NO143714B - ROTOR FOR REGENERATIVE MOISTENCE RESP. HEAT EXCHANGES AND PROCEDURE FOR THIS MANUFACTURING - Google Patents

ROTOR FOR REGENERATIVE MOISTENCE RESP. HEAT EXCHANGES AND PROCEDURE FOR THIS MANUFACTURING Download PDF

Info

Publication number
NO143714B
NO143714B NO772595A NO772595A NO143714B NO 143714 B NO143714 B NO 143714B NO 772595 A NO772595 A NO 772595A NO 772595 A NO772595 A NO 772595A NO 143714 B NO143714 B NO 143714B
Authority
NO
Norway
Prior art keywords
rotor
coating
corrugated
porous
hygroscopic
Prior art date
Application number
NO772595A
Other languages
Norwegian (no)
Other versions
NO143714C (en
NO772595L (en
Inventor
Bertil Lundin
Original Assignee
Munters Ab Carl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Munters Ab Carl filed Critical Munters Ab Carl
Publication of NO772595L publication Critical patent/NO772595L/en
Publication of NO143714B publication Critical patent/NO143714B/en
Publication of NO143714C publication Critical patent/NO143714C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/041Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier with axial flow through the intermediate heat-transfer medium
    • F28D19/042Rotors; Assemblies of heat absorbing masses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1048Geometric details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Foreliggende oppfinnelse vedrører en rotor for en regenerativ utveksler av fuktighet og fortrinnsvis også varme mellom to gass-(luft-) strømmer sammensatt av tynne sjikt, som avvekslende er plane og korrugerte og danner et antall parallelle gjennomgående kanaler for de to medier, idet rotorens korrugerte og eventuelt også plane sjikt består av aluminiumfolier, hvis overflater har et porøst hygroskopisk belegg av aluminiumhydroksyd. De korrugerte sjikt støter mot de plane sjikt langs korrugeringsribber, hvorved kanalene blir skilt fra hverandre i sideretning. Rotoren har vanligvis sylindrisk form, hvorved kanalene forløper parallelt med rotasjonsaksen og munner ut ved rotorens to flatsider. The present invention relates to a rotor for a regenerative exchanger of moisture and preferably also heat between two gas (air) flows composed of thin layers, which are alternately flat and corrugated and form a number of parallel through channels for the two media, the rotor's corrugated and possibly also flat layers consisting of aluminum foils, the surfaces of which have a porous hygroscopic coating of aluminum hydroxide. The corrugated layers collide with the flat layers along corrugation ribs, whereby the channels are separated from each other laterally. The rotor usually has a cylindrical shape, whereby the channels run parallel to the axis of rotation and open out at the two flat sides of the rotor.

Et viktig anvendelsesområde for den regenerative utveksler er ventilatorer for tilførsel av friskluft til lokaler, idet til- An important area of application for the regenerative exchanger is ventilators for the supply of fresh air to premises, as

og fraluften utveksler fuktighet og varme i rotoren, slik at f.eka vinterstid fraluften avgir varme og fuktighet til tilluften. and the exhaust air exchanges moisture and heat in the rotor, so that, for example, in winter the exhaust air emits heat and moisture to the supply air.

Hver luftstrøm har derved til- og avløp som er adskilt fra hverandre og som står i forbindelse med hver sin sone av rotorens si-deflater hvor kanalene munner ut. Each air stream thereby has inlets and outlets which are separated from each other and which are in connection with each zone of the rotor's side surfaces where the channels open out.

Ved fremstillingen av slike rotorer har man hittil anvendt folier eller sjikt av fibrøst, ubrennbart materiale slik som asbestpapir eller på annen måte tilveiebragt høyporøst materiale, slik som keramikk. Sjikt av denne type tjener da som bærer for et hygroskopisk materiale, fortrinnsvis en hygroskopisk saltoppløsning, hvor litiumklorid er det vanligest forekommende materiale. In the manufacture of such rotors, foils or layers of fibrous, non-combustible material such as asbestos paper or highly porous material such as ceramics have been used up to now. Layers of this type then serve as a carrier for a hygroscopic material, preferably a hygroscopic salt solution, where lithium chloride is the most commonly occurring material.

En rotor av foran beskrevet slag med høyporøse folier eller sjikt kan få overordentlig gode egenskaper slik som ubrennbarhet, høy fuktighetsoverføringsevne og god mekanisk styrke. For å oppnå alle disse egenskaper kreves imidlertid et stort antall arbeids-operasjoner, som gjør disse rotorer relativt dyre og tidskrevende å fremstille. Således må man impregnere foliematerialet med et flertall midler, for å oppnå nødvendig mekanisk styrke, særlig i fuktig tilstand, og denne impregnering må skje efterat foliematerialet er blitt korrugert og viklet opp til rotorform. Videre må man efter disse behandlingstrinn bearbeide rotorens begrens-ningsflater ved bl.a. sliping og fresing for at nødvendig planhet og dimensjonsnøyaktighet skal oppnås. A rotor of the kind described above with highly porous foils or layers can have extremely good properties such as non-flammability, high moisture transfer capability and good mechanical strength. To achieve all these properties, however, a large number of work operations are required, which make these rotors relatively expensive and time-consuming to produce. Thus, one must impregnate the foil material with a plurality of means, in order to achieve the necessary mechanical strength, especially in a moist state, and this impregnation must take place after the foil material has been corrugated and wound up into a rotor shape. Furthermore, after these treatment steps, the rotor's boundary surfaces must be processed by e.g. grinding and milling in order to achieve the necessary flatness and dimensional accuracy.

Ved å utføre sjiktene av aluminiumfolier kan man redusere frem-stillingsomkostningene vesentlig, særlig hvis man anvender den By making the layers of aluminum foil, production costs can be significantly reduced, especially if you use it

fremstillingsteknikk som er beskrevet i patentansøkning 7605703-3. En slik rotor kan gis helt akseptable brannegenskaper og mekanisk styrke, men mangler en for en fuktighetsutveksler vesentlig egen-skap, nemlig hygroskopisitet. manufacturing technique which is described in patent application 7605703-3. Such a rotor can be given perfectly acceptable fire properties and mechanical strength, but lacks an essential property for a moisture exchanger, namely hygroscopicity.

Det er oppfinnelsens formål å gi en av aluminiumfolie helt eller delvis fremstilt rotor fullgode hygroskopiske egenskaper under bibehold av en forenklet fremstillingsprosess og lave material-omkostninger. It is the purpose of the invention to give a rotor completely or partially made of aluminum foil excellent hygroscopic properties while maintaining a simplified manufacturing process and low material costs.

Dette oppnås ifølge oppfinnelsen som angitt i kravene. This is achieved according to the invention as stated in the claims.

Rotoren fremstilles ifølge en spesiell, verdifull utførelsesform av oppfinnelsen av to baner eller bånd av aluminiumfolie, som kan ha en tykkelse på 0,03 - 0,1 mm. Den ene bane korrugeres til en bølgehøyde på 1 - 3 mm og forenes ved et hensiktsmessig bindemiddel, f.eks. slik som nærmere beskrevet i nevnte patent-ansøkning, med den plane bane, hvorefter denne såkalte enkelt-bølge vikles opp til en sylindrisk rotor av ønsket størrelse. According to a special, valuable embodiment of the invention, the rotor is produced from two webs or strips of aluminum foil, which can have a thickness of 0.03 - 0.1 mm. One web is corrugated to a wave height of 1 - 3 mm and joined by a suitable binder, e.g. as described in more detail in the aforementioned patent application, with the planar path, after which this so-called single wave is wound up into a cylindrical rotor of the desired size.

Ifølge oppfinnelsen behandles nu aluminiumfoliene med en vann-oppløsning av alkalialuminat i form av kalium- natrium- eller litiumaluminat resp. en blanding av disse. Behandlingen eller impregneringen med oppløsningen skjer i et første trinn ved at den ferdigfremstilte rotor dyppes i et bad i en 15 - 20%ig alu-minatoppløsning eller kraftig overhelles med denne oppløsning. Konsentrasjonen er fortrinnsvis 16 - 17% aluminat i oppløsningen. Badet har romtemperatur eller noe under denne slik som 18° og tiden er relativt kort f.eks. 3 min. Under dette trinn skal rotorens kanaler være i det minste i vesentlig grad fylt av alumi-na toppløsningen. Ved behandlingstrinnet etses folieflåtene slik at et porøst belegg derpå kan klebes fast til disse. According to the invention, the aluminum foils are now treated with a water solution of alkali aluminate in the form of potassium sodium or lithium aluminate or a mixture of these. The treatment or impregnation with the solution takes place in a first step by dipping the ready-made rotor in a bath in a 15 - 20% alumina solution or pouring it heavily with this solution. The concentration is preferably 16 - 17% aluminate in the solution. The bath has room temperature or something below this, such as 18° and the time is relatively short, e.g. 3 min. During this step, the rotor's channels must be at least substantially filled with the alumina top solution. During the treatment step, the foil rafts are etched so that a porous coating can then be stuck to them.

Dette belegg dannes i et etterfølgende behandlingstrinn efterat rotoren er løftet opp fra impregneringsbadet slik at mesteparten av oppløsningen er avgått fra kanalene. Imidlertid skal en film eller en hinne av oppløsningen bli værende på rotorens flater, hvilket fortrinnsvis skjer ved at kanalene umiddelbart efter tøm-mingen bringes til å innta en horisontal stilling. Den således fra impregneringsbadet medfølgende væske i rotorens kanaler om-settes nu under frembringelse av varme idet folien utsettes for en kraftig temperaturøkning. Derved utfelles i væsken inngående aluminium og fester seg som et hygroskopisk belegg av hovedsake-lig hydroksyder på folienes flater og samtidig avgår hydrogen. Reaksjonen foregår i lengre tid enn dyppingen fortrinnsvis så lenge vann er igjen i kanalene. Efterat reaksjonen er avsluttet skylles rotoren ren for vannoppløselige restprodukter. Før skyl-lingen er det fordelaktig langsomt å avkjøle rotoren for å hindre brudd i kontaktflaten mellom belegget og foliebæreren på grunn av varmespenninger. Belegget blir ytterligere forsterket ved at rotorens folier får anledning til å eldes i et tidsrom på f.eks. to døgn i fuktig atmosfære. Derved skjer en økning av kornstør-relsen i det på foliene klebende belegg og risikoen for destruk-sjon reduseres ytterligere. This coating is formed in a subsequent treatment step after the rotor has been lifted from the impregnation bath so that most of the solution has left the channels. However, a film or film of the solution must remain on the surfaces of the rotor, which preferably happens by bringing the channels to a horizontal position immediately after emptying. The liquid thus supplied from the impregnation bath in the rotor's channels is now converted while generating heat as the foil is exposed to a strong increase in temperature. Thereby, aluminum contained in the liquid is precipitated and adheres as a hygroscopic coating of mainly hydroxides on the surfaces of the foils and at the same time hydrogen is released. The reaction takes place for a longer time than the dipping, preferably as long as water remains in the channels. After the reaction has ended, the rotor is rinsed clean of water-soluble residual products. Before rinsing, it is advantageous to slowly cool the rotor to prevent breakage of the contact surface between the coating and the foil carrier due to thermal stresses. The coating is further strengthened by allowing the rotor's foils to age for a period of e.g. two days in a humid atmosphere. This results in an increase in the grain size in the coating adhering to the foils and the risk of destruction is further reduced.

Ved det første behandlingstrinn tilveiebringes som nevnt en ets-ing av folieflaten for å gi denne mulighet til å danne et sikkert feste for det porøse belegg av aluminiumhydroksyder. Påvirkning-en av selve aluminiumfolien blir derved meget ubetydelig, mens det andre behandlingstrinn gir en porøs økning på 10 - 20 på hver side av folien. Vektøkningen ved f.eks. 50 f*™ tykk folie kan være ca. 10%. Beleggets hovedbestanddeler utgjøres av et antall forskjellige aluminiumhydroksyder som altså tas fra impreg-neringsoppløsningen og således ikke ved omdannelse av selve alumi-niumf olien . In the first treatment step, as mentioned, an etching of the foil surface is provided to give it the opportunity to form a secure attachment for the porous coating of aluminum hydroxides. The influence of the aluminum foil itself is therefore very insignificant, while the second treatment step gives a porous increase of 10 - 20 on each side of the foil. The weight increase by e.g. 50 f*™ thick foil can be approx. 10%. The main components of the coating are made up of a number of different aluminum hydroxides which are thus taken from the impregnation solution and thus not by conversion of the aluminum foil itself.

Fortrinnsvis gjennomføres behandlingen ifølge oppfinnelsen efterat rotoren er viklet. Det har nemlig vist seg å tilkomme en ef-fekt av verdi for rotorens styrke ved denne fremgangsmåte på en slik måte at en forsterkning av limfugen mellom de plane og de korrugerte baner skjer. En form for brodannelse mellom de porøse sjikt i kontaktflatene mellom foliene synes å finne sted. Preferably, the treatment according to the invention is carried out after the rotor has been wound. Namely, it has been shown that there is an effect of value for the strength of the rotor by this method in such a way that a strengthening of the adhesive joint between the flat and the corrugated webs takes place. A form of bridging between the porous layers in the contact surfaces between the foils seems to take place.

En forsterkning av det hygroskopiske belegg kan skje ved gjentatt dypping i aluminatoppløsning i det første behandlingstrinn. Videre kan man tilføre aluminatoppløsningen et finfordelt eller pul-verisert fast adsorpsjonsmiddel, slik som silikagel, i ett av dyppetrinnene. Et slikt pulver fester derved overraskende godt på folieflaten, uten at dets sorpsjonsegenskaper blokeres vesentlig. The hygroscopic coating can be strengthened by repeated dipping in aluminate solution in the first treatment step. Furthermore, a finely divided or pulverized solid adsorbent, such as silica gel, can be added to the aluminate solution in one of the dipping steps. Such a powder thereby adheres surprisingly well to the foil surface, without its sorption properties being significantly blocked.

De hygroskopiske egenskaper man oppnår på foran angitte måte bygger på adsorpsjon og har vist seg å gi fuktighetsoverførings-egenskpaper sammenlignbare med dem man får i rotorer, fremstillet av de i innledningen nevnte høyporøse foliematerialer av asbest eller keramikk med litiumklorid som hygroskopisk substans. The hygroscopic properties achieved in the aforementioned manner are based on adsorption and have been shown to provide moisture transfer properties comparable to those obtained in rotors made from the highly porous foil materials mentioned in the introduction of asbestos or ceramics with lithium chloride as hygroscopic substance.

I mange anvendelsestilfeller i forbindelse med ventilasjon er In many application cases in connection with ventilation is

der risiko for at forurensninger i fraluften av f.eks. fett eller olje belegger flatene med en tynn hinne, som helt eller delvis kan hindre vannets diffusjon til og fra det hygroskopiske belegg, dersom dette utgjøres av et fast sorpsjonsmiddel. Dettes fine porer og kapillarer, i hvilke vannet kondenserer, kan da lett tettes igjen og inaktiveres. Hvis derimot det hygroskopiske mid-del utgjøres av en saltoppløsning, blir hele den fuktede flate aktiv, samtidig som væsken er tilbøyelig til å trenge inn i og bryte igjennom den forurensede hinne. where there is a risk that pollutants in the exhaust air from e.g. fat or oil coats the surfaces with a thin film, which can partially or completely prevent the diffusion of water to and from the hygroscopic coating, if this consists of a solid sorbent. Its fine pores and capillaries, in which the water condenses, can then be easily blocked and inactivated. If, on the other hand, the hygroscopic agent consists of a salt solution, the entire wetted surface becomes active, while the liquid tends to penetrate and break through the contaminated membrane.

Ved slike driftstilfeller er en hygroskopisitet, oppnådd av en saltoppløsning, å foretrekke. In such operating cases, a hygroscopicity, achieved by a salt solution, is preferable.

En ubehandlet aluminiumfolie kan imidlertid ikke fastholde en til-strekkelig mengde saltoppløsning på sin overflate. Det viser seg nu at det porøse sjikt man får ved behandlingen av aluminiumfolien med alkalimetallaluminat gjør at denne er i stand til å fastholde en større mengde saltoppløsning enn en ubehandlet overflate. Aluminatbehandlingen gir dessuten feste for andre belegg som øker porøsiteten ytterligere. Et slikt er allerede blitt beskrevet, hvor en innblanding av et pulver ved dypping i natri-umaluminatoppløsning gir et ekstrabelegg. En på denne måte be-handlet folieflate får en vesentlig forsterket evne til å suge opp vann. Man kan også dyppe den aluminatbehandlede rotor i vannglass og derefter eksponere den for karbondioksyd. Derved fås et ekstrabelegg av kjemisk utfelt silisiumdioksyd, som også However, an untreated aluminum foil cannot retain a sufficient amount of salt solution on its surface. It now turns out that the porous layer obtained by treating the aluminum foil with alkali metal aluminate means that it is able to retain a larger amount of salt solution than an untreated surface. The aluminate treatment also provides attachment for other coatings that further increase the porosity. Such has already been described, where mixing in a powder by dipping in a sodium aluminate solution provides an extra coating. A foil surface treated in this way has a substantially enhanced ability to absorb water. You can also dip the aluminate-treated rotor in a glass of water and then expose it to carbon dioxide. This results in an extra coating of chemically precipitated silicon dioxide, which also

øker porøsiteten. increases porosity.

Et spørsmål av vital betydning, når man anvender en saltoppløsning som hygroskopisk substans er i hvilken grad korrosjon av alumini-umf olien kan finne sted. Omfattende prøver har vist at litiumklorid ikke kan anvendes; korrosjonsangrepene blir altfor hurtige. A question of vital importance, when using a salt solution as a hygroscopic substance, is the extent to which corrosion of the aluminum foil can take place. Extensive tests have shown that lithium chloride cannot be used; the corrosion attacks become far too rapid.

Det har vist seg at et annet litiumsalt, litiumnitrat, gir prak-tisk talt ingen korrosjonsangrep på den aluminatbehandlede alu-miniumf olie, samtidig som litiumnitratet gir folien overordentlig gode hygroskopiske egenskaper innenfor det spektrum av relative fuktigheter, som er aktuelt ved samtidig fuktighets- og tempera-turutveksling, dvs. ved relative fuktigheter over 10 - 20%. It has been shown that another lithium salt, lithium nitrate, gives practically no corrosion attack on the aluminate-treated aluminum foil, at the same time that the lithium nitrate gives the foil extremely good hygroscopic properties within the spectrum of relative humidities, which is relevant for simultaneous humidity and temperature exchange, i.e. at relative humidities above 10 - 20%.

Også kalsiumbromid og natriumklorid gir vesentlig lavere korrosjonsangrep enn litiumklorid på den aluminatbehandlede overflate, selv om de ikke er like lave som ved litiumnitrat. Sett ut fra hygroskopisk synspunkt gir særlig kalsiumbromiden gode resultat-er . Calcium bromide and sodium chloride also cause significantly lower corrosion attacks than lithium chloride on the aluminate-treated surface, although they are not as low as with lithium nitrate. From a hygroscopic point of view, calcium bromide in particular gives good results.

De midler og den teknikk som foran er beskrevet for å tilveie-bringe ad- resp. absorberende egenskaper for rotoren, er bil-lige og tillater at den fremstillingsprosess som er beskrevet i patentansøkning 7605703-3 i sine hovedtrekk kan bibeholdes. Alt i alt fører dette til fremstillingsomkostninger som er betydelig mindre enn hva man hittil har måttet regne med ved tidligere høyeffektive fuktighetsoverførende rotorer. The means and the technique described above to provide advertising or absorbent properties for the rotor, are cheap and allow the manufacturing process described in patent application 7605703-3 to be retained in its main features. All in all, this leads to manufacturing costs that are significantly less than what has hitherto had to be reckoned with in the case of previously highly efficient moisture-transferring rotors.

I begrepet aluminiumfolie inkluderes også sjikt, som består av The term aluminum foil also includes a layer, which consists of

en bærer av ikke metallisk materiale f.eks. fibre av glass eller cellulose eller folie av plast, hvilken er forsynt med et over-trekk eller belegg av aluminium. a carrier of non-metallic material, e.g. fibers of glass or cellulose or foil of plastic, which is provided with an overcoat or coating of aluminium.

Claims (4)

1. Rotor for en regenerativ utveksler av fuktighet og fortrinnsvis også varme mellom to gass-(luft-)strømmer, sammensatt av tynne sjikt som avvekslende er plane og korrugerte, og som danner parallelle, gjennomgående kanaler for de to strømmer, idet rotorens korrugerte og eventuelt også dens plane sjikt består av aluminiumfolier, hvis overflater har et porøst, hygroskopisk belegg av aluminiumhydroksyd, karakterisert ved at det porøse belegg er dannet ved utfelling under utvikling av varme fra en alkali-aluminatoppløsning inneholdende minst 15 vekt% alkalialuminat som er påført overflatene.1. Rotor for a regenerative exchanger of moisture and preferably also heat between two gas (air) streams, composed of thin layers which are alternately flat and corrugated, and which form parallel, continuous channels for the two streams, the rotor's corrugated and possibly also its flat layer consists of aluminum foils, the surfaces of which have a porous, hygroscopic coating of aluminum hydroxide, characterized in that the porous coating is formed by precipitation during the development of heat from an alkali-aluminate solution containing at least 15% by weight of alkali aluminate which is applied to the surfaces. 2. Fremgangsmåte for fremstilling av en rotor for en regenerativ utveksler av fuktighet og fortrinnsvis også varme mellom to gass-(luft-)strømmer, hvilken rotor er sammensatt av tynne sjikt som avvekslende er plane og korrugerte, og som danner, parallelle, gjennomgående kanaler for de to strømmer, idet de korrugerte og eventuelt også de plane sjikt er fremstilt av aluminiumfolier, hvor nevnte foliers overflater gis et porøst, hygroskopisk belegg av aluminiumhydroksyd ved behandling med en vandig alkalisk oppløsning, karakterisert ved at rotoren behandles i ett eller flere trinn med en alkalialuminatoppløsning inneholdende minst 15 vekt% alkalialuminat slik at en hinne av oppløsning-en blir sittende på de nevnte overflater, idet utfelling av det porøse belegg skjer under varmeutvikling og mens rotorens kanaler holdes horisontale.2. Method for producing a rotor for a regenerative exchanger of moisture and preferably also heat between two gas (air) streams, which rotor is composed of thin layers which are alternately flat and corrugated, and which form, parallel, continuous channels for the two streams, the corrugated and possibly also the flat layers being made of aluminum foils, where the surfaces of said foils are given a porous, hygroscopic coating of aluminum hydroxide by treatment with an aqueous alkaline solution, characterized in that the rotor is treated in one or more stages with an alkali aluminate solution containing at least 15% by weight of alkali aluminate so that a film of the solution is left on the aforementioned surfaces, as precipitation of the porous coating occurs during heat generation and while the rotor's channels are kept horizontal. 3. Fremgangsmåte som angitt i krav 2, karakterisert ved at et ekstra belegg av et uorganisk hygroskopisk pulver tilveiebringes ved ett av behandlings-trinnene ved innblanding av et slikt pulver i aluminatoppløs-ningen.3. Method as stated in claim 2, characterized in that an additional coating of an inorganic hygroscopic powder is provided in one of the treatment steps by mixing such a powder into the aluminate solution. 4. Fremgangsmåte som angitt i krav 3, karakterisert ved at pulveret utgjøres av et fast adsorpsjonsmiddel, slik som silikagel.4. Method as stated in claim 3, characterized in that the powder consists of a solid adsorbent, such as silica gel.
NO772595A 1976-07-21 1977-07-20 ROTOR FOR REGENERATIVE MOISTENCE RESP. HEAT EXCHANGES AND PROCEDURE FOR THIS MANUFACTURING. NO143714C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7608329A SE407455B (en) 1976-07-21 1976-07-21 ROTOR FOR A REGENERATIVE EXCHANGE OF MOISTURE AND HEAT AND WAY TO PRODUCE SUCH A ROTOR

Publications (3)

Publication Number Publication Date
NO772595L NO772595L (en) 1978-01-24
NO143714B true NO143714B (en) 1980-12-22
NO143714C NO143714C (en) 1985-12-03

Family

ID=20328527

Family Applications (2)

Application Number Title Priority Date Filing Date
NO143714D NO143714L (en) 1976-07-21
NO772595A NO143714C (en) 1976-07-21 1977-07-20 ROTOR FOR REGENERATIVE MOISTENCE RESP. HEAT EXCHANGES AND PROCEDURE FOR THIS MANUFACTURING.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
NO143714D NO143714L (en) 1976-07-21

Country Status (8)

Country Link
JP (1) JPS5313252A (en)
CA (1) CA1116163A (en)
CS (1) CS198261B2 (en)
DE (1) DE2732989C2 (en)
FR (1) FR2358913A1 (en)
GB (1) GB1581262A (en)
NO (2) NO143714C (en)
SE (1) SE407455B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124521A (en) * 1982-01-20 1983-07-25 Mitsubishi Electric Corp Moisture permeable gas barrier
SE8207166D0 (en) * 1982-12-15 1982-12-15 Svante Thunberg REGENERATIVE HEAT EXCHANGER WITH MOISTURIZING AND TEMPERATURES
JPS613994A (en) * 1984-06-18 1986-01-09 Baanaa Internatl:Kk Rotary element for total heat exchanger and/or dehumidifier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702156A (en) * 1970-12-03 1972-11-07 Aero Flow Dynamics Inc Air-to-air energy exchange wheel and method of fabrication
US3733791A (en) * 1971-08-13 1973-05-22 Wehr Corp Heat transferer
FR2152802A1 (en) * 1971-09-10 1973-04-27 Luft Kaltetechn K
DE2243408A1 (en) * 1971-09-10 1973-03-15 Luft U Kaeltetechnik Veb K Treatment of aluminium heat exchanger used for cooling moist - air - with alkaline soln to facilitate removal of condensate

Also Published As

Publication number Publication date
GB1581262A (en) 1980-12-10
NO143714C (en) 1985-12-03
JPS6127680B2 (en) 1986-06-26
FR2358913A1 (en) 1978-02-17
FR2358913B1 (en) 1980-04-04
CS198261B2 (en) 1980-05-30
JPS5313252A (en) 1978-02-06
SE7608329L (en) 1978-01-22
SE407455B (en) 1979-03-26
NO772595L (en) 1978-01-24
CA1116163A (en) 1982-01-12
NO143714L (en) 1900-01-01
DE2732989A1 (en) 1978-01-26
DE2732989C2 (en) 1984-06-28

Similar Documents

Publication Publication Date Title
US4911775A (en) Method of manufacturing dehumidifier element
CA2761826C (en) Water transport membrane featuring desiccant-loaded substrate and polymer coating
TWI358316B (en) Chemical filter
US4886769A (en) Active gas adsorbing element and method of manufacturing
JP6009940B2 (en) Steam permselective membrane and method for separating steam from mixed gas using the same
KR20040016890A (en) Method and device for cleaning air
US3807149A (en) Moisture exchanger for gaseous media
US6440489B1 (en) Moisture exchanging element and a method of its manufacture
US4911227A (en) Heat exchange apparatus for effecting heat exchange in plurality of gases, heat exchange element for use in said apparatus and process for preparation of said heat exchange element
NO143714B (en) ROTOR FOR REGENERATIVE MOISTENCE RESP. HEAT EXCHANGES AND PROCEDURE FOR THIS MANUFACTURING
US3307617A (en) Method in the manufacture of an exchanger packing and exchanger packing manufactured according to said method
EP1006238B1 (en) Method of producing a dehumidifying element
JPS61101228A (en) Preparation of humidity exchange element
US4189330A (en) Method for making humidity and heat exchanger apparatus
US3726706A (en) Exchanger packing
NO772596L (en) ROTOR FOR REGENERATIVE MOISTURE RESP. HEAT EXCHANGERS
SE515614C2 (en) Process for making dehumidifying elements and using a suspension for impregnating paper in the process
JP6899739B2 (en) Gas separator and gas separator
JPS59100324A (en) Rotary dehumidifier
US20240226800A9 (en) Stratified hydrophilic media for liquid/gas contactors
US20240131468A1 (en) Stratified hydrophilic media for liquid/gas contactors
NO147296B (en) RAILWAY SUSPENSION UNIT.
NO146968B (en) POROEST, HYDROSCOPIC HEAT EXCHANGE WALL ELEMENT AND PROCEDURE FOR ITS MANUFACTURING.
JPH0648149B2 (en) Total heat exchange element
JP6241843B2 (en) Paper honeycomb structure with silica coating and method for producing the same