JPS6127680B2 - - Google Patents

Info

Publication number
JPS6127680B2
JPS6127680B2 JP52086743A JP8674377A JPS6127680B2 JP S6127680 B2 JPS6127680 B2 JP S6127680B2 JP 52086743 A JP52086743 A JP 52086743A JP 8674377 A JP8674377 A JP 8674377A JP S6127680 B2 JPS6127680 B2 JP S6127680B2
Authority
JP
Japan
Prior art keywords
rotating body
moisture
heat
aluminate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52086743A
Other languages
Japanese (ja)
Other versions
JPS5313252A (en
Inventor
Rundein Beruchiru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Munters AB
Original Assignee
Carl Munters AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Munters AB filed Critical Carl Munters AB
Publication of JPS5313252A publication Critical patent/JPS5313252A/en
Publication of JPS6127680B2 publication Critical patent/JPS6127680B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/041Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier with axial flow through the intermediate heat-transfer medium
    • F28D19/042Rotors; Assemblies of heat absorbing masses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1048Geometric details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は、二つのガス体(空気)流れの間で湿
気を、また好ましくは熱をも交換するための、薄
板より成る蓄熱式交換器用回転体の製作方法に関
し、その薄板は平坦と波板との別々の形であり、
そして両方の媒体の流れに対する連続で平行な導
管の網状組織を形成する。波形の薄板は波形の山
に沿つて平坦な薄板を支え、その結果として導管
を横方向に支える。回転体は普通の円筒形であ
り、導管は回転軸線と平行に延びまた回転体の二
つの平坦な側部から外へ開く。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a rotating body for a regenerative exchanger made of sheet metal for exchanging moisture and preferably also heat between two gaseous (air) streams. The sheets are of different shapes, flat and corrugated,
and forming a network of continuous parallel conduits for the flow of both media. The corrugated sheet supports the flat sheet along the crests of the corrugations and thus supports the conduit laterally. The rotating body is of conventional cylindrical shape, and the conduits extend parallel to the axis of rotation and open out from two flat sides of the rotating body.

本蓄熱式交換器に対する重要な応用分野は、た
とえば冬期において排出ガスが供給空気と熱と湿
気を与えるような、回転体の中で供給空気と排出
空気とが湿気と熱を交換して構内に新鮮な空気を
供給するための換気装置としてである。それゆえ
各空気流には他の空気流から分離しまた導管の開
口する回転体の側面の個個の区域に連結した各個
の入口と出口とを設ける。
An important field of application for the present heat storage exchanger is that the supply air and the exhaust air exchange moisture and heat in a rotating body, for example in winter, when the exhaust gas provides heat and moisture with the supply air. As a ventilation system to supply fresh air. Each air stream is therefore provided with a respective inlet and outlet separate from the other air streams and connected to a separate area of the side of the rotor where the conduit opens.

従来は、かゝる回転体はアスベスト紙のような
繊維状不燃性材料または、別のやり方としては陶
器材料のような、多孔質材料のフオイルか薄板で
作られていた。この種の材料の薄板は、好ましく
は最も普通に使用されている塩化リチウムのごと
き吸湿性塩溶液である吸湿性物質の担体としての
役をする。
Traditionally, such rotating bodies have been made of fibrous non-combustible materials such as asbestos paper or, alternatively, foils or sheets of porous material such as porcelain materials. A sheet of material of this type serves as a carrier for a hygroscopic substance, preferably a hygroscopic salt solution such as the most commonly used lithium chloride.

多孔性フオイルまたは薄板で作つた前記型の回
転体は特別の特徴たとえば不燃性、湿気交換のた
めの高能力、および良好な機械的強度をもつこと
ができる。しかしながら、これらの特性を持つた
回転体を製作するためには、多数の作業を必要と
し、これは比較的高価で、製作するのに時間の
かゝる回転体を作ることになる。とくに湿つたと
き必要とする機械的強度を与えるため、薄板を構
成する材料に数種の物質をしみ込ませなければな
らず、薄板を波形にし回転体の形に作つた後に、
この含浸を行わなければならない。さらに、これ
らの製作工程を完了した直後に回転体の周面を仕
上げなければならず、必要な平坦さと精度とを得
るため、研磨とミーリング加工とを必要とする。
Rotating bodies of the above type made of porous foils or sheets can have special characteristics such as non-flammability, high capacity for moisture exchange and good mechanical strength. However, manufacturing a rotating body with these properties requires a large number of operations, which results in a rotating body that is relatively expensive and time consuming to manufacture. In order to provide the necessary mechanical strength, especially when wet, the material of which the sheet is made must be impregnated with several substances, and after the sheet is corrugated and shaped into a rotating body,
This impregnation must be carried out. Furthermore, immediately after completing these manufacturing steps, the circumferential surface of the rotating body must be finished, requiring polishing and milling to obtain the necessary flatness and precision.

もし薄板をアルミニウムフオイルで作るなら
ば、とくにもしスエーデン国特許出願第7605703
−3号明細書に記した製作技術を使うならば、製
作コストをかなり減少することができる。完全に
許容できる耐火性と機械的強度をこのような回転
体に与えることができるが、回転体は湿気交換器
で重要である一つの性質即ち吸湿性を欠く。
If the sheet metal is made of aluminum foil, in particular if
If the manufacturing technology described in Specification No. 3 is used, manufacturing costs can be reduced considerably. Although completely acceptable fire resistance and mechanical strength can be provided to such rotating bodies, the rotating bodies lack one property that is important in moisture exchangers: hygroscopicity.

この発明は全体としてか一部分としてアルミニ
ウムで作りまた製作工程を簡単にしまた材料のコ
ストを低くしたまま優れた吸湿性をもつた回転体
を製作する方法に関するものである。
The present invention relates to a method for producing a rotating body made entirely or in part of aluminum and having excellent moisture absorbing properties while simplifying the manufacturing process and keeping the cost of materials low.

0.03mm〜0.1mm厚のアルミニウムフオイルの二
つの帯材を使う特に有利な方法を用いて回転体は
製作される。一方の帯材に1〜3mmの高さの波形
を設け、その帯材を、たとえば上述の特許願明細
書に詳細に記載してある簡単な接着剤を使い、平
坦のまゝの他方の帯材に取付け、かくていわゆる
単一な波形は必要な寸法の円柱状回転体に成形さ
れる。
The rotating body is manufactured using a particularly advantageous method of using two strips of aluminum foil with a thickness of 0.03 mm to 0.1 mm. One strip is corrugated with a height of 1 to 3 mm, and then the strip is bonded to the other strip, which remains flat, using a simple adhesive, for example as detailed in the above-mentioned patent application. The so-called single corrugation is thus formed into a cylindrical body of revolution of the required dimensions.

この発明によればアルミニウムフオイルは、ア
ルミン酸カリウム、アルミン酸ナトリウムあるい
はアルミン酸リチウムまたはそれらの混合物の形
をしているアルミン酸塩化物の水溶液で処理され
る。水溶液での処理または含浸は完成した回転体
を10〜15%のアルミン酸塩溶液の浴の中に浸漬す
るかこのような溶液を回転体へ強く注ぐことによ
り第1工程で起る。濃度はなるべく溶液の中の16
〜17%のアルミン酸塩である。浴は18℃のように
室温またはそれよりいくらか低い温度をもち、時
間は比較的短かくたとえば3分である。この工程
中に、回転体のみぞにアルミン酸塩溶液を少くと
も1部分充てんする。この方法中または処理工程
中、フオイルの表面を腐蝕し、それで後で多孔性
被膜はそれに付着することができる。必要な程度
に溶液がみぞを出るように、回転体を含浸浴から
持上げ終つたとき、この被覆をつぎの方法または
処理工程で作り出す。しかしながら、溶液のフイ
ルムを回転体の表面に残さねばならず、このこと
は溶液をからにした直後にみぞを水平位置へ移動
させることにより最も良好に行はれる。含浸槽か
ら回転体のみぞの中に入つた液体は、熱を発生し
ながら変質あるいは変化させられ、それでフオイ
ルは実質的な熱の上昇を受ける。それで液体の一
部分であるアルミニウムが沈澱し、主として酸化
水素の吸湿性被覆としてフオイルの表面に付着
し、同時に水素ガスは逃げる。反応は含浸の時間
より長い時間の間で、おそらく水がみぞに残つて
いる限り続く。反応が止つたとき、回転体を洗つ
て水溶性残留物を除く。熱応力の結果として被覆
とフオイル担体との間の接触で破壊を防ぐため、
洗条の前に回転体を緩慢に冷却することは有利で
ある。回転体のフオイルが、たとえば2日間(24
時間)のようなある時間の間湿気の中で熟成する
機会を与えられるとき、被覆の粒子の大きさの増
加と分解の危険とをさらに最小にする。
According to the invention, aluminum foil is treated with an aqueous solution of aluminate chloride in the form of potassium aluminate, sodium aluminate or lithium aluminate or mixtures thereof. Treatment or impregnation with an aqueous solution takes place in a first step by immersing the finished rotary body in a bath of a 10-15% aluminate solution or by pouring such a solution onto the rotary body. The concentration is preferably 16 in the solution.
~17% aluminate. The bath has a temperature at or somewhat below room temperature, such as 18°C, and the time is relatively short, for example 3 minutes. During this step, the grooves of the rotating body are at least partially filled with an aluminate solution. During this method or processing step, the surface of the foil is corroded so that a porous coating can later be attached to it. When the rotating body has been lifted from the impregnation bath so that the solution exits the groove to the required extent, this coating is created in the following method or process step. However, a film of solution must remain on the surface of the rotor, and this is best accomplished by moving the groove to a horizontal position immediately after draining the solution. The liquid entering the grooves of the rotor from the impregnating bath is altered or changed with the generation of heat, so that the foil experiences a substantial heat increase. A portion of the liquid, aluminum, then precipitates and adheres to the surface of the foil as a hygroscopic coating of mainly hydrogen oxide, while at the same time hydrogen gas escapes. The reaction continues for a time longer than the time of impregnation, possibly as long as water remains in the channel. When the reaction has stopped, wash the rotating body to remove water-soluble residues. To prevent fractures in contact between the coating and the foil carrier as a result of thermal stresses,
It is advantageous to slowly cool the rotating body before scouring. For example, if the rotating foil is used for 2 days (24
The increase in particle size of the coating and the risk of decomposition is further minimized when the coating is given the opportunity to age in moisture for a period of time, such as 2 hours).

第1方法即ち第1工程で前記したように、水酸
化アルミニウムの多孔性被覆に対する固定した座
を形成する可能性をフオイルに与えるため、フオ
イルの表面の腐蝕を完成する。アルミニウムフオ
イル自体への効果は非常に大きいけれども、第2
工程即ち第2処理工程にフオイルの各面に10〜20
μm(ミクロン)の多孔性の添加被覆を与える。
たとえば50μmの厚さでフオイルへの重量の増加
は約10%であることができる。被覆の主成分は含
浸溶液から取りそれでアルミニウム自体の変化か
ら取つたものでない異つた数種の水酸化アルミニ
ウムから成る。
As described above in the first method or step, the etching of the surface of the foil is completed in order to give it the possibility of forming a fixed seat for the porous coating of aluminum hydroxide. Although the effect on aluminum foil itself is very large, the second
10 to 20 on each side of the foil in the second treatment step.
Provides an additive coating with μm (micron) porosity.
For example, at a thickness of 50 μm the weight increase on the foil can be about 10%. The main component of the coating consists of several different types of aluminum hydroxide taken from the impregnating solution and not from the transformation of the aluminum itself.

回転体を製作し終つた後に、この発明による処
理をなるべく行わなければならない。この方法は
回転体の強さに対して価値のある効果をもつこと
が実証された。ある型の架橋が接触しているフオ
イルの間の表面で多孔性の薄板の間で生じるよう
に見え、これは波形帯材の間の継手の強化を生ず
る。
The treatment according to the invention should preferably be carried out after the rotating body has been manufactured. This method has been demonstrated to have a valuable effect on the strength of rotating bodies. A type of crosslinking appears to occur between the porous sheets at the surfaces between the contacting foils, which results in a strengthening of the joint between the corrugated strips.

吸湿性被覆を第1処理工程でアルミン酸塩溶液
の中の繰返えし含浸により凝縮することができ
る。さらに粉砕するか粉状にした無機の固形吸着
剤たとえばシリカゲルを含浸工程のある段階でア
ルミン酸塩溶液の中へ導入することができる。こ
のような粉は大きな程度に吸着性を減ずることな
しにフオイルの表面へ驚ろくほどよく付着する。
The hygroscopic coating can be concentrated in a first treatment step by repeated impregnations in an aluminate solution. Additionally, ground or powdered inorganic solid adsorbents, such as silica gel, can be introduced into the aluminate solution at some stage of the impregnation process. Such powders adhere surprisingly well to the surface of the foil without reducing the adsorption properties to any significant extent.

前記方法を使つて得た吸湿性は吸着性を基礎と
しており、またはじめに記したように吸湿性物質
としてのリチウム塩化物とともにアスベストで作
つた高多孔性フオイルか陶器材料を使つている回
転体製作で得たものと比較できる湿気交換性を生
ずることを立証した。
The hygroscopic properties obtained using the above method are based on adsorption properties and, as mentioned in the introduction, the production of rotating bodies using highly porous foils made of asbestos or ceramic materials together with lithium chloride as the hygroscopic substance. It has been demonstrated that this yields moisture exchange properties comparable to those obtained in .

換気と関連して回転体を使う多くの場合に、排
出空気の中の汚物たとえば脂肪または油が薄いフ
イルムで表面をおおう危険があり、このフイルム
はもし吸湿性被覆が固形吸着剤から成るならば吸
湿性被覆へとまたそれから湿気の拡散を多かれ、
少なかれ制限することができる。湿気を中で凝縮
させる細い孔と毛管にとつては閉塞されるように
なつて働かなくなることは容易である。もし他方
で吸湿性物質が塩溶液から成るならば、全湿潤面
が活性をもつようになり、液体は汚物のフイルム
の中に滲み出てフイルムを突破して来るようにな
る。
In many cases where rotating bodies are used in conjunction with ventilation, there is a risk that dirt in the discharged air, such as fat or oil, will cover the surface with a thin film, which may be present if the hygroscopic coating consists of a solid adsorbent. Increases the diffusion of moisture to and from the hygroscopic coating,
It can be limited to some extent. The narrow pores and capillaries that allow moisture to condense therein can easily become blocked and stop working. If, on the other hand, the hygroscopic substance consists of a salt solution, the entire wetted surface will become active and the liquid will seep into the dirt film and break through the film.

同様な作用状態においては塩溶液により与えた
吸湿能力の方が良い。
Under similar operating conditions, the hygroscopic capacity provided by the salt solution is better.

しかしながら、未処理アルミニウムフオイルは
その表面で塩溶液の十分な量を保持する能力をも
たない。前記したように、アルカリアルミン酸塩
でのアルミニウムフオイルの処理で得た多孔性被
覆は未処理面より多くの量の塩溶液を保持するこ
とができる。さらにアルミン酸塩の処理はさらに
多孔性を増加する他の被覆を結合することができ
る基礎を与える。含浸工程中にアルミン酸ナトリ
ウムへの粉体の添加が追加の被覆を与えている被
覆についてすでに前記した。フオイル表面の水吸
収能力をこの処理方法によりかなり増加すること
ができる。一度アルミン酸塩で処理した回転体を
水ガラスの中に浸漬しその後で二酸化炭素にさら
す。これは多孔性を増加する化学的に凝縮した二
酸化シリコンの追加の被覆を与える。
However, untreated aluminum foil does not have the ability to retain sufficient amounts of salt solution on its surface. As mentioned above, the porous coating obtained by treatment of aluminum foil with an alkali aluminate is capable of retaining a greater amount of salt solution than the untreated surface. Furthermore, the aluminate treatment provides a basis on which other coatings can be combined that further increase the porosity. A coating has already been described above in which the addition of powder to the sodium aluminate during the impregnation process provides an additional coating. The water absorption capacity of the foil surface can be increased considerably by this treatment method. Once treated with aluminate, the rotating body is immersed in water glass and then exposed to carbon dioxide. This provides an additional coating of chemically condensed silicon dioxide which increases porosity.

吸湿性物質として塩溶液を使う場合の一つの重
要な問題は起ることができる腐蝕の程度である。
度重なる試験の示すところによれば、リチウム塩
化物を使うことができず、それは腐蝕ははるかに
急速におかすからである。
One important issue when using salt solutions as hygroscopic materials is the degree of corrosion that can occur.
Repeated tests have shown that lithium chloride cannot be used because it corrodes much more rapidly.

別の一つのリチウム塩である硝酸リチウムが実
際にアルミン酸塩で処理したアルミニウムフオイ
ルの腐蝕を生じないことが実証された。同時に硝
酸リチウムはフオイルに非常に良好な吸湿性をこ
こで問題としている湿気と熱との同時的交換に対
する相対湿度内即ち10〜20%を越える相対湿度内
で与える。臭化カルシウムと塩化ナトリウムもま
たアルミン酸塩で処理した表面への塩化リチウム
よりかなり低い腐蝕性をもつことが立証されたけ
れども、それらは硝酸リチウムほど良好ではな
い。臭化カルシウムは自体が吸湿性としてとくに
適当であることが判明した。
It has been demonstrated that another lithium salt, lithium nitrate, does not actually cause corrosion of aluminate treated aluminum foils. At the same time, lithium nitrate provides the foil with very good hygroscopic properties within the relative humidity range, ie above 10-20% relative humidity for the simultaneous exchange of moisture and heat in question here. Calcium bromide and sodium chloride have also been shown to be significantly less corrosive to aluminate-treated surfaces than lithium chloride, but they are not as good as lithium nitrate. Calcium bromide has proven itself to be particularly suitable as a hygroscopic agent.

回転体に吸着性と吸収性とを与えようとした前
記物質と技術とは安価でありまたスエーデン国特
許第7605703−3号明細書に記した製造方法の原
理を保持することができるような性質をもつ。こ
れらはともに過去において高効率の交換器用回転
体を製作するのに必要であつたコストをかなり下
げる製作コストを生ずる。
The materials and techniques used to impart adsorptive and absorbent properties to the rotating body are inexpensive and have properties that allow the principle of the manufacturing method described in Swedish Patent No. 7605703-3 to be maintained. have. Both of these result in manufacturing costs that are significantly lower than those required in the past to produce highly efficient exchanger rotors.

「アルミニウムフオイル」と言う術語には、ア
ルミニウムの層即ち被覆を設けたガラス繊維また
はセルローズまたはプラスチツクフオイルのよう
な非金属材料の担体を構成している薄板を包含す
る。
The term "aluminum foil" includes a thin sheet comprising a carrier of non-metallic material, such as glass fiber or cellulose or plastic foil, provided with a layer or coating of aluminum.

Claims (1)

【特許請求の範囲】 1 二つの気体の流れの間で湿気および熱の交換
をするための回転体が、平坦と波形のアルミニウ
ム箔を交互に重ねて円筒形に作り、前記二つの気
体の流れが通る多数の貫通した平行な流通溝を作
つている殻を持ち、回転体の前記殻の表面に多孔
質の吸湿性の被膜が形成されているところの湿気
と熱の蓄熱式交換器用回転体の製作方法におい
て、前記吸湿性の被膜は水酸化アルミニウムより
成り、該被膜を前記回転体を構成するアルミニウ
ム箔の表面に施行せるアルカリ金属−アルミン酸
塩溶液からの沈澱により形成することを特徴とす
る湿気と熱の蓄熱式交換器用回転体の製作方法。 2 アルカリ金属−アルミン酸塩としてアルミン
酸ナトリウムが適用されることを特徴とする特許
請求の範囲第1項記載の湿気と熱の蓄熱式交換器
用回転体の製作方法。 3 アルミン酸塩での処理は、前記アルミニウム
箔を円筒状にして回転体を作つた後に、最初に行
はれることを特徴とする特許請求の範囲第1項ま
たは第2項記載の湿気と熱の蓄熱式交換器用回転
体の製作方法。 4 アルミン酸塩での処理の間に、無機質の粉末
をアルミン酸溶液に混合することにより、無機質
の粉末による追加の被膜を形成することを特徴と
する特許請求の範囲第1項から第3項のいずれか
一項記載の湿気と熱の蓄熱式交換器用回転体の製
作方法。 5 前記無機質の粉末としてシリカゲルが適用さ
れることを特徴とする特許請求の範囲第5項記載
の湿気と熱の蓄熱式交換器用回転体の製作方法。 6 前記殻表面の被膜には、腐蝕防止剤として、
硝酸リチユウムの溶液が加えられることを特徴と
する特許請求の範囲第1項から第5項のいずれか
一項記載の湿気と熱の蓄熱式交換器用回転体の製
作方法。
[Scope of Claims] 1. A rotating body for exchanging moisture and heat between two gas flows is made into a cylindrical shape by alternately stacking flat and corrugated aluminum foils, and A rotating body for a heat storage type exchanger for moisture and heat, which has a shell forming a large number of parallel circulation grooves through which water passes, and a porous hygroscopic coating is formed on the surface of the shell of the rotating body. In the manufacturing method, the hygroscopic coating is made of aluminum hydroxide, and the coating is formed by precipitation from an alkali metal-aluminate solution applied to the surface of an aluminum foil constituting the rotating body. A method for manufacturing a rotating body for a heat storage type exchanger for moisture and heat. 2. The method of manufacturing a rotating body for a heat storage exchanger for moisture and heat according to claim 1, wherein sodium aluminate is used as the alkali metal aluminate. 3. Moisture and heat according to claim 1 or 2, wherein the treatment with an aluminate is performed first after the aluminum foil is made into a cylindrical shape to form a rotating body. A method of manufacturing a rotating body for a heat storage type exchanger. 4. Claims 1 to 3, characterized in that during the treatment with aluminate, an additional coating of inorganic powder is formed by mixing the inorganic powder into the aluminate solution. A method for producing a rotating body for a heat storage exchanger for moisture and heat according to any one of the above. 5. The method of manufacturing a rotating body for a heat storage exchanger for moisture and heat according to claim 5, wherein silica gel is used as the inorganic powder. 6 The coating on the shell surface contains a corrosion inhibitor,
6. A method of manufacturing a rotating body for a heat storage exchanger for moisture and heat according to any one of claims 1 to 5, characterized in that a solution of lithium nitrate is added.
JP8674377A 1976-07-21 1977-07-21 Regenerative heat exchanger rotor for exchanging heat between two gas flows with wet and heat and method of producing same Granted JPS5313252A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7608329A SE407455B (en) 1976-07-21 1976-07-21 ROTOR FOR A REGENERATIVE EXCHANGE OF MOISTURE AND HEAT AND WAY TO PRODUCE SUCH A ROTOR

Publications (2)

Publication Number Publication Date
JPS5313252A JPS5313252A (en) 1978-02-06
JPS6127680B2 true JPS6127680B2 (en) 1986-06-26

Family

ID=20328527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8674377A Granted JPS5313252A (en) 1976-07-21 1977-07-21 Regenerative heat exchanger rotor for exchanging heat between two gas flows with wet and heat and method of producing same

Country Status (8)

Country Link
JP (1) JPS5313252A (en)
CA (1) CA1116163A (en)
CS (1) CS198261B2 (en)
DE (1) DE2732989C2 (en)
FR (1) FR2358913A1 (en)
GB (1) GB1581262A (en)
NO (2) NO143714C (en)
SE (1) SE407455B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124521A (en) * 1982-01-20 1983-07-25 Mitsubishi Electric Corp Moisture permeable gas barrier
SE8207166D0 (en) * 1982-12-15 1982-12-15 Svante Thunberg REGENERATIVE HEAT EXCHANGER WITH MOISTURIZING AND TEMPERATURES
JPS613994A (en) * 1984-06-18 1986-01-09 Baanaa Internatl:Kk Rotary element for total heat exchanger and/or dehumidifier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702156A (en) * 1970-12-03 1972-11-07 Aero Flow Dynamics Inc Air-to-air energy exchange wheel and method of fabrication
US3733791A (en) * 1971-08-13 1973-05-22 Wehr Corp Heat transferer
FR2152802A1 (en) * 1971-09-10 1973-04-27 Luft Kaltetechn K
DE2243408A1 (en) * 1971-09-10 1973-03-15 Luft U Kaeltetechnik Veb K Treatment of aluminium heat exchanger used for cooling moist - air - with alkaline soln to facilitate removal of condensate

Also Published As

Publication number Publication date
NO143714L (en) 1900-01-01
NO143714B (en) 1980-12-22
SE407455B (en) 1979-03-26
SE7608329L (en) 1978-01-22
DE2732989A1 (en) 1978-01-26
NO772595L (en) 1978-01-24
CA1116163A (en) 1982-01-12
CS198261B2 (en) 1980-05-30
DE2732989C2 (en) 1984-06-28
JPS5313252A (en) 1978-02-06
GB1581262A (en) 1980-12-10
FR2358913B1 (en) 1980-04-04
NO143714C (en) 1985-12-03
FR2358913A1 (en) 1978-02-17

Similar Documents

Publication Publication Date Title
US4911775A (en) Method of manufacturing dehumidifier element
US4886769A (en) Active gas adsorbing element and method of manufacturing
US4361620A (en) Total energy exchange medium and method of making the same
CA2152361C (en) Langmuir moderate type 1 desiccant for air
JP3346680B2 (en) Adsorbent for moisture exchange
TWI358316B (en) Chemical filter
US5683532A (en) Method of manufacturing an active silica gel honeycomb adsorbing body usable in an atmosphere having 100% relative humidity
TWI406710B (en) Dehumidification rotor, method of manufacturing the same, and dehumidifier
JP6147004B2 (en) Honeycomb matrix containing macroporous desiccant, process and use thereof
US3307617A (en) Method in the manufacture of an exchanger packing and exchanger packing manufactured according to said method
US4021590A (en) Method of manufacturing a contact body
JPS61101228A (en) Preparation of humidity exchange element
CA1085714A (en) Humidity and heat exchanger apparatus, method for its manufacture
JPS6127680B2 (en)
CN100348304C (en) Composite support liquid film and its preparing method
JP3273788B2 (en) Treatment method of contact body for exchange of heat, moisture, etc.
US4189330A (en) Method for making humidity and heat exchanger apparatus
US4021282A (en) Method of manufacturing a contact body
US20030056884A1 (en) Heat and moisture exchange media
JP2707330B2 (en) Continuous production method of elements for gas adsorber
JP3495874B2 (en) Method of manufacturing dehumidifying element
JPS5846325B2 (en) Method for manufacturing a moisture-permeable gas shield
JP3305602B2 (en) Manufacturing method of dehumidifying element
JP5037908B2 (en) Dehumidification rotor and manufacturing method thereof
JPS63218235A (en) Production of element for dehumidification