JP3495874B2 - Method of manufacturing dehumidifying element - Google Patents

Method of manufacturing dehumidifying element

Info

Publication number
JP3495874B2
JP3495874B2 JP08098597A JP8098597A JP3495874B2 JP 3495874 B2 JP3495874 B2 JP 3495874B2 JP 08098597 A JP08098597 A JP 08098597A JP 8098597 A JP8098597 A JP 8098597A JP 3495874 B2 JP3495874 B2 JP 3495874B2
Authority
JP
Japan
Prior art keywords
silica gel
dehumidifying element
honeycomb structure
dehumidifying
alkali silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08098597A
Other languages
Japanese (ja)
Other versions
JPH10272334A (en
Inventor
田辺  淳
由美子 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP08098597A priority Critical patent/JP3495874B2/en
Priority to KR10-1998-0011169A priority patent/KR100491498B1/en
Priority to ES009800679A priority patent/ES2158745B1/en
Publication of JPH10272334A publication Critical patent/JPH10272334A/en
Application granted granted Critical
Publication of JP3495874B2 publication Critical patent/JP3495874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/263Drying gases or vapours by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、シリカゲルを担持
させた除湿用素子の製造方法に関する。 【0002】 【従来の技術】再生式除湿器や全熱交換器等に組み込ま
れる除湿用素子として、ハニカム状に加工された無機繊
維紙の表面に、シリカゲルやゼオライト、あるいは潮解
性無機塩等の除湿剤を担持させたものが知られている。
中でも、除湿剤としてシリカゲルを用いた除湿用素子
は、その除湿性能の高さに加えて、再生が容易で、安価
である等々の利点を備えることから主流となっている。 【0003】従来より、シリカゲルをハニカム構造体に
担持させた除湿用素子を製造する方法として、ガラスペ
ーパー、セラミックペーパーのような無機繊維紙からな
るハニカム構造体を珪酸アルカリ水溶液に浸漬後、酸処
理してシリカゲルとなし、これを乾燥する方法、前記ハ
ニカム構造体を珪酸アルカリ水溶液に浸漬後に一旦乾燥
させ、次いで酸処理する方法、あるいは前記ハニカム構
造体を珪酸アルカリ水溶液に浸漬後、水溶性カルシウム
塩またはマグネシウム塩の水溶液に浸漬し、次いで酸処
理する方法等が知られている。 【0004】 【発明が解決しようとする課題】珪酸アルカリを酸処理
してシリカゲルを生成させる工程は、複雑で工程数が多
いため、除湿用素子の製造に際してできれば1回の工程
で済むことが好ましい。しかしながら、上記した工程で
は1回当たりのシリカゲルの付着量に限界があり、除湿
用素子としての使用を考慮した場合、性能上必要なシリ
カゲルを付着させるためには上記工程を数回繰り返さな
ければならない。即ち、珪酸アルカリの濃度を上げれば
シリカゲルの生成量が多くなり、付着量も多くなるが、
珪酸アルカリ水溶液は粘性が高く、濃度を上げるとハニ
カム構造体が目詰まりを起こすため、1回当たりのシリ
カゲル付着量には限界があり、必然的に工程を数回繰り
返すことになる。 【0005】本発明はこのような状況に鑑みてなされた
ものであり、予めシリカゲルを塗工した無機繊維紙を使
用することで、1回の処理工程でも除湿機能を充分に備
えた除湿用素子を得ることを目的としたものである。 【0006】 【課題を解決するための手段】上記の目的は、本発明
の、シリカゲル含有塗工液に浸漬し、乾燥してなる無機
繊維紙をハニカム状に加工してハニカム状加工物を得た
後、前記ハニカム状加工物を珪酸アルカリ水溶液に浸漬
し、酸処理した後、焼成することを特徴とする除湿用素
子の製造方法により達成される。本発明の方法によれ
ば、除湿用素子として必要なシリカゲル付着量の大部分
シリカゲル含有塗工液による含浸処理で確保されるた
め、珪酸アルカリの酸処理によるシリカゲルの生成工程
が1回で済む。また、本発明の方法によれば、塗工シリ
カゲルと珪酸アルカリの酸処理によるシリカゲルとが一
体膜を形成して、除湿用素子としての形状を安定に保持
する。 【0007】 【発明の実施の形態】以下、本発明の除湿用素子の製造
方法に関して詳細に説明する。除湿用素子の基材となる
ハニカム構造体を形成する無機繊維紙は、従来よりこの
種の除湿用素子のハニカム構造体に使用されるものであ
れば特に制限されるものではなく、例えばガラス繊維や
セラミック繊維を紙状に集成したものである。特に、シ
リカゲルを生成させる際の酸処理による劣化や、ハニカ
ム構造体としての機械的強度や耐久性を考慮すると、ア
ルカリ成分の量が少ないEガラスからなる繊維やシリカ
アルミナ繊維からなる紙が好ましい。 【0008】無機繊維紙は、シリカゲルを含有する塗工
液に浸漬される塗工液は、シリカゲルと、ポリビニル
アルコールあるいはアクリル系または塩化ビニリデン系
の有機エマルジョンと、さらに水を混合したスラリー
ある。この浸漬により、シリカゲルの粒子が有機エマル
ジョンを介して無機繊維の表面に付着する。塗工液に使
用されるシリカゲルの種類は特に制限されず、JIS
Z0701で規定された相対湿度20%における吸湿量
が3.0%以上のものが使用できる。また、塗工液の塗
工量としては、シリカゲル換算で30〜120g/m2
であることが好ましい。塗工量が30g/m2 未満で
は、除湿用素子として必要なシリカゲル量を得るため
に、後述されるシリカゲルの生成工程を1回で済ませる
ことができなくなる。一方、塗工量が120g/m2
り多くなると、無機繊維に付着するシリカゲルの粒子数
が多すぎて目詰まりを起こす。 【0009】浸漬後、後述されるシリカゲルの生成反応
を均一に行うため、並びに除湿用素子全体として一様な
除湿作用を発現させるために、無機繊維紙上に付着して
いる余剰のシリカゲルを除去し、塗工面を平坦にしてお
くことが好ましい。そして、浸漬後の無機繊維紙を乾燥
し、ハニカム形状に加工することにより除湿用素子の基
材であるハニカム構造体が得られる。ハニカム構造体の
形状は特に制限されるものではなく、除湿用素子の種類
や用途、適用箇所等に応じて加工される 【0010】上記の如く得られた、シリカゲルが塗工さ
れたハニカム構造体を珪酸アルカリ水溶液中に浸漬し、
次いで酸処理して前記珪酸アルカリを珪酸ゲルに変換す
る。生成珪酸ゲルは、その後の脱水(焼成)によりシリ
カゲルとなるが、その粒子は塗工により無機繊維表面に
付着したシリカゲルの粒子と結合するように、あるいは
前記シリカゲルの粒子間を埋めるように生成する。この
珪酸ゲル生成反応は、公知の方法により行うことができ
る。例えば、珪酸アルカリ水溶液としては、珪酸ソー
ダ、珪酸カリウム、珪酸リチウム等の約10〜30%水
溶液が適当である。珪酸アルカリの濃度がこれより低く
ても珪酸ゲルの固定は可能であるが、その固定量が少な
すぎ、1回の工程のみで除湿用素子を製造する本発明の
目的を達成できない。また、反対に濃度が高すぎると、
粘度が高くなって目詰まりを起こすだけでなく、ハニカ
ム構造体の無機繊維間に円滑に浸透せず、塗工によるシ
リカゲルの粒子間を埋めるように新たなシリカゲル粒子
を生成できない。 【0011】ハニカム構造体の無機繊維紙の繊維間空隙
に珪酸アルカリ水溶液が充分浸透したならば、ハニカム
構造体を珪酸アルカリ水溶液から取り出し、必要に応じ
て高速空気流を吹き付ける等して、過剰の表面付着液を
除く。次いで、この珪酸アルカリ水溶液含浸ハニカム構
造体を酸処理して、珪酸塩を珪酸ゲルに変換する。使用
可能な酸の種類は塩酸、硝酸、硫酸等があり、有機酸も
使用可能である。また、珪酸アルカリからアルカリを溶
出させられる塩も使用可能であり、例えば塩化アンモニ
ウム、硝酸アンモニウム等がある。酸処理は、珪酸アル
カリ水溶液含浸ハニカム構造体を上記した酸性水溶液に
浸漬して行う。 【0012】また、酸処理に先立ち、珪酸アルカリ水溶
液含浸ハニカム構造体を水溶性カルシウム塩またはマグ
ネシウム塩、例えば塩化カルシウム、塩化マグネシウ
ム、硝酸マグネシウム等の水溶液に浸漬してもよい。こ
れら塩溶液の好ましい濃度は約数%〜約30%、浸漬適
温は常温〜70℃である。この処理により、ハニカム構
造体に単に付着していた珪酸アルカリが、不溶性の珪酸
カルシウムまたは珪酸マグネシウムに変換されて、無機
繊維の表面に固定される。また、この処理により、珪酸
カルシウムまたは珪酸マグネシウムの形で残存したカル
シウムイオンまたはマグネシウムイオンは、上記酸処理
の際に大部分が処理液中に溶出して、除湿用素子の除湿
性能に影響を及ぼすことはない。尚、この処理の詳細
は、本出願人による特開昭63−218235号公報を
参照することができる。 【0013】以上のように珪酸ゲルを生成した後、ハニ
カム構造体を水洗して付着塩類を除去した後、熱風で乾
燥する。この状態では、塗工液に含まれていた有機エマ
ルジョンが、無機繊維に付着しているシリカゲルの粒子
表面を覆うように残存しているため、付着シリカゲル粒
子はそのままでは除湿能力が低い。そこで、この有機エ
マルジョンの除去を目的として、例えば約400〜50
0℃まで昇温して焼成することが好ましい。また、この
焼成により、ハニカム構造体の無機繊維紙が有機繊維や
有機結合剤を含む場合は、これらも同時に除去される。 【0014】以上により除湿用素子が得られるが、珪酸
アルカリの酸処理は1回であり、製造工程が著しく簡素
化される。 【0015】以下、本発明を実施例及び比較例を挙げて
更に説明する。 (実施例)Eガラス繊維紙(目付30g/m2 、厚さ
0.2mm)に、シリカゲル60g/m2 となるように
塗工する。塗工は、A型のシリカゲルとアクリル系有機
エマルジョンと水とを混合したスラリーに、Eガラス繊
維紙を浸漬し、その後引き上げると同時に余剰のシリカ
ゲルをかき落として乾燥して行った。この塗工紙をコル
ゲート加工した後成巻し、直径400mm、長さ200
mmのロータ型ハニカム構造体を製作した。このハニカ
ム構造体を、固形分濃度28%の1号珪酸ソーダ溶液に
30分間浸漬した後、10%、50℃の塩化カルシウム
溶液に30分間浸漬し、更に濃度5%の塩酸に室温で3
0分間浸漬した。次いで、塩酸から取り出したハニカム
構造体を、水洗後、110℃で乾燥し、引き続き400
℃で焼成した。得られた除湿用素子Aの特性値を表1に
示す。また、この除湿用素子Aを回転再生型除湿機に組
み込んで除湿能力を測定した結果を表2に示す。 【0016】(比較例)Eガラス繊維紙(目付30g/
2 、厚さ0.2mm)をコルゲート加工した後成巻
し、直径400mm、長さ200mmのロータ型ハニカ
ム構造体を製作した。このハニカム構造体を、固形分濃
度28%の1号ケイ酸ソーダ溶液に30分間浸漬した。
その後、液切りとエアブローを行ってから、濃度10
%、温度50℃の塩化カルシウム水溶液に30分間浸漬
し、更に濃度5%の塩酸に室温で30分間浸漬した。次
いで、塩酸から取り出したハニカム構造体を、水洗後、
100℃で乾燥し、引続き400℃で焼成した。上述の
ようにしてシリカゲルを固定したハニカム構造体に対し
て、ケイ酸アルカリ水溶液浸漬から乾燥までの処理を3
度繰り返して除湿用素子Bを得た。この除湿用素子Bの
特性値を表1に、また回転再生型除湿機に組み込んで除
湿能力を測定した結果を表2に示す。 【0017】 【表1】 【0018】 【表2】【0019】表1及び表2から、本発明による実施例の
除湿用素子Aは、比較例の除湿用素子Bに比べて、1回
の工程にも係わらずシリカゲルの担持量が多く、除湿性
能にも優れることが判る。 【0020】 【発明の効果】以上説明したように、本発明によれば、
シリカゲル含有塗工液に浸漬し、乾燥してなる無機繊維
紙をハニカム状に加工してハニカム状加工物を得た後、
前記ハニカム状加工物を珪酸アルカリ水溶液に浸漬し、
酸処理した後、焼成することにより、1回の製造工程を
経るだけで、実用に適する性能を有した除湿用素子を作
製することが可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a dehumidifying element carrying silica gel. 2. Description of the Related Art As a dehumidifying element incorporated in a regenerative dehumidifier, a total heat exchanger, or the like, silica gel, zeolite, or deliquescent inorganic salt is applied to the surface of honeycomb-shaped inorganic fiber paper. What carried a dehumidifying agent is known.
Above all, a dehumidifying element using silica gel as a dehumidifying agent has become mainstream because it has advantages such as easy regeneration and low cost in addition to high dehumidifying performance. Conventionally, as a method of manufacturing a dehumidifying element in which silica gel is supported on a honeycomb structure, a honeycomb structure made of inorganic fiber paper such as glass paper or ceramic paper is immersed in an alkali silicate aqueous solution and then subjected to an acid treatment. A method of drying the honeycomb structure, immersing the honeycomb structure in an aqueous solution of alkali silicate and then drying and then performing an acid treatment, or a method of immersing the honeycomb structure in an aqueous solution of alkali silicate and then adding a water-soluble calcium salt. Alternatively, a method of immersing in an aqueous solution of a magnesium salt followed by acid treatment is known. [0004] The process of producing silica gel by acid treatment of an alkali silicate is complicated and requires a large number of steps. Therefore, it is preferable that only one step be required if it is possible to manufacture a dehumidifying element. . However, in the above-described process, the amount of silica gel attached per one time is limited, and in consideration of use as a dehumidifying element, the above process must be repeated several times in order to attach silica gel necessary for performance. . In other words, increasing the concentration of alkali silicate increases the amount of silica gel produced and increases the amount of adhesion,
The aqueous alkali silicate solution has a high viscosity, and if the concentration is increased, the honeycomb structure is clogged. Therefore, the amount of silica gel adhered per time is limited, and the process is necessarily repeated several times. The present invention has been made in view of such a situation, and uses an inorganic fiber paper coated with silica gel in advance to provide a dehumidifying element having a sufficient dehumidifying function even in one processing step. The purpose is to obtain. SUMMARY OF THE INVENTION The object of the present invention is to obtain a honeycomb-shaped processed product by processing an inorganic fiber paper, which is immersed in a coating solution containing silica gel and dried , into a honeycomb shape. Then, the honeycomb-shaped workpiece is immersed in an alkali silicate aqueous solution, subjected to an acid treatment, and then fired, thereby achieving a method for manufacturing a dehumidifying element. According to the method of the present invention, most of the silica gel adhesion amount required as a dehumidifying element is ensured by impregnation with a silica gel-containing coating solution, so that a single step of producing silica gel by alkali silicate acid treatment is required. . Further, according to the method of the present invention, the coated silica gel and the silica gel obtained by the acid treatment of the alkali silicate form an integrated film, thereby stably maintaining the shape as the dehumidifying element. Hereinafter, a method for manufacturing a dehumidifying element according to the present invention will be described in detail. The inorganic fiber paper forming the honeycomb structure serving as the base material of the dehumidifying element is not particularly limited as long as it is conventionally used for the honeycomb structure of this type of dehumidifying element. And ceramic fibers in the form of paper. In particular, in consideration of the deterioration due to the acid treatment when producing silica gel and the mechanical strength and durability of the honeycomb structure, a fiber made of E glass or a paper made of silica alumina fiber having a small amount of an alkali component is preferable. Inorganic fiber paper is coated with silica gel.
Immerse in liquid . The coating liquid, gel and polyvinyl alcohol or an acrylic or an organic emulsion of vinylidene chloride, in the slurry is further mixed with water
There is . This immersion causes the silica gel particles to adhere to the surface of the inorganic fibers via the organic emulsion. There are no particular restrictions on the type of silica gel used in the coating solution.
Those having a moisture absorption of 3.0% or more at a relative humidity of 20% specified by Z0701 can be used. The coating amount of the coating liquid is 30 to 120 g / m 2 in terms of silica gel.
It is preferable that If the coating amount is less than 30 g / m 2 , it is not possible to complete the silica gel generation step described later in one step in order to obtain the amount of silica gel required as a dehumidifying element. On the other hand, when the coating amount is more than 120 g / m 2, the number of silica gel particles adhering to the inorganic fibers is too large, causing clogging. After immersion , excess silica gel adhering to the inorganic fiber paper is removed in order to uniformly perform a reaction for producing silica gel described later and to exert a uniform dehumidifying action as the entire dehumidifying element. Preferably, the coating surface is flat. Then, the inorganic fiber paper after immersion is dried and processed into a honeycomb shape to obtain a honeycomb structure as a substrate of the dehumidifying element. The shape of the honeycomb structure is not particularly limited, and the honeycomb structure is processed according to the type, application, and application location of the dehumidifying element. [0010] The honeycomb structure coated with silica gel obtained as described above. Immersed in an alkali silicate aqueous solution,
Next, the alkali silicate is converted into a silica gel by an acid treatment. The resulting silica gel is converted into silica gel by the subsequent dehydration (calcination), and the particles are generated so as to bond with the silica gel particles adhered to the surface of the inorganic fiber by coating or to fill the space between the silica gel particles. . This silica gel formation reaction can be performed by a known method. For example, as the aqueous alkali silicate solution, an aqueous solution of about 10 to 30% of sodium silicate, potassium silicate, lithium silicate or the like is suitable. Even if the concentration of the alkali silicate is lower than this, the silica gel can be fixed, but the fixing amount is too small to achieve the object of the present invention for producing a dehumidifying element by only one step. Conversely, if the concentration is too high,
Not only does the viscosity increase, causing clogging, but also it does not penetrate smoothly between the inorganic fibers of the honeycomb structure, and new silica gel particles cannot be generated to fill the gaps between the silica gel particles by coating. When the aqueous alkali silicate solution has sufficiently penetrated into the inter-fiber voids of the inorganic fiber paper of the honeycomb structure, the honeycomb structure is taken out of the aqueous alkali silicate solution and, if necessary, is blown with a high-speed air stream, etc. Exclude surface liquid. Next, the honeycomb structure impregnated with the alkali silicate aqueous solution is subjected to an acid treatment to convert the silicate into a silicate gel. The types of acids that can be used include hydrochloric acid, nitric acid, and sulfuric acid, and organic acids can also be used. Further, a salt capable of eluting an alkali from an alkali silicate can be used, and examples thereof include ammonium chloride and ammonium nitrate. The acid treatment is performed by immersing the honeycomb structure impregnated with the alkali silicate aqueous solution in the acidic aqueous solution described above. Prior to the acid treatment, the honeycomb structure impregnated with the aqueous alkali silicate solution may be immersed in an aqueous solution of a water-soluble calcium salt or magnesium salt, for example, calcium chloride, magnesium chloride or magnesium nitrate. The preferred concentration of these salt solutions is about several% to about 30%, and the suitable immersion temperature is normal temperature to 70 ° C. By this treatment, the alkali silicate simply adhering to the honeycomb structure is converted into insoluble calcium silicate or magnesium silicate and fixed on the surface of the inorganic fiber. Further, due to this treatment, most of the calcium ions or magnesium ions remaining in the form of calcium silicate or magnesium silicate are eluted into the treatment liquid during the acid treatment and affect the dehumidifying performance of the dehumidifying element. Never. The details of this processing can be referred to Japanese Patent Application Laid-Open No. 63-218235 by the present applicant. After the silica gel is formed as described above, the honeycomb structure is washed with water to remove the attached salts, and then dried with hot air. In this state, since the organic emulsion contained in the coating solution remains so as to cover the surface of the silica gel particles attached to the inorganic fibers, the attached silica gel particles have a low dehumidifying ability as they are. Therefore, for the purpose of removing the organic emulsion, for example, about 400 to 50
It is preferable to raise the temperature to 0 ° C. for firing. In addition, when the inorganic fiber paper of the honeycomb structure contains organic fibers and an organic binder, the firing also removes these at the same time. Thus, a dehumidifying element can be obtained, but the acid treatment of the alkali silicate is performed once, and the manufacturing process is significantly simplified. Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples. (Example) E glass fiber paper (30 g / m 2 in basis weight, 0.2 mm in thickness) is coated so as to have a silica gel content of 60 g / m 2 . The coating was performed by immersing E glass fiber paper in a slurry obtained by mixing A-type silica gel, an acrylic organic emulsion, and water, and then pulling it up and, at the same time, scraping off excess silica gel and drying. The coated paper is corrugated and then wound, and has a diameter of 400 mm and a length of 200 mm.
mm was manufactured. This honeycomb structure was immersed in a 28% solid content sodium hydroxide silicate solution for 30 minutes, immersed in a 10% calcium chloride solution at 50 ° C. for 30 minutes, and further immersed in 5% hydrochloric acid at room temperature for 3 minutes.
Dipped for 0 minutes. Next, the honeycomb structure taken out from the hydrochloric acid was washed with water, dried at 110 ° C.
Fired at ℃. Table 1 shows the characteristic values of the obtained dehumidifying element A. Table 2 shows the results of measuring the dehumidifying ability by incorporating the dehumidifying element A into a rotary regeneration type dehumidifier. (Comparative Example) E glass fiber paper (basis weight 30 g /
(m 2 , thickness: 0.2 mm) was corrugated and then wound to produce a rotor-type honeycomb structure having a diameter of 400 mm and a length of 200 mm. This honeycomb structure was immersed in a No. 1 sodium silicate solution having a solid concentration of 28% for 30 minutes.
Then, after draining and air blowing,
%, And immersed in an aqueous solution of calcium chloride at a temperature of 50 ° C. for 30 minutes, and further immersed in 5% hydrochloric acid at room temperature for 30 minutes. Next, after washing the honeycomb structure taken out from hydrochloric acid,
It was dried at 100 ° C and subsequently calcined at 400 ° C. For the honeycomb structure on which the silica gel was fixed as described above, the treatment from immersion in an alkali silicate aqueous solution to drying was performed for 3 hours.
This was repeated to obtain a dehumidifying element B. Table 1 shows the characteristic values of the dehumidifying element B, and Table 2 shows the results of measuring the dehumidifying ability by incorporating the element B into a rotary regeneration type dehumidifier. [Table 1] [Table 2] Tables 1 and 2 show that the dehumidifying element A of the embodiment according to the present invention has a larger amount of silica gel irrespective of one step than the dehumidifying element B of the comparative example, and the dehumidifying performance. It turns out that it is also excellent. As described above, according to the present invention,
After immersing in a silica gel-containing coating solution and processing the dried inorganic fiber paper into a honeycomb shape to obtain a honeycomb-shaped processed product,
The honeycomb-shaped workpiece is immersed in an alkali silicate aqueous solution,
After the acid treatment, firing is performed to produce a dehumidifying element having a performance suitable for practical use only through one manufacturing process.
Pollock becomes possible Rukoto.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 シリカゲル含有塗工液に浸漬し、乾燥し
てなる無機繊維紙をハニカム状に加工してハニカム状加
工物を得た後、前記ハニカム状加工物を珪酸アルカリ水
溶液に浸漬し、酸処理した後、焼成することを特徴とす
る除湿用素子の製造方法。
(57) [Claims] [Claim 1] Immerse in a silica gel-containing coating solution and dry it.
Inorganic fiber paper comprising Te a processed into honeycomb after obtaining a honeycomb workpiece, the honeycomb workpiece was immersed in alkali silicate aqueous solution to the acid treatment, the dehumidifying element and firing Production method.
JP08098597A 1997-03-31 1997-03-31 Method of manufacturing dehumidifying element Expired - Fee Related JP3495874B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP08098597A JP3495874B2 (en) 1997-03-31 1997-03-31 Method of manufacturing dehumidifying element
KR10-1998-0011169A KR100491498B1 (en) 1997-03-31 1998-03-31 Manufacturing method of dehumidifying element
ES009800679A ES2158745B1 (en) 1997-03-31 1998-03-31 PROCESS TO PRODUCE A DEHUMIDIFICATION ELEMENT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08098597A JP3495874B2 (en) 1997-03-31 1997-03-31 Method of manufacturing dehumidifying element

Publications (2)

Publication Number Publication Date
JPH10272334A JPH10272334A (en) 1998-10-13
JP3495874B2 true JP3495874B2 (en) 2004-02-09

Family

ID=13733803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08098597A Expired - Fee Related JP3495874B2 (en) 1997-03-31 1997-03-31 Method of manufacturing dehumidifying element

Country Status (3)

Country Link
JP (1) JP3495874B2 (en)
KR (1) KR100491498B1 (en)
ES (1) ES2158745B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246438A (en) * 2007-03-30 2008-10-16 Nichias Corp Dehumidifier and dehumidification method
KR101208869B1 (en) 2009-12-23 2012-12-05 (주)엘지하우시스 Non-organic desiccant rotor with high efficiency and method of manufacturing the non-organic desiccant rotor
KR101322536B1 (en) * 2010-09-07 2013-10-25 (주)엘지하우시스 Alumina desiccant rotor and method of manufacturing the alumina desiccant rotor
JP5686378B2 (en) * 2011-12-07 2015-03-18 株式会社豊田自動織機 Hydrogen-containing lithium silicate compound and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and vehicle
JP6241843B2 (en) * 2013-06-06 2017-12-06 国立研究開発法人産業技術総合研究所 Paper honeycomb structure with silica coating and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2698062A (en) * 1949-12-22 1954-12-28 Grace W R & Co Method of forming a silica gel and drying air therewith
US3499812A (en) * 1966-06-30 1970-03-10 Ola Glav Method in the manufacture of an exchanger packing for two fluids
JPS61101228A (en) * 1984-10-01 1986-05-20 Seibu Giken:Kk Preparation of humidity exchange element
JPH0649132B2 (en) * 1987-03-05 1994-06-29 ニチアス株式会社 Dehumidifying element manufacturing method
KR960010898B1 (en) * 1990-05-29 1996-08-13 가부시기가이샤 세이부 기겐 Method for producing a gas absorptions elements
JP2651964B2 (en) * 1991-07-25 1997-09-10 株式会社カワタ Adsorbable honeycomb-shaped ceramic laminate and method for producing the same
US5254195A (en) * 1992-05-08 1993-10-19 Industrial Technology Research Institute Process for manufacturing moisture exchange element
JP3346680B2 (en) * 1995-05-11 2002-11-18 株式会社西部技研 Adsorbent for moisture exchange

Also Published As

Publication number Publication date
KR19980080920A (en) 1998-11-25
JPH10272334A (en) 1998-10-13
ES2158745B1 (en) 2002-03-16
ES2158745A1 (en) 2001-09-01
KR100491498B1 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
US5212131A (en) Low pressure drop filter
JPS61252497A (en) Manufacture of element for dehumidification and total heat exchange
CN1037498A (en) ceramic foam and preparation method thereof
JPH0919619A (en) Element for moisture commutator, medium of moisture commutator and manufacture thereof
CN110523380B (en) Honeycomb ceramic-based aluminum-MOF (Metal organic framework) adsorbent and in-situ synthesis method thereof
JP3495874B2 (en) Method of manufacturing dehumidifying element
JP2002121085A (en) Cordierite honeycomb structure and method for producing the same
CN107020067A (en) A kind of ceramic honey comb base fine grain NaA molecular sieve block adsorbent and in-situ synthetic method and application
JP3495882B2 (en) Method for supporting silica gel and method for producing dehumidifying element
JPH0125614B2 (en)
JP3894529B2 (en) Dehumidifying agent, dehumidifying element and manufacturing method thereof
JPH0649132B2 (en) Dehumidifying element manufacturing method
US4021282A (en) Method of manufacturing a contact body
JPH07500769A (en) How to treat replacement contact bodies for heat, moisture, etc.
JP2707330B2 (en) Continuous production method of elements for gas adsorber
JP2002079045A (en) Dehumidifying material and method for manufacturing the same
US4629507A (en) Water glass-based inorganic material and process for producing the same
JP3305602B2 (en) Manufacturing method of dehumidifying element
JP3322519B2 (en) Rotor of rotary organic solvent vapor adsorption device
CN111408337A (en) Silica gel dehumidification rotating wheel and preparation method thereof
JPS61129043A (en) Method for supporting gatalytic component by ceramic substrate
JPH0523584A (en) Adsorptive ceramic porous element and its manufacture
JP3316413B2 (en) Method for manufacturing element for deodorization
JP5300301B2 (en) Rotary dehumidification rotor
JP2501243B2 (en) Method for producing alumina porous membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees