JPS61129043A - Method for supporting gatalytic component by ceramic substrate - Google Patents

Method for supporting gatalytic component by ceramic substrate

Info

Publication number
JPS61129043A
JPS61129043A JP59248649A JP24864984A JPS61129043A JP S61129043 A JPS61129043 A JP S61129043A JP 59248649 A JP59248649 A JP 59248649A JP 24864984 A JP24864984 A JP 24864984A JP S61129043 A JPS61129043 A JP S61129043A
Authority
JP
Japan
Prior art keywords
slurry
ceramic substrate
catalyst component
revolution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59248649A
Other languages
Japanese (ja)
Other versions
JPS6260143B2 (en
Inventor
Kenji Ueda
健次 植田
Mamoru Nakajima
中島 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59248649A priority Critical patent/JPS61129043A/en
Publication of JPS61129043A publication Critical patent/JPS61129043A/en
Publication of JPS6260143B2 publication Critical patent/JPS6260143B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly and uniformly support a catalytic component by a carrier, by impregnating a slurry or solution containing a catalytic component by a ceramic integrated structure and treating the impregnated one by a rotating and revolving centrifugal separator before baking the same. CONSTITUTION:An integrated structure comprising a ceramic substrate is supplied to a process 11 and impregnated with a slurry or solution containing a catalytic component. In this case, the ceramic substrate is pref. immersed for 30sec-5min. Subsequently, the impregnated substrate is introduced into containers 10a, 10b of the centrifugal separator of a process 12 and treated for about 20-120sec, in such a condition that a rotary speed is about 100-600rpm and rotation/revolution is about 1/10-1/100, to remove the excessive slurry or solution and the catalytic component is brought to a uniform coating layer. Next, the treated carrier is dried at about 80-180 deg.C for about 2-100hr in the heat-treatment process of a process 13.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はセラミック構造体に触媒成分被覆層を形成せし
める方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for forming a catalyst component coating layer on a ceramic structure.

自動車排気ガス、工場排出ガスなどの有毒ガス浄化を目
的としてセラミック構造体に触媒成分を担持した触媒が
用いられている。本発明はより均一に且つ効率良くセラ
ミック構造体へ触媒成分被覆層を形成せしめる方法に関
するものである。
Catalysts in which catalyst components are supported on ceramic structures are used to purify toxic gases such as automobile exhaust gas and factory exhaust gas. The present invention relates to a method for forming a catalyst component coating layer on a ceramic structure more uniformly and efficiently.

〈従来の技術〉 排ガス浄化用としてセラミック基材からなる構造体例え
ばモノリス構造体く触媒成分被覆層を形成せしめて用い
ることは一般に行なわれている。これらの触媒成分被覆
層は触媒成分を含有するスラリーあるいは溶液をセラミ
ック基材の表面に含浸−付着せしめた後余分なスラリー
あるいは溶液を、圧縮空気を吹き付けて除去するか、2
特開昭57−7881号公報にあるように公転による遠
心力を加えて除去することにより形成される。そして乾
燥および所望ならば焼成を行ないセラミック基材上にア
ルミナなどのコート層を固定担持している。
<Prior Art> For exhaust gas purification, it is common practice to use a structure made of a ceramic base material, such as a monolith structure, on which a catalyst component coating layer is formed. These catalyst component coating layers are formed by impregnating and adhering a slurry or solution containing the catalyst component onto the surface of a ceramic substrate, and then removing the excess slurry or solution by blowing compressed air, or by removing the excess slurry or solution by blowing compressed air.
It is formed by applying and removing centrifugal force due to revolution, as described in Japanese Patent Application Laid-Open No. 57-7881. Then, by drying and, if desired, firing, a coating layer of alumina or the like is fixedly supported on the ceramic base material.

〈発明が解決しようとする問題点〉 余分に付着した触媒のスラリーあるいは溶液の除去方法
と”して圧縮空気を吹きつける方法は均一に吹き払うの
が難しく特に三次元網状構造体では気流が上手く通らな
いという欠点がある。
<Problems to be solved by the invention> The method of removing excess catalyst slurry or solution by blowing compressed air is difficult to uniformly blow away, especially when using a three-dimensional network structure. The drawback is that it doesn't pass.

その点遠心力を利用する方法が有利であるが、単なる公
転による遠心分離法では遠心力が一定の方向にしか働か
ず、スラリーあるいは溶液も一定の方向にのみ移動する
ことになる。その結果、回転の中心方向と外周方向とで
触媒成分の担持量に差が生じこの傾向が顕著に現われた
場合には外周方向の面で孔が閉塞されてしまう等の欠点
があった。
In this respect, a method using centrifugal force is advantageous, but in a centrifugal separation method based on mere revolution, centrifugal force acts only in a fixed direction, and the slurry or solution also moves in a fixed direction. As a result, there is a difference in the amount of catalyst components supported between the center of rotation and the outer circumferential direction, and when this tendency becomes noticeable, there are drawbacks such as the holes being blocked in the outer circumferential direction.

〈問題点を解決するための手段〉 本発明は従来の方法における上述の欠点を改良し、付着
せしめた触媒成分のスラリーあるいは溶液のすみやかに
して均一な担持を行なうことを目的とするものである。
<Means for Solving the Problems> The object of the present invention is to improve the above-mentioned drawbacks of the conventional methods and to quickly and uniformly support the slurry or solution of the deposited catalyst component. .

本発明のセラミック基材への触媒成分被覆方法は、セラ
ミック基材を触媒成分のスラリーあるいは溶液に没し、
触媒成分を基材表面に付着せしめ、次に余分なスラリー
あるいは溶液を第1図に示すような自転する容器をさら
に公転せしめてなる遠心分離装置を用いることによって
除去し、セラミック基材上に均一に触媒成分を被覆し、
しかるのちに乾燥し、さらに所望ならば焼成することに
よシ触媒成分を均一に被覆担持する方法を、骨子とする
The method of coating a catalyst component on a ceramic substrate of the present invention includes immersing the ceramic substrate in a slurry or solution of the catalyst component,
The catalyst component is attached to the surface of the substrate, and then the excess slurry or solution is removed using a centrifugal separator consisting of a rotating container as shown in Fig. coated with a catalyst component,
The basic method is to uniformly coat and support the catalyst component by drying and, if desired, calcining.

〈発明の構成〉 次に本発明を図にもとづき説明する。<Structure of the invention> Next, the present invention will be explained based on the drawings.

第1図はセラミック基材から余分な触媒スラリーオるい
は溶液を除去し、均一な被覆層を形成するための装置の
略図である。容器10の中にセットされたセラミック基
材は公転伝達用シャフト10回転により生じる遠心力に
よって余分なスラリーあるいは溶液を振シ払われる。そ
して容器10が自転することによって振り払いの方向を
ゆるやかにかえていくのでスラリーあるいは溶液の偏在
は起こらない。この場合、自転速度は公転速度の1/ 
から”/100が好ましい。
FIG. 1 is a schematic diagram of an apparatus for removing excess catalyst slurry or solution from a ceramic substrate and forming a uniform coating layer. Excess slurry or solution is shaken off from the ceramic substrate set in the container 10 by the centrifugal force generated by the 10 revolutions of the revolution transmission shaft. As the container 10 rotates, the direction of shaking is gently changed, so that uneven distribution of the slurry or solution does not occur. In this case, the rotation speed is 1/ of the orbital speed.
to "/100" is preferable.

自転速度が公転速度の1/1o。より小さい場合は自転
に要する時間が長く、自転の効果を発揮させるのに時間
がかかる。また1/、。より大きくしてもより以上の効
果は得られず、かえって容器及びセラミック基材の破損
が起こり易く、それを防ぐのに容器が大きくなり、また
セラミック基材の装着が煩雑となる。容器の自転する遠
心分離装置の一例である第1図の装置では、公転シャフ
トlと自転伝達シャフト2は二重構造にして、それぞれ
異った回転速度を伝達できる構造としている。
The rotation speed is 1/1o of the revolution speed. If it is smaller, it takes a longer time to rotate, and it takes time for the rotation to take effect. Also 1/. Even if the size is made larger, no better effect can be obtained, and on the contrary, the container and the ceramic base material are more likely to be damaged.To prevent this, the container has to be larger, and the mounting of the ceramic base material becomes complicated. In the device shown in FIG. 1, which is an example of a centrifugal separator for rotating containers, the revolution shaft 1 and the rotation transmission shaft 2 have a double structure so that they can transmit different rotational speeds.

公転シャフト1と自転伝達シャフト2が同一回転速度で
回転すれば自転伝達ギヤ3と自転ギヤ4との間には、回
転伝達は行なわれず、従って容器10は公転のみとなる
。公転伝達用プーリー7と自転伝達用プーリー8の比を
変えて公転シャフト1と自転伝達シャフト2に回転速度
の差をつける。その差により自転伝達ギヤ3と自転ギヤ
4の間に回転伝達が生じ、容器10が自転する。したが
って第1図の装置においては公転回数に対する容器の自
転回数の比は公転伝達用プーリー7と自転伝達用プーリ
ー8の比及び自転伝達ギヤ3と自転ギヤ4のギヤ比によ
って決定される。なお、容器10は1個でもよく、また
3個以上の多数でもよい。
If the revolution shaft 1 and the rotation transmission shaft 2 rotate at the same rotation speed, no rotation is transmitted between the rotation transmission gear 3 and the rotation gear 4, and therefore the container 10 only revolves. A difference in rotational speed is created between the revolution shaft 1 and the rotation transmission shaft 2 by changing the ratio of the revolution transmission pulley 7 and the rotation transmission pulley 8. Due to the difference, rotation is transmitted between the rotation transmission gear 3 and the rotation gear 4, and the container 10 rotates. Therefore, in the apparatus shown in FIG. 1, the ratio of the number of rotations of the container to the number of revolutions is determined by the ratio of the revolution transmission pulley 7 to the rotation transmission pulley 8 and the gear ratio of the rotation transmission gear 3 to the rotation gear 4. Note that the number of containers 10 may be one, or may be three or more.

本発明によるセラミック基材の触媒成分担持工程を第2
図に示す。工程11はセラミック基材に触媒成分を含む
スラリーあるいは溶液を付着せしめる工程であり、基材
の形状、材質等に二り触媒成分を含むスラリーあるいは
溶液の濃度及び粘度が決定される。このスラリーあるい
は溶液にセラミック基材を30秒から5分間浸して基材
表面に触媒成分を含むスラリーするいは溶液を付着せし
める。
The second step of supporting the catalyst component on the ceramic substrate according to the present invention
As shown in the figure. Step 11 is a step in which a slurry or solution containing a catalyst component is applied to a ceramic substrate, and the concentration and viscosity of the slurry or solution containing a catalyst component are determined depending on the shape and material of the substrate. A ceramic substrate is immersed in this slurry or solution for 30 seconds to 5 minutes to cause the slurry or solution containing the catalyst component to adhere to the surface of the substrate.

しかる後に工程12に示すごとく遠心分離装置(第1図
参考)を使って公転速度毎分io。
Thereafter, as shown in step 12, the revolution speed is reduced to io per minute using a centrifugal separator (see Figure 1).

から6f)0回転(遠心力約5から200G)で、自転
/公転が1/ から’/100で約20から120秒間
余分なスラリーあるいは溶液を除去し、触媒成分が均一
な被覆層となるようにする。
to 6 f) at 0 rotation (centrifugal force of about 5 to 200 G) and rotation/revolution of 1/ to '/100 for about 20 to 120 seconds. Remove excess slurry or solution so that the catalyst component becomes a uniform coating layer. Make it.

つぎに工程13の熱処理工程で約80’Cから180’
C,で2時間から10時間乾燥させる。さらに必要に応
じて300’CからSOO℃で空気などの不活性気流中
1時間から5時間焼成することによってセラミック基材
表面上に触媒成分を被覆担持する。
Next, in step 13, a heat treatment step, the
C. for 2 to 10 hours. Further, if necessary, the catalyst component is coated and supported on the surface of the ceramic substrate by firing at 300'C to SOO°C in an inert gas stream such as air for 1 to 5 hours.

工程12における余分のスラリーあるいは溶液の除去は
第1図の装置によシ遠心力を加えて行なうが加えるGは
主に公転によって生じるものであり、希望の触媒成分担
持量と使用する基材の物性により、スラリーあるいは溶
液の濃度及び公転速度、自転速度、回転時間等が決定さ
れる。
The removal of excess slurry or solution in step 12 is carried out by applying centrifugal force using the apparatus shown in Figure 1, but the applied G is mainly generated by revolution, and it depends on the desired amount of catalyst component supported and the substrate used. The concentration, revolution speed, rotation speed, rotation time, etc. of the slurry or solution are determined by the physical properties.

実施例1 白金1重量%、鉄をFe2O3として4重量%およびセ
リウムをCeC2として5重i%担持せしめられたγ−
All t Os粉末をイオン交換水中に分散してスラ
リー化し、固形分45重量%(粘度120cps )の
触媒スラリーを用意した。コージェライト製20メツシ
ユ(1インチ長さ当り平均20個の孔がある)の三次元
網状構造体を上記スラリーに1分間浸し基材表面に触媒
スラリーを付着せしめ、次に第1図に示すような遠心分
離装置の容器10に装着した。
Example 1 γ- loaded with 1% by weight of platinum, 4% by weight of iron as Fe2O3, and 5% by weight of cerium as CeC2
All t Os powder was dispersed in ion-exchanged water to form a slurry to prepare a catalyst slurry having a solid content of 45% by weight (viscosity of 120 cps). A three-dimensional network structure of 20 meshes (average of 20 holes per inch length) made of cordierite was immersed in the above slurry for 1 minute to adhere the catalyst slurry to the substrate surface, and then as shown in Figure 1. It was attached to the container 10 of a centrifugal separator.

そして該装置を公転速度毎分300回転(遠心力約40
G)自転/公転=/3oとなるように設定して60秒間
作動させた。次に当該網状構造体を取シ出し150℃で
3時間乾燥し、ついで空気中600℃で2時間焼成し完
成触媒を得た。
The device is rotated at a revolution speed of 300 revolutions per minute (centrifugal force of approximately 40
G) It was set so that rotation/revolution = /3o and operated for 60 seconds. Next, the network structure was taken out and dried at 150°C for 3 hours, and then calcined in air at 600°C for 2 hours to obtain a finished catalyst.

実施例2 実施例1で用いたのと同じ組成の触媒粉体を用いて固形
分40重量%(粘度50 cps )のスラリーとした
。コージェライト製24メツシユ(1インチ長さ当り平
均24個の孔がある)の三次元網状構造体を上記スy 
v−に1分間浸し以後実施例1と同様の操作で触媒化し
た。
Example 2 Catalyst powder having the same composition as that used in Example 1 was used to prepare a slurry with a solid content of 40% by weight (viscosity 50 cps). A three-dimensional network structure made of cordierite with 24 meshes (with an average of 24 holes per inch of length) was
The sample was immersed in V- for 1 minute and then catalyzed in the same manner as in Example 1.

実施例3 実施例1で用いたのと同じ組成の触媒粉体を用いて固形
分48重量%(粘度400 cps )のスラリーとし
た。コージェライト製のハニカム構造体(400セル/
平方インチ)を上記スラリーに30秒間浸し、端面を回
転軸に平行にして実施例1で用いた装置の容器に装着し
た。ついで該装置を公転速度毎分300回転(遠心力約
40G)自転/公転=蚤、となるように設定して30秒
間作動させた。
Example 3 A catalyst powder having the same composition as that used in Example 1 was used to prepare a slurry with a solid content of 48% by weight (viscosity of 400 cps). Cordierite honeycomb structure (400 cells/
2 inches) was immersed in the slurry for 30 seconds and attached to the container of the apparatus used in Example 1 with the end face parallel to the axis of rotation. The device was then operated for 30 seconds at a revolution speed of 300 revolutions per minute (centrifugal force of about 40 G) and rotation/revolution = flea.

かくして余分のスラリーを除去されたハニカム構造体を
取り出し、150℃で3時間乾燥した後、空気中600
℃で2時間焼成し完成触媒を得た。
The honeycomb structure from which excess slurry had been removed was taken out, dried at 150°C for 3 hours, and then dried at 600°C in air.
A completed catalyst was obtained by calcining at ℃ for 2 hours.

比較例1 実施例1で用いたのと同様の20メツシユの三次元網状
構造体を遠心分離装置の容器が全く自転しない状態(公
転伝達用プーリー7と自転伝、達用プーリー8が等しい
回転を伝える)になるように設定し、公転速度毎分30
0回転(約40G)で60秒間作動させるほかは、実施
例1におけると同様のスラリー及び操作で触媒化した。
Comparative Example 1 A three-dimensional network structure of 20 meshes similar to that used in Example 1 was prepared in a state where the container of the centrifugal separator did not rotate at all (the revolution transmission pulley 7 and the rotation transmission and delivery pulley 8 rotated equally). ), and the orbital speed is 30 per minute.
Catalyticization was carried out using the same slurry and procedure as in Example 1, except for operating at 0 rotations (approximately 40 G) for 60 seconds.

比較例2 実施例2で用いたのと同様の24メツシユの三次元網状
構造体を実施例2におけると同様にして得られたスラリ
ーを用いて、比較例1におけると同様の操作で触媒化し
た。
Comparative Example 2 A three-dimensional network structure of 24 meshes similar to that used in Example 2 was catalyzed by the same operation as in Comparative Example 1 using a slurry obtained in the same manner as in Example 2. .

比較例3 実施例3で用いたのと同様のハニカム構造体(400セ
ル/平方インチ)を実施例3におけると同様にして得ら
れたスラリーに30秒間浸し一方の端面を遠心方向にし
て実施例3で用いたと同じ遠心分離装置の容器に装着し
該容器を全く自転しないように設定して毎分300回転
で30秒間公転作動させた。ついで余分なスラリーを除
去したハニカム構造体を取り出し、150℃で3時間乾
燥し、空気中600℃で2時間焼成し完成触媒を得た。
Comparative Example 3 A honeycomb structure (400 cells/square inch) similar to that used in Example 3 was immersed in the slurry obtained in the same manner as in Example 3 for 30 seconds, with one end face in the centrifugal direction. It was attached to the container of the same centrifugal separator as used in step 3, and the container was set so as not to rotate at all, and the container was rotated at 300 revolutions per minute for 30 seconds. The honeycomb structure from which excess slurry had been removed was then taken out, dried at 150°C for 3 hours, and calcined in air at 600°C for 2 hours to obtain a completed catalyst.

以上の実施例および比較例で使用したセラミツク基材の
寸法は三次元網状構造体については第3図に示すように
縦り、 80顛、横り、 140龍、高さI41401
gの直方体のものを使用し、第3図のABCD面を公転
外周側にEFGH面を中心側にして装着した。ハニカム
構造体は直径4インチ長さ5インチの円柱のものを使用
し両端面が外周側(A面)と中心側(B面)K向くよう
にした。
The dimensions of the ceramic substrate used in the above Examples and Comparative Examples are as shown in Figure 3 for the three-dimensional network structure: length: 80 mm, width: 140 mm, height: I41401.
A rectangular parallelepiped shown in Fig. 3 was used, and the ABCD plane shown in Fig. 3 was mounted on the revolution outer circumferential side and the EFGH plane was placed on the center side. A cylindrical honeycomb structure with a diameter of 4 inches and a length of 5 inches was used, and both end surfaces were oriented toward the outer circumferential side (side A) and the center side (side B).

実施例4 実施例1,2.3および比較例1,2.3で触媒化した
セラミック基材のABCD面及びA面とBFGH面及び
B面を深さ5Hにサンプリングし、各々の比表面積を測
定し友。その結果を表1に示した。
Example 4 The ABCD plane, A plane, BFGH plane, and B plane of the ceramic substrates catalyzed in Examples 1, 2.3 and Comparative Examples 1, 2.3 were sampled to a depth of 5H, and the specific surface area of each was calculated. Measuring friend. The results are shown in Table 1.

実施例5 実施例1で得た触媒をABCD面及びEFGH面より3
3ダ深さ20mKダイヤモンドカッターで切υ出し、そ
れぞれ実施例1−A1実施例1−Bとした。同様に比較
例1よシ得た触媒よシ比較例1−人、比較例1−Bを切
シ出した。
Example 5 The catalyst obtained in Example 1 was viewed from the ABCD plane and the EFGH plane.
The specimens were cut out using a 3-diameter deep 20 mK diamond cutter to form Example 1-A and Example 1-B, respectively. Similarly, the catalysts obtained in Comparative Example 1 and Comparative Example 1-B were cut out.

それぞれの触媒のCO酸化性能を机上反応装置を用いて
測定した。
The CO oxidation performance of each catalyst was measured using a desk reactor.

反応条件 反応温度  400℃ 反応ガス  CO1% COy    10% 0.2チ H2O10チ N2    Ba l ance 8、 V、    50,000hr ’測定結果を表
2に示した。
Reaction conditions Reaction temperature: 400°C Reaction gas: CO1% COy 10% 0.2cm H2O 10cm N2 Balance 8, V, 50,000hr' The measurement results are shown in Table 2.

表  2Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による自転機能を有した公転型遠心分離
装置の一例の断面を表わす図を表わすO 第2図はセラミック基材への触媒成分担持方法の工程図
、第3図は実施例1,2及び比較例1゜2で使用した直
方体の三次・元締状構造体の斜視図をそれぞれ表わす。 特許出願人    日本触媒化学工業株式会社第21 箋3 圏
Figure 1 shows a cross-sectional view of an example of a revolution type centrifugal separator having an autorotation function according to the present invention. Figure 2 is a process diagram of a method for supporting a catalyst component on a ceramic substrate, and Figure 3 is an example. 1 and 2 and a perspective view of the rectangular parallelepiped three-dimensional and base-shaped structures used in Comparative Example 1.2 and Comparative Example 1.2, respectively. Patent applicant: Nippon Shokubai Chemical Industry Co., Ltd. No. 21 No. 3 Area

Claims (3)

【特許請求の範囲】[Claims] (1)セラミック基材からなる一体化された構造体を、
触媒成分を含有するスラリーあるいは溶液に含浸し、次
いで自転する容器をさらに公転せしめてなる遠心分離装
置にて余分なスラリーあるいは溶液を除去せしめ、しか
るのちに乾燥し、またはさらに焼成を行ない該構造体に
均一に触媒成分を担持することを特徴とするセラミック
基材からなる一体化された構造体へ触媒成分を担持する
方法。
(1) An integrated structure made of a ceramic base material,
The structure is impregnated with a slurry or solution containing a catalyst component, and then the excess slurry or solution is removed using a centrifugal separator made up of a rotating container that is further revolved, followed by drying or further calcination. A method for supporting a catalyst component on an integrated structure made of a ceramic base material, characterized in that the catalyst component is uniformly supported on the ceramic base material.
(2)セラミック基材からなる一体化された構造体がハ
ニカム状のモノリス構造体あるいは三次元網状構造体で
あることを特徴とする特許請求の範囲(1)記載の方法
(2) The method according to claim (1), wherein the integrated structure made of the ceramic base material is a honeycomb-like monolith structure or a three-dimensional network structure.
(3)自転速度が公転速度の1/10〜1/100であ
ることを特徴とする特許請求の範囲(1)または(2)
記載の方法。
(3) Claim (1) or (2) characterized in that the rotation speed is 1/10 to 1/100 of the revolution speed.
Method described.
JP59248649A 1984-11-27 1984-11-27 Method for supporting gatalytic component by ceramic substrate Granted JPS61129043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248649A JPS61129043A (en) 1984-11-27 1984-11-27 Method for supporting gatalytic component by ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248649A JPS61129043A (en) 1984-11-27 1984-11-27 Method for supporting gatalytic component by ceramic substrate

Publications (2)

Publication Number Publication Date
JPS61129043A true JPS61129043A (en) 1986-06-17
JPS6260143B2 JPS6260143B2 (en) 1987-12-15

Family

ID=17181261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248649A Granted JPS61129043A (en) 1984-11-27 1984-11-27 Method for supporting gatalytic component by ceramic substrate

Country Status (1)

Country Link
JP (1) JPS61129043A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028886A1 (en) * 2001-09-28 2003-04-10 Ngk Insulators,Ltd. Honeycomb catalyst and method for manufacturing honeycomb intermediate and honeycomb catalyst
DE102005026054A1 (en) * 2005-06-07 2006-12-21 Dr.Ing.H.C. F. Porsche Ag Method and device for monitoring the functioning of a valve lift adjusting device of an internal combustion engine in a cold start phase
JP2008229490A (en) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd Filter for cleaning exhaust gas and its manufacturing method
JP2013078744A (en) * 2011-10-05 2013-05-02 Tokyo Metropolitan Industrial Technology Research Institute Deposition apparatus of slurry catalyst solution
WO2018110144A1 (en) * 2016-12-14 2018-06-21 エヌ・イーケムキャット株式会社 Method for manufacturing inorganic oxide particle-supporting structural carrier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028886A1 (en) * 2001-09-28 2003-04-10 Ngk Insulators,Ltd. Honeycomb catalyst and method for manufacturing honeycomb intermediate and honeycomb catalyst
DE102005026054A1 (en) * 2005-06-07 2006-12-21 Dr.Ing.H.C. F. Porsche Ag Method and device for monitoring the functioning of a valve lift adjusting device of an internal combustion engine in a cold start phase
DE102005026054B4 (en) * 2005-06-07 2007-04-12 Dr.Ing.H.C. F. Porsche Ag Method and device for monitoring the functioning of a valve lift adjusting device of an internal combustion engine in a cold start phase
JP2008229490A (en) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd Filter for cleaning exhaust gas and its manufacturing method
JP2013078744A (en) * 2011-10-05 2013-05-02 Tokyo Metropolitan Industrial Technology Research Institute Deposition apparatus of slurry catalyst solution
WO2018110144A1 (en) * 2016-12-14 2018-06-21 エヌ・イーケムキャット株式会社 Method for manufacturing inorganic oxide particle-supporting structural carrier

Also Published As

Publication number Publication date
JPS6260143B2 (en) 1987-12-15

Similar Documents

Publication Publication Date Title
JP4975209B2 (en) Monolith coating apparatus and method
EP1875997B1 (en) End face processing apparatus, end face processing method for honeycomb molded body, and manufacturing method for honeycomb structure
US4869944A (en) Cordierite honeycomb-structural body and a method for producing the same
EP0560074A1 (en) High surface area washcoated substrate and method for making
EP1275431B1 (en) Process and air filter for cleaning air in a clean room
WO2019216009A1 (en) Supported catalyst for degrading organic matter, and device for degrading organic matter
WO2007111175A1 (en) Production method of sealing honeycomb structure
WO2010024934A1 (en) Methods of applying a layer to a honeycomb body
JPS61129043A (en) Method for supporting gatalytic component by ceramic substrate
JPH07509182A (en) Catalyst carrier and its manufacturing method
JPH0125614B2 (en)
JP2001054737A (en) Coating of catalyst carrier
JP3495874B2 (en) Method of manufacturing dehumidifying element
USRE30575E (en) Method of manufacturing a contact body
US4414139A (en) Catalyst carriers for purification of waste gas and process for preparing the same
US20050173998A1 (en) Sorption rotor
JP2000024518A (en) Production of catalyst device
JP2002361092A (en) Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them
WO1998006495A1 (en) Method for preparing a composite catalyst
JP2616157B2 (en) Method for producing monolith catalyst
JP2001212477A (en) Coating device for catalyst carrier
CN1262150A (en) Process for preparing catalyst for treating waste gas
JP3322519B2 (en) Rotor of rotary organic solvent vapor adsorption device
WO2014088083A1 (en) Base material for producing honeycomb structure, method for producing same, method for producing honeycomb structure, and method for producing honeycomb catalyst
JPH0523584A (en) Adsorptive ceramic porous element and its manufacture