JPS61276368A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS61276368A
JPS61276368A JP11814085A JP11814085A JPS61276368A JP S61276368 A JPS61276368 A JP S61276368A JP 11814085 A JP11814085 A JP 11814085A JP 11814085 A JP11814085 A JP 11814085A JP S61276368 A JPS61276368 A JP S61276368A
Authority
JP
Japan
Prior art keywords
layer
substrate
amorphous
silicon layer
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11814085A
Other languages
Japanese (ja)
Inventor
Jiro Oshima
次郎 大島
Toshiyo Itou
伊藤 敏代
Tatsuichi Ko
高 辰一
Masaharu Aoyama
青山 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11814085A priority Critical patent/JPS61276368A/en
Publication of JPS61276368A publication Critical patent/JPS61276368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent damage accompanying ion implantation and to obtain a low-noise and high-speed Si device, by providing with a single crystalline Si layer with the same crystal orientation as the substrate, in an insulating opening section on the Si substrate. CONSTITUTION:An opening 23 is bored through the thick oxide film 22 on the N-type Si substrate 21. With plasma reaction of SiH4, a thin amorphous Si layer 24 is deposited on the entire fade, and then B ions are implanted into the layer 24. If the doping into the amorphous Si is done in excess of the soluble limit, it wound result in defects being created in the course of the crystallizing process. Next, heat treatment for one hour at 600 deg.C in inert gas causes a single crystalline layer 25 to grow from the interface between the substrate 21 and the amorphous Si layer 24, and converts the amorphous layer 24 lying on the oxide film 22 into a poly Si layer 26. In this way, since B ions are implanted after the amorphous Si layer 24 is formed, damage owing to the ion-implantation does not remain in the substrate, and disturbance of carriers at crystal again boundaries does not exist because polysilicon is not used as in prior arts. Accordingly, a low-noise device can be provided.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置及びその製造方法に関し、特に低雑
音の高速半導体素子の形成に使用されるものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and is particularly used for forming low-noise, high-speed semiconductor elements.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、半導体装置は例えば第2図(a) e (b)に
示すように製造されている。まず、シリコン基板1上に
厚い酸化膜2を形成した後、この酸化膜2を選択的忙エ
ツチング除去し開孔部3を形成する。つづいて、この開
孔部3に薄い酸化膜4を形成する。次いで、全面にイオ
ン注入を行う(第2図(a)図示)。なお、同図(a)
において薄い酸化膜4の直下の前記基板1中には前述し
たイオン注入によシネ鈍物層(×印)が形成される。
Conventionally, semiconductor devices have been manufactured as shown in FIGS. 2(a) and 2(b), for example. First, a thick oxide film 2 is formed on a silicon substrate 1, and then the oxide film 2 is removed by selective etching to form an opening 3. Subsequently, a thin oxide film 4 is formed in this opening 3. Next, ions are implanted into the entire surface (as shown in FIG. 2(a)). In addition, the same figure (a)
In the substrate 1 directly under the thin oxide film 4, a cine blunt layer (marked with an x) is formed by the aforementioned ion implantation.

しかる後、熱処理を施し薄い酸化膜4の直下の前記基板
IK拡散層5を形成し、半導体装置を製造する(第2図
(b)図示)。
Thereafter, heat treatment is performed to form the substrate IK diffusion layer 5 directly under the thin oxide film 4, and a semiconductor device is manufactured (as shown in FIG. 2(b)).

しかしながら、前述した従来技術によれば、薄い酸化膜
4を介在させることによシイオン注入による損傷の軽減
を図っているが、前記基板1中のイオン注入損傷部の回
復がその後の熱処理によって十分回復しない。特に、最
近の高速素子においては接合深さが浅く、注入損傷回復
のために十分な熱処理時間、温度を加えることが難しい
However, according to the prior art described above, damage caused by ion implantation is attempted to be reduced by interposing a thin oxide film 4, but the ion implantation damaged portion in the substrate 1 is fully recovered by subsequent heat treatment. do not. In particular, recent high-speed devices have shallow junction depths, making it difficult to apply sufficient heat treatment time and temperature to recover from implantation damage.

具体的に述べると、シリコン基板1中に不純物のイオン
注入を行うとSi単結晶の結晶格子にゆがみや乱れが生
じ、熱処理による結晶回復後も点欠陥や面欠陥が残シ易
い。こうした欠陥がトランジスタの能動領域に存在する
と、キャリアの流れを乱したシ阻害したシして雑音の発
生源になる。そこで、こうした欠陥を残留させないため
に600〜800℃の低温アニールを施した後、高温(
1100℃以上)の熱処理を行うなどの工夫がされてい
る。しかし、浅い接合を得るために高温熱処理が100
0℃、30分のように比較的温度も低くかつ短時間で処
理されるため、十分な結晶回復が行なわれないことが多
い。
Specifically, when impurity ions are implanted into the silicon substrate 1, the crystal lattice of the Si single crystal is distorted and disordered, and point defects and planar defects are likely to remain even after crystal recovery by heat treatment. When such defects exist in the active region of a transistor, they disrupt and inhibit the flow of carriers and become a source of noise. Therefore, in order to prevent these defects from remaining, low-temperature annealing at 600 to 800°C is performed, followed by high-temperature annealing (
Efforts have been made, such as heat treatment at a temperature of 1100°C or higher. However, in order to obtain a shallow bond, high temperature heat treatment is required.
Since the treatment is carried out at a relatively low temperature and for a short period of time, such as at 0° C. for 30 minutes, sufficient crystal recovery is often not achieved.

また、従来、半導体装置は例えば第3図(a)。Further, a conventional semiconductor device is shown in FIG. 3(a), for example.

(b)に示すように製造されている。まず、シリコン基
板1上に厚い酸化膜2を形成し、これに開孔部3を形成
した後、全面に多結晶シリコン層6を全面に薄く形成し
た。つづいて、前記多結晶シリコン層6に不純物をイオ
ン注入する(第3図(、)図示)。なお、このイオン注
入の際、多結晶シリコン層6の存在によシ前記基板1の
損傷を回避できる。次いで、熱処理によシ開孔部3の多
結晶シリコン層6中の不純物を基板1へ拡散して拡散層
5を形成し、半導体装置を製造した(第3図(b)図示
)。しかしながら、この方法によれば、パイポーラトラ
ンソスタのペースを形成する場合、その後のエミッタ形
成を多結晶シリコン層6中に行なわねばならず、エミッ
タ・ペース接合面の一部に多結晶シリコン層6が存在す
るため、多結晶シリコンの粒界が雑音の発生源となシ、
実際の素子には適用できない。
It is manufactured as shown in (b). First, a thick oxide film 2 was formed on a silicon substrate 1, an opening 3 was formed therein, and then a polycrystalline silicon layer 6 was formed thinly over the entire surface. Subsequently, impurity ions are implanted into the polycrystalline silicon layer 6 (as shown in FIG. 3(, )). Note that during this ion implantation, damage to the substrate 1 can be avoided due to the presence of the polycrystalline silicon layer 6. Next, impurities in the polycrystalline silicon layer 6 in the opening 3 were diffused into the substrate 1 by heat treatment to form a diffusion layer 5, and a semiconductor device was manufactured (as shown in FIG. 3(b)). However, according to this method, when forming the paste of the bipolar transoster, the subsequent emitter must be formed in the polycrystalline silicon layer 6, and a polycrystalline silicon layer is formed on a part of the emitter-paste junction surface. 6, the grain boundaries of polycrystalline silicon are a source of noise.
It cannot be applied to actual devices.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、半導体基板
へのイオン注入に伴う損傷を回避するとともに、低雑音
の高速半導体素子を得ることのできる半導体装置及びそ
の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device and a method for manufacturing the same, which can avoid damage caused by ion implantation into a semiconductor substrate and can obtain a low-noise, high-speed semiconductor element. shall be.

〔発明の概要〕[Summary of the invention]

本願第1の発明は、半導体基板と、この半導体基板上に
設けられた開孔部を有する絶R膜と、前記開孔部から露
出する半導体基板上に設けられ該基板と同じ結晶配向を
有する単結晶層とを具備することを特徴とする。
A first invention of the present application includes a semiconductor substrate, an absolute R film provided on the semiconductor substrate and having an opening, and an absolute R film provided on the semiconductor substrate exposed from the opening and having the same crystal orientation as the substrate. It is characterized by comprising a single crystal layer.

本願第2の発明は、半導体基板上に絶縁膜を、形成する
工程と、この絶縁膜を選択的に除去し開孔部を形成する
工程と、全面に不純物を含む非晶質半導体層を形成する
工程と、この非晶質半導体層を熱処理し開孔部で前記半
導体基板と接触する非晶質半導体層から前記基板と同じ
結晶配向を有する単結晶層を形成する工程とを具備する
ことを特徴とする。
The second invention of the present application includes a step of forming an insulating film on a semiconductor substrate, a step of selectively removing the insulating film to form an opening, and forming an amorphous semiconductor layer containing impurities on the entire surface. and a step of heat-treating the amorphous semiconductor layer to form a single crystal layer having the same crystal orientation as the substrate from the amorphous semiconductor layer that contacts the semiconductor substrate at the opening. Features.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図(a) s (b) t−参照する。まず、例え
ばN型の単結晶シリコン基板21上に厚さ約6000X
の厚い酸化膜22を形成した。つづいて、この厚い酸化
膜22を選択的に除去し開孔部23を形成した。次いで
、全面に厚さ3000Xの薄い非晶質シリコン層24を
、プラズマ−CVD法を用い300℃、 SiH4ガス
のプラズマ反応にょシ形成した。しかる後、前記薄い非
晶質シリコン層24中にボロンを加速電圧30KaV、
ドー、I:fkI X 1014cm 20条件でイオ
ン注入した(第1図(、)図示)。なお、非晶質シリコ
ン層24中への不純物のドープ量はSt中の固溶限界に
よって制限されておシ、固溶限界以上のドープは結晶化
過程において欠陥を発生させる原因となる。
Example 1 Refer to FIG. 1 (a) s (b) t. First, for example, on an N-type single crystal silicon substrate 21, a thickness of about 6000× is formed.
A thick oxide film 22 was formed. Subsequently, this thick oxide film 22 was selectively removed to form an opening 23. Next, a thin amorphous silicon layer 24 with a thickness of 3000× was formed on the entire surface by a plasma reaction of SiH4 gas at 300° C. using a plasma-CVD method. Thereafter, boron was introduced into the thin amorphous silicon layer 24 at an accelerating voltage of 30 KaV.
Ion implantation was performed under the following conditions: I:fkI x 1014 cm 20 (as shown in FIG. 1(,)). Note that the amount of impurity doped into the amorphous silicon layer 24 is limited by the solid solubility limit in St, and doping exceeding the solid solubility limit causes defects in the crystallization process.

更に、前記非晶質シリコン層24の固相エピタキシャル
成長(熱処理)を行った。この熱処理は、例えば温度6
00℃、不活性ガス雰囲気中で1時間行った。その結果
、開孔部23の前記単結晶シリコン基板2ノと非晶質シ
リコン層24の界面からは単結晶成長が生じて単結晶シ
リコン層25となり、厚い酸化膜22上の非晶質シリコ
ン層24は多結晶シリコン層26となシ、半導体装置が
製造された(第1図(b)図示)0しかして、実施例1
によれば、N型のシリコン基板21上に開孔部23を有
する厚い酸化膜22を介して非晶質シリコン層25を形
成し、更にざロンを所定の条件で低濃度にイオン注入し
た後、熱処理を施すため、開孔部23の前記基板21上
にのみ基板21と同じ結晶配向を有する単結晶シリコン
層25を形成できる。従って、以下に示す効果を有する
Furthermore, solid phase epitaxial growth (heat treatment) of the amorphous silicon layer 24 was performed. This heat treatment is carried out at a temperature of, for example, 6
The test was carried out at 00°C for 1 hour in an inert gas atmosphere. As a result, single crystal growth occurs from the interface between the single crystal silicon substrate 2 and the amorphous silicon layer 24 in the opening 23 to form the single crystal silicon layer 25, and the amorphous silicon layer on the thick oxide film 22 is formed. 24 is a polycrystalline silicon layer 26, and a semiconductor device is manufactured (as shown in FIG. 1(b)).
According to , an amorphous silicon layer 25 is formed on an N-type silicon substrate 21 through a thick oxide film 22 having an opening 23, and after ion implantation of Zarron at a low concentration under predetermined conditions. Since heat treatment is performed, a single crystal silicon layer 25 having the same crystal orientation as the substrate 21 can be formed only on the substrate 21 in the opening 23. Therefore, it has the following effects.

■ 非晶質シリコン層24を形成した後、ポロンのイオ
ン注入を行うため、従来のようにがロン注入による損傷
が基板21に残留することを回避できる。辷れは、非晶
質シリコン層24にポロンをイオン注入しても元来結晶
性のない非晶質シリコン層24中では欠陥の発生もなく
、非晶質シリコン層の結晶化過程において下地のシリコ
ン基板21と整合性のよい結晶に再配列され、注入損傷
などの欠陥が発生しないためである。
(2) Since poron ion implantation is performed after forming the amorphous silicon layer 24, it is possible to avoid damage remaining in the substrate 21 due to the poron implantation as in the conventional method. The sagging occurs because even if poron is implanted into the amorphous silicon layer 24, no defects occur in the amorphous silicon layer 24, which originally has no crystallinity. This is because the crystals are rearranged to have good consistency with the silicon substrate 21, and defects such as implantation damage do not occur.

■ 従来のように多結晶シリコン層を用いないため、結
晶粒界でのキャリアの乱れもなくなシ、低雑音の素子が
形成できる。
- Since a polycrystalline silicon layer is not used as in the conventional method, there is no disturbance of carriers at grain boundaries, and a low-noise device can be formed.

実施例1に係る半導体装置は、第1図(b)に示す如く
、N型の単結晶シリコン基板2ノ上にコンタクト部23
を有する厚い酸化膜22を設け、このコンタクト部23
から露出する基板21上に該基板21と同じ結晶配向を
有する単結晶シリコン層25を設けた構造となっている
。従って、前述した如く基板21中での欠陥の発生を防
止し、かつ低雑音の素子の形成が可能となる。
As shown in FIG. 1(b), the semiconductor device according to the first embodiment has a contact portion 23 on an N-type single crystal silicon substrate 2.
A thick oxide film 22 having a
It has a structure in which a single crystal silicon layer 25 having the same crystal orientation as the substrate 21 is provided on the substrate 21 exposed from the substrate 21. Therefore, as described above, it is possible to prevent defects from occurring in the substrate 21 and to form a low-noise element.

なお、実施例1ではポロンを低濃度で非晶質シリコン層
中へイオン注入した場合について述べたが、これに限ら
ず高濃度で非晶質シリコン層24中へイオン注入して基
板への拡散源として用いてもよい。また、不純物として
はぎロンに限らず、リン、ヒ素、アンチモンなどの原子
を用いてもよい。更に1上記低温で熱処理することによ
シ非晶質シリコン層を部分的に単結晶化したが、これに
限らない。即ち、非晶質シリコン層を形成後この上にS
i3N4膜を被覆し、上方カラレーデアニールを照射す
ることによシエビタキシャル成長をさせて単結晶化して
もよい。
In Example 1, a case was described in which poron was ion-implanted into the amorphous silicon layer at a low concentration, but the invention is not limited to this. Poron ions may be implanted into the amorphous silicon layer 24 at a high concentration and diffused into the substrate. May be used as a source. In addition, atoms such as phosphorus, arsenic, antimony, etc. may be used as impurities, not limited to silica. Furthermore, although the amorphous silicon layer was partially made into a single crystal by the heat treatment at the low temperature described in 1 above, the present invention is not limited thereto. That is, after forming an amorphous silicon layer, S
It is also possible to cover the i3N4 film and irradiate it with upper color redeannealing to cause sheer vitaxial growth to form a single crystal.

実施例2 NPNトランジスタに応用した例を第4図(、)〜(6
)を参照して説明する。
Example 2 An example of application to an NPN transistor is shown in Figures 4(,) to (6).
).

まず、P型の単結晶シリコン基板21の表面に高濃度(
N+W)の埋込み層31を形成した後、Nuのエビタキ
ャル層32を形成した。つづいて、常法によシ前記エピ
タキシャル層32にP型の不純物を適宜拡散しP型のア
イソレーション領域33を形成するとともに、N型のコ
レクタ取シ出し領域34を形成した(第4図(a)図示
)。
First, a high concentration (
After forming a buried layer 31 of (N+W), an evitacal layer 32 of Nu was formed. Subsequently, P-type impurities were appropriately diffused into the epitaxial layer 32 by a conventional method to form a P-type isolation region 33 and an N-type collector extraction region 34 (see FIG. 4). a) As shown).

次いで、実施例1と同様に、開孔部23を有した厚い酸
化膜22を形成した後、非晶質シリコン層24を形成し
た(第4図(b)図示)。しかる後、この非晶質シリコ
ン層24を適宜ノ4ターニングし、ポロンを加速電圧3
5 Kev1ドーズ量5X10  cm  の条件でイ
オン注入した(第4図(c)図示)。
Next, as in Example 1, after forming a thick oxide film 22 having openings 23, an amorphous silicon layer 24 was formed (as shown in FIG. 4(b)). After that, this amorphous silicon layer 24 is appropriately turned, and the poron is heated to an accelerating voltage of 3.
Ion implantation was performed under the condition of a 5 Kev1 dose of 5×10 cm (as shown in FIG. 4(c)).

次に、実施例1と同条件で非晶質シリコン層24を熱処
理してコンタクト部23の前記基板21上に単結晶シリ
コン層25を形成し、他の非晶質シリコン層24t−多
結晶シリコン層26とした。つづいて、前記単結晶シリ
コン層25を拡散源として1150C,50分の拡散を
行うことにより、比抵抗180Ωル、深さ2.5μmの
結晶欠陥のないP型のペース領域35を形成した(第4
図(d)図示)。次いで、全面に例えばcvnsto□
膜37を形成した後、前記ペース領域35上の一部に対
応するCVD 5in2膜37を選択的に除去した。更
に、全面にn型不純物を含んだ多結晶シリコン層3gt
−堆積し、拡散することによシ前記ペース領域35表面
にN型のエミッタ領域39を形成してNPN トランゾ
スタを製造した(第4図(、)図示)。なお、配線は従
来方法により所望のコンタクト領域を開孔し、電極形成
を行なえばよい。
Next, the amorphous silicon layer 24 is heat-treated under the same conditions as in Example 1 to form a single crystal silicon layer 25 on the substrate 21 of the contact portion 23, and another amorphous silicon layer 24t-polycrystalline silicon layer 25 is formed on the substrate 21 of the contact portion 23. It was set as layer 26. Subsequently, by performing diffusion at 1150 C for 50 minutes using the single crystal silicon layer 25 as a diffusion source, a P-type space region 35 with no crystal defects and a specific resistance of 180 Ω and a depth of 2.5 μm was formed. 4
Figure (d) (illustrated). Next, apply cvnsto□ to the entire surface, for example.
After forming the film 37, the CVD 5in2 film 37 corresponding to a portion of the space area 35 was selectively removed. Furthermore, a polycrystalline silicon layer 3gt containing n-type impurities on the entire surface
- An N-type emitter region 39 was formed on the surface of the space region 35 by deposition and diffusion to produce an NPN transistor (as shown in FIG. 4(a)). Note that the wiring can be formed by opening a hole in a desired contact area and forming an electrode using a conventional method.

しかして、実施例2によれば、表面に埋込み層31、エ
ピタキシャル層32などを形成したP型のシリコン基板
21上に開孔部23を有する厚い酸化MX22を介して
非晶質シリコン層24を形成、−’4ターニングし、更
に?ロンを所定の条件で高濃度にイオン注入した後、熱
処理を施すため、コンタクト部23の前記基板21上に
のみ基板2ノと同じ結晶配向を有する単結晶シリコン層
25を形成できる°。また、この単結晶シリコン層25
を拡散源として所定の条件下で拡散することKよシ、結
晶欠陥のないP型のベース領域34を形成できる。更に
1前述した方法rCよれば、結晶粒界でのキャリアの乱
れもなくなり、低雑音の素子が形成できる。
According to the second embodiment, an amorphous silicon layer 24 is formed on a P-type silicon substrate 21 on which a buried layer 31, an epitaxial layer 32, etc. are formed, through a thick oxidized MX 22 having an opening 23. Formation, -'4 turning and further? Since heat treatment is performed after ion implantation of ions at a high concentration under predetermined conditions, a single crystal silicon layer 25 having the same crystal orientation as that of the substrate 2 can be formed only on the substrate 21 of the contact portion 23. Moreover, this single crystal silicon layer 25
By using K as a diffusion source and diffusing under predetermined conditions, a P-type base region 34 without crystal defects can be formed. Furthermore, according to the method rC described above, there is no disturbance of carriers at grain boundaries, and a low-noise device can be formed.

事実、上記実施例2によるNPN トランジスタ(第4
図(e)図示)によれば、バーストノイズ発生率が従来
のシリコン基板中へのイオン注入法の約10%に対し、
1%以下となシ、大幅なノイズ発生率低減効果が認めら
れた。また、単結晶シリコン層25でのがロンプロファ
イルヲ測定すると、第5図に示す如〈従来の直接シリコ
ン基板中へのイオン注入法に比べよシステップ状の接合
を有し、I2L素子のベース領域に用いると、電界勾配
がよシ平坦にな)高速動作に効果的である。なお、第5
図において、0)は本発明によるがロンプロファイル曲
at−1(ロ)は従来法によるゴロンデロ7アイル曲線
を夫々示す。
In fact, the NPN transistor according to the second embodiment (fourth
According to Figure (e), the burst noise generation rate is approximately 10% in the conventional ion implantation method into a silicon substrate.
A significant noise generation rate reduction effect of 1% or less was observed. Furthermore, when the long profile of the single crystal silicon layer 25 is measured, as shown in FIG. When used in a wide area, the electric field gradient becomes much flatter), making it effective for high-speed operation. In addition, the fifth
In the figure, 0) shows the ron profile curve at-1 (b) according to the present invention, and the ron profile curve at-1 (b) shows the 7-isle curve according to the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、半導体基板表面の損
傷を回避するとともに、低雑音の高速半導体素子を得る
ことのできる半導体装置及びその製造方法を提供できる
As described in detail above, according to the present invention, it is possible to provide a semiconductor device and a method for manufacturing the same, which can avoid damage to the surface of a semiconductor substrate and can obtain a low-noise, high-speed semiconductor element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は本発明の実施例IK係る半
導体装置の製造方法を工程順に示す断面図、第2図(a
) # (b)は従来の半導体装置の製造方法を工程順
に示す断面図、第3図(a) # (b)は従来の他の
半導体装置の製造方法を工程順に示す断面図、第4図(
a)〜(、)は本発明の実施例2に係るNPN )ラン
ソスタの製造方法を工程順に示す断面図、第5図は従来
及び本発明による接合深さと不純物濃度の関係を示す特
性図である。 21・・・P型の単結晶シリコン基板、22・・・厚い
酸化膜、23・・・開孔部、24・・・非晶質シリコン
層、25・・・単結晶シリコン層、26.38・・・多
結晶シリコン層、31・・・継型の埋込み層、32・・
・N型のエピタキシャル層、33・・・P型のアイソレ
ーション領域、34・・・N型のコレクタ取シ出し領域
、35・・・P型のベース領域、36・・・CvDSI
O2膜、39・・・N型のエミッタ領域。 出願人代理人  弁理士 鈴 江 武 彦wE4 図
FIGS. 1(a) and 1(b) are cross-sectional views showing the manufacturing method of a semiconductor device according to Example IK of the present invention in the order of steps, and FIG.
) #(b) is a cross-sectional view showing a conventional method for manufacturing a semiconductor device in order of steps, FIG. 3(a) #(b) is a cross-sectional view showing another conventional method for manufacturing a semiconductor device in order of steps, FIG. (
a) to (,) are cross-sectional views showing the manufacturing method of the NPN Lansostar according to Example 2 of the present invention in the order of steps, and FIG. 5 is a characteristic diagram showing the relationship between the junction depth and the impurity concentration according to the conventional method and the present invention. . 21... P-type single crystal silicon substrate, 22... Thick oxide film, 23... Opening portion, 24... Amorphous silicon layer, 25... Single crystal silicon layer, 26.38 . . . Polycrystalline silicon layer, 31 . . . Embedded layer of joint type, 32 .
- N type epitaxial layer, 33... P type isolation region, 34... N type collector extraction region, 35... P type base region, 36... CvDSI
O2 film, 39...N type emitter region. Applicant's agent Patent attorney Takehiko Suzue wE4 Figure

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板と、この半導体基板上に設けられた開
孔部を有する絶縁膜と、前記開孔部から露出する半導体
基板上に設けられ該基板と同じ結晶配向を有する単結晶
層とを具備することを特徴とする半導体装置。
(1) A semiconductor substrate, an insulating film provided on the semiconductor substrate and having an opening, and a single crystal layer provided on the semiconductor substrate exposed from the opening and having the same crystal orientation as the substrate. A semiconductor device comprising:
(2)半導体基板上に絶縁膜を形成する工程と、この絶
縁膜を選択的に除去し開孔部を形成する工程と、全面に
不純物を含む非晶質半導体層を形成する工程と、この非
晶質半導体層を熱処理し開孔部で前記半導体基板と接触
する非晶質半導体層から前記基板と同じ結晶配向を有す
る単結晶層を形成する工程とを具備することを特徴とす
る半導体装置の製造方法。
(2) A step of forming an insulating film on a semiconductor substrate, a step of selectively removing this insulating film to form an opening, a step of forming an amorphous semiconductor layer containing impurities over the entire surface, and A semiconductor device comprising the step of heat treating an amorphous semiconductor layer to form a single crystal layer having the same crystal orientation as the substrate from the amorphous semiconductor layer that contacts the semiconductor substrate at an opening. manufacturing method.
(3)半導体基板としてシリコン基板を用い、かつ非晶
質半導体層として非晶質シリコン層を用いることを特徴
とする特許請求の範囲第2項記載の半導体装置の製造方
法。
(3) The method for manufacturing a semiconductor device according to claim 2, characterized in that a silicon substrate is used as the semiconductor substrate, and an amorphous silicon layer is used as the amorphous semiconductor layer.
JP11814085A 1985-05-31 1985-05-31 Semiconductor device and manufacture thereof Pending JPS61276368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11814085A JPS61276368A (en) 1985-05-31 1985-05-31 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11814085A JPS61276368A (en) 1985-05-31 1985-05-31 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61276368A true JPS61276368A (en) 1986-12-06

Family

ID=14729054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11814085A Pending JPS61276368A (en) 1985-05-31 1985-05-31 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61276368A (en)

Similar Documents

Publication Publication Date Title
JPS58154267A (en) Method of producing bipolar transistor
JPH0469814B2 (en)
JP3199452B2 (en) Method of manufacturing P buried layer for PNP device
JP2799304B2 (en) Method of forming contact conductive layer of semiconductor device and method of forming junction and contact conductive layer of semiconductor device
JPH0521448A (en) Manufacture of semiconductor device
JPS61276368A (en) Semiconductor device and manufacture thereof
JPS5878457A (en) Manufacture of semiconductor device
JP2797200B2 (en) Polycrystalline silicon electrode and method of manufacturing the same
JPH07142505A (en) Manufacturing for semiconductor device
JP2943280B2 (en) Method for manufacturing semiconductor device
JPH0350823A (en) Manufacture of semiconductor device
JPS60213019A (en) Manufacture of semiconductor device
JPH01108772A (en) Manufacture of bipolar transistor
JP3077638B2 (en) Method for manufacturing semiconductor device
JP2892436B2 (en) Method for manufacturing semiconductor device
JP3041886B2 (en) Method for manufacturing semiconductor device
JP3052428B2 (en) Method for manufacturing semiconductor device
JPS60137072A (en) Manufacture of junction type field effect transistor
JPS63144567A (en) Manufacture of semiconductor device
JPH05102173A (en) Manufacture of semiconductor substrate
JPH04137619A (en) Manufacture of semiconductor device
JPS617664A (en) Semiconductor device and manufacture thereof
JPS61136267A (en) Bipolar semiconductor device
JPH01144679A (en) Manufacture of semiconductor device
JPH01111372A (en) Manufacture of semiconductor device