JPS61276373A - Manufacturing process of semiconductor device - Google Patents

Manufacturing process of semiconductor device

Info

Publication number
JPS61276373A
JPS61276373A JP11823085A JP11823085A JPS61276373A JP S61276373 A JPS61276373 A JP S61276373A JP 11823085 A JP11823085 A JP 11823085A JP 11823085 A JP11823085 A JP 11823085A JP S61276373 A JPS61276373 A JP S61276373A
Authority
JP
Japan
Prior art keywords
layer
silicide
gate electrode
layers
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11823085A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kaeriyama
敏之 帰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Japan Ltd
Original Assignee
Texas Instruments Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Japan Ltd filed Critical Texas Instruments Japan Ltd
Priority to JP11823085A priority Critical patent/JPS61276373A/en
Publication of JPS61276373A publication Critical patent/JPS61276373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent an FET structure from being broken by the bridge connection between Ti silicide portions, by covering the exposed faces of a gate electrode with a chemically inactive insulating material before adhering high-melting metal layers on source and drain regions and silicifying the metal. CONSTITUTION:A field oxide layer 22 is grown on a semiconductor substrate 21. A gate oxide film 23, a poly Si layer 24, a Ti silicide layer 25 and an Si dioxide layer 26 are formed on the most region. The layers are then patterned by etching so as to form a gate electrode E. The exposed faces of the gate electrode E are covered with a cap oxide film 28. An impurity is implanted to form source and drain regions 29. The whole surface is then covered with a layer of high-melting metal or Ti 210, which is heated to a high temperature so that the Ti layer portions 210 located on the regions 29 are converted into Ti silicide 211. The layers 22 and the oxide 28, which are not silicified, are removed selectively by etching while the Ti silicide layers on the regions 29 are left. According to the method as described above, the FET structure can be effectively prevented from being broken by the bridge connection between the Ti silicide on the electrode E and the Ti silicide on the regions 29.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は半導体装置の製造方法、詳しくは。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to a method for manufacturing a semiconductor device.

ゲート電極およびソース・ドレイン領域上に高融点金属
シリサイドを形成し、電極およびソース・ドレインの抵
抗率の低下を図り、もって、信号伝達の高速化を図った
半導体装置の製造方法に関する。
The present invention relates to a method of manufacturing a semiconductor device in which a high melting point metal silicide is formed on a gate electrode and source/drain regions to reduce the resistivity of the electrodes and source/drain, thereby increasing the speed of signal transmission.

〈従来の技術〉 半導体装置のパターン寸法を微細化すると、スケーリン
グ則に従い、通常、トランジスタ単体のスイッチング特
性は向上するが、集積回路では、配線抵抗の増大により
、信号入力端子から遠いトランジスタへの信号の伝達が
遅延し、集積回路としての動作速度の向上を図れなかっ
た。その結果、配線の低抵抗化が要望され、サリサイド
ゲートが採用されるようになってきた。
<Conventional technology> When the pattern size of a semiconductor device is made finer, the switching characteristics of a single transistor usually improve according to the scaling law, but in integrated circuits, due to the increase in wiring resistance, it becomes difficult to send signals to transistors far from signal input terminals. The transmission of data was delayed, making it impossible to improve the operating speed of the integrated circuit. As a result, there has been a demand for lower wiring resistance, and salicide gates have come into use.

かかるサリサイドゲートの製造プロセスを第2図に基き
説明すると、半導体基板lにフィールド酸化物層2を形
成し、モート領域を画成する(第2図(a))。続いて
、熱酸化によりゲート酸化膜3を成長させ、(第2図(
b) ) 、その上にポリシリコン層4を被着させる(
第2図(C) ) 、かかる後、エツチングにより所定
パターンのゲート電極Eを形成する(第2図(d) )
 。
The process for manufacturing such a salicide gate will be described with reference to FIG. 2. A field oxide layer 2 is formed on a semiconductor substrate 1 to define a moat region (FIG. 2(a)). Next, a gate oxide film 3 is grown by thermal oxidation (see Fig. 2).
b) ), depositing a polysilicon layer 4 thereon (
After that, a gate electrode E having a predetermined pattern is formed by etching (FIG. 2(d)).
.

再び、二酸化シリコン層6を被着し、(第2図(e) 
) 、異方性エツチングによりゲート電極Eの周囲を被
う幅が約200八〜3000ムのサイドウオール7を形
成する(第2図(f) )、ソース領域8およびドレイ
ン領域8に不純物を注入し、加熱による不純物の横方向
拡散を図って、チャンネル領域の端部とソース領域8お
よび領域の各端部との整合を図った後(第2図(g) 
) 、高融点金属、例えば、チタンを被着させて、チタ
ン層9を形成する(第2図(h) ) 、 Lかる後、
高温加熱によるシンタリングによりチタンと、ゲート電
極Eを構成するポリシリコンおよびソース・ドレイン領
域8を構成するシリコン基板とを反応させ、ゲート電極
E上およびソース・ドレイン領域8上にそれぞれ珪化チ
タン(TiSi2 ) 10を生成させる(第2図(i
))。
A silicon dioxide layer 6 is deposited again (FIG. 2(e)).
), a sidewall 7 with a width of about 2008 to 3000 mm is formed surrounding the gate electrode E by anisotropic etching (FIG. 2(f)), and impurities are implanted into the source region 8 and drain region 8. After lateral diffusion of impurities by heating and alignment of the end of the channel region with the source region 8 and each end of the region (see FIG. 2(g)).
), a high melting point metal such as titanium is deposited to form a titanium layer 9 (FIG. 2(h)), and then
Titanium is reacted with the polysilicon forming the gate electrode E and the silicon substrate forming the source/drain region 8 by sintering by high-temperature heating, and titanium silicide (TiSi2) is formed on the gate electrode E and the source/drain region 8, respectively. ) 10 (Figure 2 (i
)).

一方、二酸化シリコンと接触しているチタン層9は珪化
しないので、フィールド酸化物層2およびサイドウオー
ル7上のチタンは珪化チタンにはならず、選択エツチン
グにより、珪化チタン部10以外の部分が除去され(第
2図(j)) 、その後。
On the other hand, since the titanium layer 9 in contact with silicon dioxide is not silicified, the titanium on the field oxide layer 2 and the sidewall 7 does not become titanium silicide, and the portions other than the titanium silicide portion 10 are removed by selective etching. (Fig. 2 (j)), and then.

必要な配線が施され絶縁物による保護層で全体が覆われ
る。
Necessary wiring is provided and the entire structure is covered with a protective layer of insulator.

したがって、信号が伝ばんする電極E、ソース・ドレイ
ン領域8は、珪化チタンを含む二重構造になり、珪化チ
タンの比抵抗がポリシリコン等のそれに比較して著しく
小さいところから、集積回路の動作速度の向上が図られ
る。
Therefore, the electrode E and source/drain region 8 through which signals are transmitted have a double structure containing titanium silicide, and since the specific resistance of titanium silicide is significantly smaller than that of polysilicon, etc., the integrated circuit operates. The speed will be improved.

〈従来技術の問題点〉 しかしながら、従来の半導体装置の製造方法においては
、電極E上の珪化チタン部lOとソース・ドレイン領域
8上の珪化チタン部1oとを同一のチタン層9から高温
加熱により、同時に形成していたので、電極Eおよびソ
ース・ドレイン領域8上に形成された珪化チタン中のシ
リコンがチタン暦9中に拡散して、サイドウオール7中
に廷出し。
<Problems with the prior art> However, in the conventional semiconductor device manufacturing method, the titanium silicide portion lO on the electrode E and the titanium silicide portion 1o on the source/drain region 8 are formed from the same titanium layer 9 by high temperature heating. , were formed at the same time, the silicon in the titanium silicide formed on the electrode E and the source/drain region 8 diffused into the titanium layer 9 and exposed in the sidewall 7.

著しい場合には第3図に詳示されているように、電極E
上の珪化チタン部10とソース領域8あるいはドレイン
領域8上の珪化チタン部10とが橋絡し、電界効果型ト
ランジスタの構造を破壊してしまうという問題点があっ
た。
In severe cases, as detailed in FIG.
There is a problem in that the upper titanium silicide portion 10 and the titanium silicide portion 10 on the source region 8 or the drain region 8 are bridged, destroying the structure of the field effect transistor.

く問題点を解決するための手段〉 本発明は上記珪化チタン部10の橋絡による電界効果型
トランジスタ構造の破壊に鑑み、導電性半導体と金属シ
リサイド層とで構成されるゲート電極の露出部を化学的
に不活性な絶縁物で覆った後に、ソース領域およびドレ
イン領域上に高融点金属層を被着し、その珪化を図るこ
とを要旨とする〈実施例〉 第1図は本発明の一実施例を示す図であり、半導体装置
の製造工程を同図を参照しつつ説明すれば以下の通りで
ある。
Means for Solving the Problems> In view of the destruction of the field effect transistor structure due to the bridging of the titanium silicide portion 10, the present invention provides a method for reducing the exposed portion of the gate electrode composed of a conductive semiconductor and a metal silicide layer. <Embodiment> The gist is to deposit a high melting point metal layer on the source region and the drain region after covering them with a chemically inert insulator, and to silicify the layers. FIG. 1 shows one example of the present invention. 1 is a diagram showing an example, and the manufacturing process of a semiconductor device will be described below with reference to the diagram.

まず、半導体基板21にフィールド酸化物層22を熱酸
化により成長させ、モート領域を画成する(第1図(a
))。続いて、モート領域上に薄いゲート酸化膜23を
熱醸化にて形成しく第1図(b))、その上に、ポリシ
リコン層24と珪化チタン(TiSi2)層25と二酸
化シリコン層26とを重畳する(第1図(C)乃至(e
) ) 、珪化チタン層25はスパッタリング法で形成
され、スパッタリングは混晶ターゲラ) (TiSix
 )あるいはモザイクターゲットを使用するスパッタリ
ングでもよく、チタンターゲットとシリコンターゲット
とを併用する共スパッタリング法でもよい。
First, a field oxide layer 22 is grown on a semiconductor substrate 21 by thermal oxidation to define a moat region (see FIG.
)). Next, a thin gate oxide film 23 is formed on the moat region by thermal fermentation (FIG. 1(b)), and a polysilicon layer 24, a titanium silicide (TiSi2) layer 25, and a silicon dioxide layer 26 are formed on top of it. (Fig. 1(C) to (e)
) ), the titanium silicide layer 25 is formed by a sputtering method, and the sputtering is a mixed crystal target layer) (TiSix
) Alternatively, sputtering using a mosaic target may be used, or a co-sputtering method using a titanium target and a silicon target in combination may be used.

しかる後、エツチングによるパターン形成処理にてゲー
ト電極Eを形成しく第1図(f) ) 、再び、二酸化
シリコン27を低圧化学的気相成長法で被着して(第1
図(g) ) 、異方性エツチングによりゲート電極E
の露出部を覆うキャップ酸化物2Bを形成する(第1図
(h) )、異方性エツチングの結果、シリコン基板2
1の表面はモート領域において露出しているので、ソー
ス領域28とドレイン領域28とに不純物が注入され、
横方向の熱拡散工程を経てゲート電極Eの端部とソース
領域29およびドレイン領域28の各端部とが整合させ
られる(第1図(i))。 次の工程では、チタンをス
パッタリングして、チタン層210で全面を覆い(第1
図(j))、高温加熱により、シリコン基板21と接触
しているチタン層210に化学変化を生ぜしめ、ソース
領域29とドレン領域29との上のチタン層210を珪
化チタン211に変化させる。二酸化シリコンで構成さ
れているフィールド酸化物層22とキャップ酸化物28
とは化学的に安定であり、これらと接しているチタン層
210は珪化しないので、選択エツチングにより除去さ
れ、ソース領域28およびドレイン領域28上に珪化チ
タンが残留する(第1図(k))。この後、金属配線の
パターン形成および保護酸化膜の被着がなされて半導体
装置が完成するく効 果〉 以上説明してきたように、この発明によれば。
Thereafter, a gate electrode E is formed by a pattern forming process by etching (FIG. 1(f)), and silicon dioxide 27 is deposited again by low pressure chemical vapor deposition (first step).
Figure (g)), gate electrode E is formed by anisotropic etching.
As a result of anisotropic etching, a cap oxide 2B is formed to cover the exposed parts of the silicon substrate 2 (FIG. 1(h)).
1 is exposed in the moat region, impurities are implanted into the source region 28 and drain region 28,
Through a lateral thermal diffusion step, the end of the gate electrode E and each end of the source region 29 and drain region 28 are aligned (FIG. 1(i)). In the next step, titanium is sputtered to cover the entire surface with a titanium layer 210 (first
(J), high temperature heating causes a chemical change in the titanium layer 210 in contact with the silicon substrate 21, changing the titanium layer 210 on the source region 29 and drain region 29 to titanium silicide 211. Field oxide layer 22 and cap oxide 28 comprised of silicon dioxide
is chemically stable, and the titanium layer 210 in contact with these does not become silicified, so it is removed by selective etching, leaving titanium silicide on the source region 28 and drain region 28 (FIG. 1(k)). . After this, the semiconductor device is completed by patterning the metal wiring and depositing the protective oxide film. As described above, according to the present invention.

導電性半導体層と高融点シリサイド層とからなるゲート
電極の露出部を化学的に不活性な絶縁物で覆った後に、
ソース領域とドレイン領域との上に高融点金属層を被若
し、該高融点金属の珪化を図るようにしたので、ソース
領域とドレイン領域との上に高融点シリサイドを形成す
る際に、これらとゲート電極を構成する高融点シリサイ
ドとが化学的に不活性な絶縁物で遮断されることになり
、これら高融点シリサイド間の橋絡が防止されるという
効果が得られる。
After covering the exposed part of the gate electrode consisting of a conductive semiconductor layer and a high melting point silicide layer with a chemically inert insulator,
Since a high melting point metal layer is placed on the source region and the drain region and the high melting point metal is silicified, when forming the high melting point silicide on the source region and the drain region, these layers are The high melting point silicide and the high melting point silicide constituting the gate electrode are insulated by a chemically inert insulator, and the effect of preventing bridging between these high melting point silicides can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す工程図、第2図は従来
の製造方法を示す工程図、第3図は従来の方法で製造さ
れた半導体装置の一部拡大遮断図である。 21・・・・・・・・・半導体基板、 23・・・・・・・・・ゲート絶縁層、24・・・・・
・・・・導電性半導体層(ポリシリコン層)25・・・
・・・・・・高融点金属シリサイド層(珪化チタン層) E・・・・・・・・・ゲート電極、 28・・・・・・・・・化学的に不活性な絶縁物(キャ
ップ酸化物) 28・・・・・・・・・ソース領域およびドレイン領域
、210・・・・・・・・・高融点金属層(チタン層)
。 特許出願人 日本テキサス・インスツルメンツ株式会社 第3図 区 CI 派
FIG. 1 is a process diagram showing an embodiment of the present invention, FIG. 2 is a process diagram showing a conventional manufacturing method, and FIG. 3 is a partially enlarged cutaway diagram of a semiconductor device manufactured by the conventional method. 21... Semiconductor substrate, 23... Gate insulating layer, 24...
...Conductive semiconductor layer (polysilicon layer) 25...
......High melting point metal silicide layer (titanium silicide layer) E......Gate electrode, 28......Chemically inert insulator (cap oxide 28... Source region and drain region, 210... High melting point metal layer (titanium layer)
. Patent applicant: Japan Texas Instruments Co., Ltd. Figure 3 CI Group

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上21にゲート絶縁層23と導電性半導体
層24とを重畳する工程と、該導電性半導体層24上に
高融点金属シリサイド25を積層する工程と、上記ゲー
ト絶縁層23、導電性半導体層24および高融点金属シ
リサイド層25を同時にパターン形成し、ゲート電極E
を形成する工程と、ゲート電極Eの露出部を化学的に不
活性な絶縁物28で覆う工程と、半導体基板表面部に形
成されたソース領域29およびドレイン領域29上に高
融点金属層210を被着する工程と、高融点金属層21
0を珪化する工程とを含む半導体装置の製造工程。
A step of superimposing a gate insulating layer 23 and a conductive semiconductor layer 24 on the semiconductor substrate 21, a step of laminating a high melting point metal silicide 25 on the conductive semiconductor layer 24, and a step of stacking the gate insulating layer 23 and the conductive semiconductor layer 24. The layer 24 and the refractory metal silicide layer 25 are simultaneously patterned to form the gate electrode E.
, a step of covering the exposed portion of the gate electrode E with a chemically inert insulator 28 , and a step of forming a high melting point metal layer 210 on the source region 29 and drain region 29 formed on the surface of the semiconductor substrate. Deposition process and high melting point metal layer 21
A manufacturing process of a semiconductor device including a process of silicifying 0.
JP11823085A 1985-05-31 1985-05-31 Manufacturing process of semiconductor device Pending JPS61276373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11823085A JPS61276373A (en) 1985-05-31 1985-05-31 Manufacturing process of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11823085A JPS61276373A (en) 1985-05-31 1985-05-31 Manufacturing process of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61276373A true JPS61276373A (en) 1986-12-06

Family

ID=14731444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11823085A Pending JPS61276373A (en) 1985-05-31 1985-05-31 Manufacturing process of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61276373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157523A (en) * 1987-12-14 1989-06-20 Toshiba Corp Manufacture of semiconductor device
DE19648733C2 (en) * 1996-09-21 2002-11-07 United Microelectronics Corp Process for the production of word lines in dynamic read / write memories

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157523A (en) * 1987-12-14 1989-06-20 Toshiba Corp Manufacture of semiconductor device
DE19648733C2 (en) * 1996-09-21 2002-11-07 United Microelectronics Corp Process for the production of word lines in dynamic read / write memories

Similar Documents

Publication Publication Date Title
US4425700A (en) Semiconductor device and method for manufacturing the same
JPH034527A (en) Manufacture of semiconductor element
JPS62162362A (en) Mos integrated circuit and manufacture thereof
JPH1195256A (en) Active matrix substrate
JPS61276373A (en) Manufacturing process of semiconductor device
JP2000196084A (en) Method of forming polycide gate electrode of semiconductor element
JP3387518B2 (en) Semiconductor device
JPH043469A (en) Thin film transistor and manufacture thereof
JP3196241B2 (en) Method for manufacturing semiconductor device
JPS63299280A (en) Semiconductor device and manufacture thereof
JP3161466B2 (en) Method for manufacturing thin film transistor
JP3198378B2 (en) Method for manufacturing semiconductor device
JPH02237074A (en) Mos type semiconductor device
JPH0936370A (en) Method for manufacturing coplanar type thin-film transistor
JP3293837B2 (en) Method for manufacturing thin film transistor
JPH01106468A (en) Semiconductor device and manufacture thereof
JP3155077B2 (en) TFT mounted thermal head
JP3285806B2 (en) Thin film transistor and method of manufacturing the same
JPH07183526A (en) Thin film semiconductor device and manufacture thereof
JPH08139175A (en) Semiconductor integrated circuit device and manufacture thereof
JPH02283034A (en) Semiconductor device
JPS60167377A (en) Semiconductor nonvolatile memory device
JPS63276244A (en) Manufacture of semiconductor device
JPH09293722A (en) Manufacture of semiconductor device
JPH01132163A (en) Semiconductor device