JPS6127445B2 - - Google Patents

Info

Publication number
JPS6127445B2
JPS6127445B2 JP58071002A JP7100283A JPS6127445B2 JP S6127445 B2 JPS6127445 B2 JP S6127445B2 JP 58071002 A JP58071002 A JP 58071002A JP 7100283 A JP7100283 A JP 7100283A JP S6127445 B2 JPS6127445 B2 JP S6127445B2
Authority
JP
Japan
Prior art keywords
induction
tempering
tempered
heating
residual stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58071002A
Other languages
Japanese (ja)
Other versions
JPS59197517A (en
Inventor
Hirokazu Nakajima
Ikuo Sugiura
Masayuki Tsushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP58071002A priority Critical patent/JPS59197517A/en
Publication of JPS59197517A publication Critical patent/JPS59197517A/en
Publication of JPS6127445B2 publication Critical patent/JPS6127445B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 産業上の利用分野 この発明は、転がり軸受の内外輪の如き環状部
品の焼戻しに利用され、予め高周波誘導加熱によ
り焼入れされた後の環状部品を変態点以下の適当
な温度に再び高周波誘導加熱して焼戻しする高周
波焼戻し方法に関する。 ロ 従来技術 転がり軸受の内外輪の従来技術による高周波焼
戻しは、第1図に示ように玉軸受の内輪(または
外輪)の如き環状部品1の外径(または内径)を
高周波焼入れした後、該環状部品1の焼入れ層1
aのある外径(または内径)を加熱コイル2で再
び高周波誘導加熱て行われる。ところが、外径
(または内径)を高周波焼入れした環状部品1を
焼入れ層1aのある外径(または内径)から高周
波焼戻しすると、高周波焼入れによる圧縮残留応
力が逆に大きな引張残留応力となり、しばしば焼
入れ層1aに割れが生じることがある。尚、引張
残留応力が発生する理由は、環状部品1を焼入れ
層1aのある外径(または内径)から高周波焼戻
しする場合、高周波誘導加熱による温度勾配は外
径(または内径)が高くて内部に進むにしたがつ
て低いものとなり、このような温度勾配がある
と、ミクロ組織上焼入れマルテンサイトが焼戻し
マルテンサイトに変態することによる体積の収縮
が表面に近い側ほど大きい為、引張の残留応力が
発生するとになる。また、焼入れ層1aのある側
からの高周波焼戻しの場合、誘導加熱の為に硬度
ムラの発生等で硬度コントロールが難しいと共
に、寸法にバラツキが生じると云う問題がある。
そこで、このような問題を解決する為、周波数の
極力低い電源を使用し、かつ、供給電力を小さく
て加熱時間を長くする方法が考えられている。し
かし、この方法は、シヤフト等の単純な形状を有
する製品に対しては効果をあげることができる
が、玉軸受の内外輪の如く転走面が曲率をもつ複
雑な形状を有する製品に対しては硬度ムラの発生
等の解決は難しい。しかも、焼戻し処理に長時間
を要する為に高周波焼戻しの特長を生せないと共
に、焼戻し後の硬さを転がり軸受に要求される硬
さHRC58以上に保つにはかなり困難であるのが
現状であつて転がり軸受の内外輪の焼戻しには適
さない。そこで、転がり軸受の内外輪に於ては、
電気炉加熱による焼戻しがもつぱら実施されてい
るが、電気炉等の設備は場所をとるばかりでな
く、焼戻し処理に時間を要して高周波焼戻し比べ
エネルギーを浪費せざるを得なく製造コストを高
くする原因になつている。 ハ 発明の目的 この発明は、従来の高周波焼戻しの欠点を補う
為になされたもので、引張残留応力を発生させず
むしろ圧縮残留応力を増大させ、軸受の基本性能
である転勤疲労強度の向上に寄与する高周波焼戻
し方法を提供するものである。 ニ 発明の構成 この発明は、高周波焼入れ後、焼入れ層の反対
側から高周波誘導加熱して熱伝導により焼戻しを
行うことを要旨とするものである。 ホ 実施例 第2図はこの発明の高周波焼戻し方法を玉軸受
の内外輪に適用した具体的実施例を示すもので、
aは内輪、bは外輪の場合を夫々示す。図面に於
いて、3はこの発明の高周波焼戻し法で焼戻しせ
んとする玉軸受の内外輪の如き環状部品、3aは
環状部品3の外径(または内径)に予め高周波焼
入れにより施された焼入れ層、4は環状部品3の
焼入れ層3aの反対側の内径(または外径)に臨
んで設けた加熱コイルである。 そして、この発明では環状部品3の外径(また
は内径)を高周波焼入れ後、焼入れ層3aの反対
側の内径(または外径)を加熱コイル4で高周波
誘導加熱し、その後室温まで冷却させて焼戻しを
完了させた。 この発明は以上の如く環状部品3の外径(また
は内径)の焼入れ層3aの反対側から熱伝導を利
用して焼戻しするから、温度勾配は外径(または
内径)表面よりも内部の方が高くなり、焼戻しの
際の焼入れマルテンサイトが焼戻しマルテンサイ
トに変態することによる体積の収縮も表面に近い
側ほど小さい。この結果、表層には圧縮の残留応
力が発生するようになる。 第3図aは従来方法による高周波焼戻し試片の
残留応力分布を電気炉焼戻し試片と比較したもの
である。試片形状は外径50φ、副曲率25R、内径
約27φ(1/6テーパ)、巾12mmのリング試片
(以下リング試片と称す)で、鋼種は軸受鋼であ
るが通常の焼入れ処理後それぞれ外径から高周波
誘導加熱または全体を電気炉加熱して焼戻しを施
している。の第3図aからわかるように、従来方
法による高周波焼戻しでは、電気炉焼戻し試片に
比べて表層の残留応力は引張側に移行している。
このリング試片の転勤寿命試験結果を下記の表1
に示す。
B. Field of Industrial Application This invention is used to temper annular parts such as inner and outer rings of rolling bearings, and the annular parts, which have been previously hardened by high-frequency induction heating, are heated again by high-frequency induction to an appropriate temperature below the transformation point. The present invention relates to an induction tempering method for tempering. B. Prior art In the prior art induction tempering of the inner and outer rings of a rolling bearing, as shown in FIG. Hardened layer 1 of annular part 1
A certain outer diameter (or inner diameter) a is again subjected to high-frequency induction heating using the heating coil 2. However, when an annular part 1 whose outer diameter (or inner diameter) is induction hardened is induction tempered from the outer diameter (or inner diameter) where the hardened layer 1a is located, the compressive residual stress due to induction hardening becomes large tensile residual stress, and the hardened layer often Cracks may occur in 1a. The reason for the generation of tensile residual stress is that when the annular component 1 is induction tempered from the outer diameter (or inner diameter) where the hardened layer 1a is located, the temperature gradient due to high frequency induction heating is higher at the outer diameter (or inner diameter) and If there is such a temperature gradient, the volume shrinkage due to the transformation of hardened martensite to tempered martensite in the microstructure is larger closer to the surface, so the tensile residual stress increases. When it occurs, it becomes. Further, in the case of induction tempering from the side with the hardened layer 1a, there are problems in that it is difficult to control the hardness due to occurrence of hardness unevenness due to induction heating, and variations in dimensions occur.
Therefore, in order to solve such problems, methods are being considered that use a power source with a frequency as low as possible, reduce the supplied power, and lengthen the heating time. However, although this method is effective for products with simple shapes such as shafts, it is effective for products with complex shapes such as the inner and outer rings of ball bearings whose raceway surfaces have curvature. It is difficult to solve problems such as uneven hardness. Moreover, because the tempering process takes a long time, the advantages of induction tempering cannot be exploited, and it is currently quite difficult to maintain the hardness after tempering at HRC58 or higher, which is required for rolling bearings. It is not suitable for tempering the inner and outer rings of rolling bearings. Therefore, in the inner and outer rings of rolling bearings,
Tempering by heating in an electric furnace is often carried out, but equipment such as electric furnaces not only takes up space, but also requires time for the tempering process, which wastes energy and increases manufacturing costs compared to induction tempering. It has become the cause of C. Purpose of the Invention This invention was made to compensate for the drawbacks of conventional induction tempering, which does not generate tensile residual stress but rather increases compressive residual stress, thereby improving rolling fatigue strength, which is the basic performance of bearings. The present invention provides an induction tempering method that contributes to the present invention. D. Structure of the Invention The gist of the present invention is to perform high-frequency induction heating from the opposite side of the hardened layer to perform tempering by heat conduction after induction hardening. E. Example Fig. 2 shows a specific example in which the induction tempering method of the present invention is applied to the inner and outer rings of a ball bearing.
a indicates the inner ring, and b indicates the outer ring. In the drawings, 3 denotes an annular part such as the inner and outer rings of a ball bearing to be tempered by the induction tempering method of the present invention, and 3a denotes a hardened layer previously applied to the outer diameter (or inner diameter) of the annular part 3 by induction hardening. , 4 is a heating coil provided facing the inner diameter (or outer diameter) of the annular component 3 on the side opposite to the hardened layer 3a. In this invention, after the outer diameter (or inner diameter) of the annular component 3 is induction hardened, the inner diameter (or outer diameter) on the opposite side of the hardened layer 3a is heated by high frequency induction using a heating coil 4, and then cooled to room temperature and tempered. completed. As described above, this invention uses heat conduction to temper the annular part 3 from the opposite side of the hardened layer 3a on the outer diameter (or inner diameter), so the temperature gradient is greater on the inside than on the outer diameter (or inner diameter) surface. The closer to the surface, the smaller the volume shrinkage due to the transformation of hardened martensite into tempered martensite during tempering. As a result, compressive residual stress is generated in the surface layer. FIG. 3a shows a comparison of the residual stress distribution of a specimen tempered by induction tempering according to the conventional method with that of a specimen tempered by electric furnace. The specimen shape is a ring specimen (hereinafter referred to as a ring specimen) with an outer diameter of 50φ, a minor curvature of 25R, an inner diameter of approximately 27φ (1/6 taper), and a width of 12mm.The steel type is bearing steel, but after normal quenching. Each piece is tempered by high-frequency induction heating from the outer diameter or by heating the entire piece in an electric furnace. As can be seen from FIG. 3a, in the conventional induction tempering method, the residual stress in the surface layer shifts to the tensile side compared to the electric furnace tempered specimen.
The transfer life test results for this ring specimen are shown in Table 1 below.
Shown below.

【表】 表1によりよれば電気炉焼戻し品に比べて従来
方法による高周波焼戻し試片の転勤寿命は非常に
短く、しかも転走表面の亀裂から割れに至つてい
る。以上のように従来方法による高周波焼戻しの
悪影響はずぶ焼入れ材でなく高周波焼入れ材の場
合にも当然予想される。従つて、従来方法の高周
波焼戻しでは、周波数の極力低い電源を用いる以
外に、供給電力を小さくしての長時間加熱とか断
続加熱とかにより製品を全体加熱する方法が採ら
れている。 次に、試片形状直径12mm、長さ22mmの円筒転勤
疲労試片(以下12φ円筒試片と称す)に従来方法
を使用し、長時間加熱(5秒以上)により全体加
熱を試みた場合の高周波焼戻し試片の転勤寿命試
験結果を下記の表2に示しているが、この結果よ
り全体加熱を利用する場合は高周波焼戻し品と電
気炉焼戻し品とで転勤寿命に差はないと云える。
[Table] According to Table 1, the rolling life of the induction-tempered specimens prepared by the conventional method is much shorter than that of the electric furnace tempered specimens, and cracks occur on the rolling surface. As described above, the adverse effects of induction tempering by conventional methods can naturally be expected not only for through-hardened materials but also for induction-hardened materials. Therefore, in the conventional induction tempering method, in addition to using a power source with a frequency as low as possible, a method is adopted in which the entire product is heated by long-term heating or intermittent heating with a low power supply. Next, we used the conventional method on a cylindrical transfer fatigue specimen with a diameter of 12 mm and a length of 22 mm (hereinafter referred to as a 12φ cylindrical specimen), and attempted to heat the entire body for a long time (5 seconds or more). The results of the rolling life test of the induction tempered specimens are shown in Table 2 below, and from these results it can be said that there is no difference in rolling life between induction tempered products and electric furnace tempered products when overall heating is used.

【表】 第3図bは表2に示した試片表層の残留応力測
定結果の1例であるが、全体加熱を利用すれば高
周波焼戻しでも残留圧縮応力を残すことができ
る。しかしながら、高周波加熱を長時間にわたつ
て行い製品全体を加熱する高周波焼戻しは、上記
の12φ円筒試片の如き単純形状の小試片の場合に
は5秒程度の加熱時間で済むが、上記リング状試
片とか後述の6206(深溝玉軸受)外輪の如くより
大きな製品に対してはより長い時間を必要とし短
時間加熱を最大の武器とする高周波加熱の利点を
全く殺してしまう結果となる。これに対して、こ
の発明による高周波焼戻し方法は、例えば上記リ
ング状試片及び下記6206外輪に対して1秒以内の
加熱時間で充分である。 下記の表3は6206外輪にこの発明による高周波
焼戻しを施した場合の軸受寿命試験結果である
が、高周波加熱時間は0.8〜1.0秒であり、高周波
加熱の利点は充分に活かされている。
[Table] Figure 3b shows an example of the measurement results of residual stress on the surface layer of the specimen shown in Table 2, and residual compressive stress can be left even during induction tempering if the entire specimen is heated. However, induction tempering, which heats the entire product by applying high-frequency heating over a long period of time, only takes about 5 seconds to heat a small specimen with a simple shape, such as the 12φ cylindrical specimen mentioned above, but For larger products such as 6206 (deep groove ball bearing) outer rings, which will be described later, a longer time is required, which completely negates the advantage of high-frequency heating, which has short-term heating as its greatest weapon. On the other hand, in the induction tempering method according to the present invention, heating time of 1 second or less is sufficient for, for example, the above-mentioned ring-shaped specimen and the following 6206 outer ring. Table 3 below shows the bearing life test results when the 6206 outer ring was subjected to induction tempering according to the present invention.The high frequency heating time was 0.8 to 1.0 seconds, and the advantages of high frequency heating were fully utilized.

【表】 表3からわかるように電気炉焼戻し品に比較し
てこの発明の高周波焼戻し品の転勤寿命は2倍の
長寿命となつている。寿命向上の原因としては第
3図cに示す如くこの発明の高周波焼戻し品の残
留応力が電気炉焼戻し品に比べ圧縮側に移行して
いること(圧縮残留応力の増大)及び短時間焼戻
しによる硬度低下の減少等が考えられる。 ヘ 発明の効果 この発明は、高周波焼入れ後、焼入れ層の反対
側から高周波誘導加熱して熱伝導により焼戻しを
行うようにするもので、引張残留応力を発生させ
ずむしろ圧縮残留応力を増大させて軸受の基本性
能である転勤疲労強度の向上に寄与すると共に、
焼入れ層の均一加熱に適している為に玉軸受の内
外輪の如く転走面が曲率をもつ複雑な形状を有す
る製品に対しても硬度ムラの発生等をなくすこと
ができ、これにより寸法のバラツキを小さくかつ
硬度コントロールを容易に行える。
[Table] As can be seen from Table 3, the transfer life of the induction tempered product of the present invention is twice as long as that of the electric furnace tempered product. As shown in Figure 3c, the reasons for the improved lifespan are that the residual stress of the induction tempered product of this invention shifts to the compression side compared to the electric furnace tempered product (increase in compressive residual stress) and the hardness due to short-time tempering. This may be due to a decrease in the rate of decline. F. Effects of the Invention In this invention, after induction hardening, high-frequency induction heating is performed from the opposite side of the hardened layer to perform tempering by thermal conduction, which does not generate tensile residual stress but rather increases compressive residual stress. In addition to contributing to improving the rolling fatigue strength, which is the basic performance of bearings,
Since it is suitable for uniform heating of the hardened layer, it is possible to eliminate uneven hardness even for products with complex shapes such as inner and outer rings of ball bearings with rolling surfaces with curvature. Hardness can be easily controlled with small variations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高周波焼戻し方法を示す概略図
で、aは内輪、bは外輪の場合を夫々示す。第2
図はこの発明に係る高周波焼戻し方法を示す概略
図で、aは内輪、bは外輪の場合を夫々示す。第
3図は炉内焼戻し品と高周波焼戻し品の残留応力
分布比較を示すグラフである。 3…環状部品、3a…焼入れ層、4…加熱コイ
ル。
FIG. 1 is a schematic diagram showing a conventional induction tempering method, where a shows the case of the inner ring and b shows the case of the outer ring. Second
The figure is a schematic view showing the induction tempering method according to the present invention, where a shows the case of the inner ring and b shows the case of the outer ring. FIG. 3 is a graph showing a comparison of residual stress distributions between furnace tempered products and induction tempered products. 3...Annular part, 3a...Hardened layer, 4...Heating coil.

Claims (1)

【特許請求の範囲】[Claims] 1 転がり軸道面を有する環状工作物に高周波焼
戻しを施す方法であつて、予め高周波焼入れした
焼入れ層の反対側から高周波誘導加熱して熱伝導
により焼戻しを行うことを特徴とする高周波焼戻
し方法。
1. A method for induction tempering an annular workpiece having a rolling axial surface, which is characterized in that the tempering is performed by high-frequency induction heating from the opposite side of a quenched layer that has been previously induction-hardened by heat conduction.
JP58071002A 1983-04-21 1983-04-21 High frequency induction tempering method Granted JPS59197517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58071002A JPS59197517A (en) 1983-04-21 1983-04-21 High frequency induction tempering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071002A JPS59197517A (en) 1983-04-21 1983-04-21 High frequency induction tempering method

Publications (2)

Publication Number Publication Date
JPS59197517A JPS59197517A (en) 1984-11-09
JPS6127445B2 true JPS6127445B2 (en) 1986-06-25

Family

ID=13447855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071002A Granted JPS59197517A (en) 1983-04-21 1983-04-21 High frequency induction tempering method

Country Status (1)

Country Link
JP (1) JPS59197517A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207216A (en) * 1999-11-18 2001-07-31 Dai Ichi High Frequency Co Ltd Heat treatment method and device for metallic cylindrical body
JP2016089183A (en) * 2014-10-29 2016-05-23 高周波熱錬株式会社 Heat treatment method for workpiece
JP2020056058A (en) * 2018-09-28 2020-04-09 デルタ工業株式会社 Heat treatment method

Also Published As

Publication number Publication date
JPS59197517A (en) 1984-11-09

Similar Documents

Publication Publication Date Title
CN102888610A (en) Thermal treatment method for internal spline gear with small modulus
WO2013099821A1 (en) Spring production method and spring
JP3572618B2 (en) Method and apparatus for correcting tempering of rolling parts
CN106319535B (en) Heat treatment method for gear shaft
CN111455147A (en) Heat treatment method of Cronidur 30 stainless steel part
JP2009203498A (en) High frequency-induction heating method, heating apparatus and bearing
CN106609322A (en) Bearing ring and heat treatment method thereof
CN108315531A (en) A kind of deep layer high rigidity composite surface quenching strengthening method
US2604419A (en) Method of heat-treating surface hardened articles
JPS6127445B2 (en)
JP2021110032A (en) Production method of bearing ring of rolling bearing
CN104032115A (en) Thermal treatment method for reducing secondary gear ring nitrogenized deformation
JP2003183735A5 (en)
US2818359A (en) Method of making flanged cylinder liners
US20170314117A1 (en) Rolling-contact shaft member
JPS5852428A (en) Heat treatment for improving stress of shaft
JPS58188531A (en) Manufacture of hollow stabilizer
JPS60167724A (en) Method of manufacturing outer cylinder of equal-speed joint
JP6398869B2 (en) Press-in method
JP2005133212A (en) Heat treatment system
JPH09310123A (en) Manufacture of low-cost gear
JP2019045441A (en) Method for determining cooling rate of steel pipe and manufacturing method of steel pipe using the same
JP2005133215A (en) Heat treatment system
US2541115A (en) Hardened metallic structure
JPS63118079A (en) Production of crankshaft