。これらのことからステ
ータ6は、円板の2次のモードの変形次数が4次の、高
次振動モードによシ励振されているのがわかる。また前
記振動の節円近傍から電気信号印加用リード線11.1
2,13をとシだすと振動疲労による断線が皆無となっ
た。
When the stator 6 is driven as described above, the apex of the vibration on the side of the stator 6 facing the rotor 4 comes into contact with the rotor 4, and since the apex moves with time, a force having a lateral component is applied to the rotor 4. will be added. As a result of the rotor 4 repeating positional movement due to the lateral component due to the drive frequency determined by the stator 6,
It is possible to obtain rotational motion in the range of several to several thousand revolutions per minute. At this time, the contact position between the stator and the rotor is near the apex of the displacement portion of the stator 6 in the positive direction (for example, in the upward direction) of the flexural vibration. FIG. 3 shows the results of measuring the distortion in the vertical direction when the stator 6 according to the present invention is driven by applying an electric signal, as a change in the cross-sectional direction of the stator 6' shown in a virtual image. When soV was applied, a maximum amplitude of 1.8 line type was exhibited near the protrusion 4, which is a vibration transmission member. The phase turning point of the amplitude, the so-called vibration node (nodal circle), is 80% if the diameter is 100%.
The position from ~90 inches changes almost linearly, and the amplitude at the end is about 2.6 μm. From these facts, it can be seen that the stator 6 is excited by a higher-order vibration mode in which the deformation order of the second-order mode of the disk is fourth. In addition, a lead wire 11.1 for applying an electric signal from the vicinity of the vibration nodal circle
After testing 2 and 13, there was no disconnection due to vibration fatigue.

発明の効果 本発明による超音波モータは、円板形状のバルク波を直
接な手段で励振する構造により、推力となる横方向成分
を得る構造となっているので、一定電圧では機械的変位
が数倍となり、かつ断面方向の撓みの全域を出力してい
るので、スピードが平均化されずにピーク速度を取り出
すことが可能である。また発熱も低くモータ効率の高い
ものである。
Effects of the Invention The ultrasonic motor according to the present invention has a structure in which a disk-shaped bulk wave is excited by direct means to obtain a lateral component that becomes a thrust. Since the speed is doubled and the entire deflection in the cross-sectional direction is output, it is possible to extract the peak speed without averaging the speed. Furthermore, the heat generation is low and the motor efficiency is high.

【図面の簡単な説明】 第1図は本発明の一実施例における超音波モータのステ
ータとロータの分解斜視図、第2図は同ステータとロー
タを用いた超音波モータの概要とその駆動回路を示す断
面図、第3図は第1図及び第2図の超音波モータステー
タの駆動時における歪分布を示す図、第4図は従来例の
超音波モータの分解斜視図である。 1.2・・・・・・圧電振動子、1a・・・・・・電極
、3・・・・・・弾20−タ、7・・・・・・発振器、
8,1゜・・・・・・増幅器、9・・・・・・移相器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 WS2図 第4図
[Brief Description of the Drawings] Fig. 1 is an exploded perspective view of the stator and rotor of an ultrasonic motor according to an embodiment of the present invention, and Fig. 2 is an outline of an ultrasonic motor using the stator and rotor and its drive circuit. FIG. 3 is a diagram showing strain distribution during driving of the ultrasonic motor stator of FIGS. 1 and 2, and FIG. 4 is an exploded perspective view of a conventional ultrasonic motor. 1.2... Piezoelectric vibrator, 1a... Electrode, 3... Bullet 20-ta, 7... Oscillator,
8,1°...Amplifier, 9...Phase shifter. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure WS2 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)弾性体と電気−機械変換振動子とから成るステー
タと、そのステータに接触するロータを備え、前記ステ
ータの電気−機械変換振動子が、ステータのたわみ振動
の正方向振動部と負方向振動部の複数の領域からなり、
前記複数の領域の同極性電圧による駆動方向が互いに異
なることを特徴とする超音波モータ。
(1) A stator comprising an elastic body and an electro-mechanical conversion vibrator, and a rotor in contact with the stator, wherein the electro-mechanical conversion vibrator of the stator is configured to vibrate in the positive direction and in the negative direction of the flexural vibration of the stator. Consists of multiple areas of the vibrating part,
An ultrasonic motor characterized in that the driving directions of the plurality of regions by voltages of the same polarity are different from each other.
(2)円形状ステータの電気−機械変換振動子が、高次
振動モードによる節円内と節円外の領域に分割されてい
ることを特徴とする特許請求の範囲第1項記載の超音波
モータ。
(2) The ultrasonic wave according to claim 1, characterized in that the electro-mechanical conversion vibrator of the circular stator is divided into regions inside the nodal circle and outside the nodal circle according to a higher-order vibration mode. motor.
JP60120012A 1985-06-03 1985-06-03 Ultrasonic motor Expired - Lifetime JPH0636674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60120012A JPH0636674B2 (en) 1985-06-03 1985-06-03 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120012A JPH0636674B2 (en) 1985-06-03 1985-06-03 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JPS61277386A true JPS61277386A (en) 1986-12-08
JPH0636674B2 JPH0636674B2 (en) 1994-05-11

Family

ID=14775713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120012A Expired - Lifetime JPH0636674B2 (en) 1985-06-03 1985-06-03 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH0636674B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262144A (en) * 1987-04-20 1988-10-28 オリンパス光学工業株式会社 Ultrasonic vibrator driving apparatus
EP0294102A2 (en) * 1987-06-04 1988-12-07 Seiko Instruments Inc. Travelling-wave motor
EP1381092A2 (en) 2002-07-12 2004-01-14 Canon Kabushiki Kaisha Vibration type drive unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262144A (en) * 1987-04-20 1988-10-28 オリンパス光学工業株式会社 Ultrasonic vibrator driving apparatus
EP0294102A2 (en) * 1987-06-04 1988-12-07 Seiko Instruments Inc. Travelling-wave motor
EP1381092A2 (en) 2002-07-12 2004-01-14 Canon Kabushiki Kaisha Vibration type drive unit
EP1381092A3 (en) * 2002-07-12 2006-06-07 Canon Kabushiki Kaisha Vibration type drive unit

Also Published As

Publication number Publication date
JPH0636674B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
JPS61277386A (en) Ultrasonic wave motor
JPH074074B2 (en) Ultrasonic motor
JPS61277380A (en) Ultrasonic wave motor
JPS60174078A (en) Piezoelectric motor
JPS6149670A (en) Cantilever beam-shaped supersonic twisted elliptical vibrator
JP2532425B2 (en) Ultrasonic motor
JPS62277079A (en) Piezoelectric driving device
JPS60183981A (en) Supersonic wave motor
JPS60207467A (en) Supersonic motor
JPS62272881A (en) Ultrasonic motor
JPS6122777A (en) Piezoelectric motor
JPS63283475A (en) Ultrasonic motor
JPS62293977A (en) Ultrasonic motor
JP2523634B2 (en) Ultrasonic motor
JPS63110973A (en) Piezoelectric driver
JPS63294280A (en) Piezoelectric driving device
JPS63240382A (en) Ultrasonic motor
JPS6135176A (en) Piezoelectric motor
JP2506859B2 (en) Ultrasonic motor
JPS61106076A (en) Piezoelectric motor
JP2779416B2 (en) Ultrasonic motor
JPS61277385A (en) Ultrasonic wave motor
JPH0251379A (en) Ultrasonic motor
JP2980424B2 (en) Vibration motor device and method of manufacturing vibration motor
JP2543144B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term