JPS5852428A - Heat treatment for improving stress of shaft - Google Patents

Heat treatment for improving stress of shaft

Info

Publication number
JPS5852428A
JPS5852428A JP14785581A JP14785581A JPS5852428A JP S5852428 A JPS5852428 A JP S5852428A JP 14785581 A JP14785581 A JP 14785581A JP 14785581 A JP14785581 A JP 14785581A JP S5852428 A JPS5852428 A JP S5852428A
Authority
JP
Japan
Prior art keywords
shaft
temp
heat treatment
heating
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14785581A
Other languages
Japanese (ja)
Inventor
Kunio Enomoto
榎本 邦夫
Tasuku Shimizu
翼 清水
Hiromitsu Koike
小池 皓允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14785581A priority Critical patent/JPS5852428A/en
Publication of JPS5852428A publication Critical patent/JPS5852428A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering

Abstract

PURPOSE:To improve the stresses of a steel shaft through generation of residual compressive stresses on the surface of the shaft by heating the shaft in a temp. range in which the metallic structure thereof does not change then cooling the surface of the shaft quickly. CONSTITUTION:A steel shaft 1 is heated by a high frequency heating source connected to a heating coil 2 provided on the outside circumferential part in the required part of said shaft 1 and a conductor 3 via said coil. The heating temp. is controlled by using a temp. sensor 5 provided on the surface of the shaft 1 and is heated in a temp. range in which the metallic structure of the shaft 1 does not change, that is, to a suitable temp. lower than the hardening temp., in such a way that the shaft is soaked down to certain depth from the surface layer. Thereafter, a cooling element 6 is moved to the heated part and a coolant 7 is blown through a pump 10, a pipe 9 and a valve 8, whereby said part is cooled quickly. Then, the stresses of the shaft 1 are improved without oxidation, deformation, change in metallic structure of the shaft 1. The above- mentioned heat treatment method for improving stresses is particularly suited for treatments for the purpose of preventing corrosion and damage owing to the residual stresses in the sealing parts of pump shafts.

Description

【発明の詳細な説明】 本発明は軸の応力改善熱処理に係シ、特に原子カプラン
トのポンプ軸等に使用するのに好適な軸の応力改善熱処
理法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to stress improving heat treatment of shafts, and more particularly to a stress improving heat treatment method of shafts suitable for use in pump shafts of atomic couplants and the like.

応力除去の目的で従来から行われている熱処理としては
溶接構造物に適用される応力焼鈍がある。
Heat treatment conventionally performed for the purpose of stress relief includes stress annealing applied to welded structures.

この熱処理は650Cに部材板厚当り1〜2時間加熱後
徐冷するものである。応力焼鈍の欠点は部材表面が酸化
すること、変形が生ずること、処理に長時間を要するこ
となどである。
This heat treatment involves heating to 650C for 1 to 2 hours per thickness of the member, followed by slow cooling. Disadvantages of stress annealing include oxidation of the surface of the component, deformation, and long processing times.

表面硬化の目的で行われる熱処理として炭素鋼。Carbon steel as a heat treatment performed for the purpose of surface hardening.

低合金鋼の機械部品に対して表面硬化焼入れ1例えば浸
炭焼入れ、高周波焼入れがある。これらの表面硬化焼入
れによって表面に圧縮残留応力が発生することが1、応
力改善熱処理として用いることも可能と考えられる。し
かし、本熱処理では加熱温度が800C程度と応力除去
焼鈍よシもさらに高温になるため酸化、変形が一層大き
くなる。
Surface hardening 1, such as carburizing and induction hardening, is available for machine parts made of low alloy steel. Since compressive residual stress is generated on the surface by these surface hardening and quenching, it is thought that it can be used as a stress improving heat treatment. However, in this heat treatment, the heating temperature is about 800 C, which is even higher than stress relief annealing, so oxidation and deformation become even greater.

また、金属組織変化を必ず伴い、これは応力除去の目的
のみからいえば欠点となる。
In addition, changes in metallographic structure are inevitable, which is a drawback from the perspective of stress relief only.

特にポンプ軸の軸封部では、ポンプ内の流体が腐食性を
有する場合、加工表面の残留応力が腐食損傷を促進する
おそれがある。したがって軸封部における腐食損傷を防
止するには加工による引張残留応力を軽減するか、積極
的に加工表面に圧縮残留応力を付与することが有効とな
る。
Particularly in the shaft seal portion of the pump shaft, if the fluid within the pump is corrosive, residual stress on the machined surface may accelerate corrosion damage. Therefore, in order to prevent corrosion damage in the shaft seal, it is effective to reduce the tensile residual stress caused by machining or to actively apply compressive residual stress to the machined surface.

しかし、ポンプ軸0軸封部に対しても、上記した応力焼
鈍や表面硬化焼入れ等による応力改善処理法を適用する
と、酸化、変形、金属組織変化等が生じ、軸封部として
の機能を果し得なくなる。
However, if the stress improvement treatment method such as stress annealing or surface hardening described above is applied to the 0 shaft sealing part of the pump shaft, oxidation, deformation, changes in metal structure, etc. will occur, and the function as a shaft sealing part will not be fulfilled. It becomes impossible.

本発明のけ的は、酸化、変形、金属組織変化等を伴うこ
となく、軸表面に圧縮残留応力を付与することができる
軸の応力改善熱処理法を提供することにある。
An object of the present invention is to provide a stress-improving heat treatment method for a shaft that can impart compressive residual stress to the surface of the shaft without causing oxidation, deformation, changes in metallographic structure, or the like.

本発明は、鋼製軸をその金属組織が変化しない温度範囲
、すなわち焼入温度以下の適当な温度に加熱し、しかる
後に軸表面を急冷することによって、軸表面を引張降伏
させ、との引張塑性変形が軸心部の冷却収縮によって圧
縮され、完全冷却時には軸表面に圧縮残留応力が発生す
るようにしたものである。
The present invention involves heating a steel shaft to a temperature range at which its metallographic structure does not change, that is, an appropriate temperature below the quenching temperature, and then rapidly cooling the shaft surface to bring the shaft surface into tensile yield. Plastic deformation is compressed by cooling contraction of the shaft center, and compressive residual stress is generated on the shaft surface when completely cooled.

以下、本発明を実施例に基づいて更に詳細に説明する。Hereinafter, the present invention will be explained in more detail based on examples.

第1図囚および第1図■は本発明の応力改善熱処理法に
おいて、圧縮残留応力が軸表面に発生する原理を模式的
に示したものである。
Figures 1-3 and 1-2 schematically illustrate the principle by which compressive residual stress is generated on the shaft surface in the stress-improving heat treatment method of the present invention.

第1図(ロ)は、まず軸を電気炉、火炎等の適当な手段
によって焼入温度以下の温度、例えば300〜600C
の温度で均熱後、表面を急冷した場合の表面温度と心部
温度、表面と6部の温度差の変化を示し、第1図■はこ
のときの各部の応力ひずみ曲線を示す。第1図(4)に
おいて、A点から表面を急冷すると表面はA→B、→C
1と温度変化し、6部はA→B2→C2と温度変化する
。内外の温度差は破線の如く変化しbB2〜B1で最大
温“度差Δ’I” maxを示す。このときの応力ひず
み挙動は第1図(至)の如くで、表面では引張ひずみが
発生する。引張ひすみはΔTが最大Δ’[”m3’Xに
なったとき最大となシ、ΔTmaxが200〜3000
以上で引張降伏を生じ、B1点に達し引張塑性ひずみε
B1−eyが生ずる。さらに温度が下ると6部の収縮の
影響で表面の引張ひすみは低下する。完全に冷却し01
点に達すると表面で生じた引張塑性ひずみgB、−ey
が圧縮されて、圧縮残留応力が発生する。6部では逆に
引張残留応力が発生する。
In Figure 1 (b), the shaft is first heated at a temperature below the quenching temperature, e.g. 300 to 600C, using an appropriate means such as an electric furnace or flame.
The changes in surface temperature, core temperature, and temperature difference between the surface and the 6th part are shown when the surface is rapidly cooled after soaking at a temperature of . In Figure 1 (4), when the surface is rapidly cooled from point A, the surface changes from A to B and then to C.
1, and the temperature of part 6 changes from A to B2 to C2. The temperature difference between inside and outside changes as shown by the broken line, and shows the maximum temperature "degree difference Δ'I" max between bB2 and B1. The stress-strain behavior at this time is as shown in FIG. 1 (to), and tensile strain occurs on the surface. The tensile strain is maximum when ΔT reaches the maximum Δ'["m3'X, and ΔTmax is 200 to 3000.
At this point, tensile yield occurs and the tensile plastic strain ε reaches point B1.
B1-ey is generated. When the temperature further decreases, the tensile strain on the surface decreases due to the shrinkage of 6 parts. Cool completely 01
When the point is reached, the tensile plastic strain gB, -ey generated on the surface
is compressed and compressive residual stress occurs. On the contrary, tensile residual stress occurs in the 6th part.

一般に部材に作用する負荷応力は部材の表面が高く、疲
労、応力腐食、腐食疲労等による損傷や破壊は表面で生
ずるので、表面に圧縮残留応力を付与することは、部材
表面の損傷や破壊を防止するのに極めて有効である。
In general, the load stress acting on a member is high on the surface of the member, and damage and destruction due to fatigue, stress corrosion, corrosion fatigue, etc. occur on the surface, so applying compressive residual stress to the surface prevents damage and destruction on the surface of the member. It is extremely effective in preventing.

また通常の焼入れではAC,変態点以上の高温から急冷
し、一方、通常の応力焼鈍では650C程度に加熱保持
後、徐冷するものであるので、本発明の応力改善熱処理
法とは異なる。
Further, in normal quenching, the material is rapidly cooled from a high temperature above the AC transformation point, whereas in normal stress annealing, the material is heated and held at about 650C and then slowly cooled, which is different from the stress improvement heat treatment method of the present invention.

本発明において、通常の焼入れや応力焼鈍よりも低温で
実施されるので表面の酸化や1寸法形状の変化が少ない
。また通常の応力焼鈍は高温に上げることにより材料の
降伏点が下がシ引張残留応力及び圧縮残留応力が緩和す
ることを利用している。すなわち、応力緩和作用のみに
依存しているから圧縮残留応力を積極的に付与すること
まではできない。
In the present invention, since it is carried out at a lower temperature than normal hardening or stress annealing, oxidation of the surface and change in one dimension shape are small. Ordinary stress annealing utilizes the fact that increasing the temperature lowers the material's yield point and relaxes tensile and compressive residual stresses. That is, since it relies only on stress relaxation, it is not possible to actively apply compressive residual stress.

第2図は高周波誘導加熱装置を用いて軸の応力改善熱処
理を行う実施例を示す。第3図は軸の一例を示し、平滑
な軸面31とともに軸封部を形成する段付部32を有す
る。
FIG. 2 shows an embodiment in which stress improvement heat treatment of the shaft is performed using a high-frequency induction heating device. FIG. 3 shows an example of a shaft, which has a stepped portion 32 that forms a shaft seal along with a smooth shaft surface 31.

本実施例において、特に強度的見地から軸封部に圧縮残
留応力を付与する方法について説明する。
In this embodiment, a method for applying compressive residual stress to the shaft seal part will be explained particularly from the viewpoint of strength.

第2図において、図面上省略している軸lの段付部の外
周部に加熱コイル2を設け、加熱コイル2は導体3を介
して高周波加熱源4に接続されている。軸表面には温度
センサ5が取付けてアシ。
In FIG. 2, a heating coil 2 is provided on the outer periphery of the stepped portion of the axis l, which is omitted in the drawing, and the heating coil 2 is connected to a high frequency heating source 4 via a conductor 3. A temperature sensor 5 is attached to the shaft surface.

加熱温度制御に用いる。かかる構成で軸1の段付部を加
熱する。この際、軸1の表面層からある深さの範囲がな
るべく均熱されるようにすることが望ましい。例えば、
加熱パワを低出力にして加熱する、あるいは、連続加熱
せずに断続的に加熱する方法をとるとよい。このように
して加熱すると高周波加熱といえども軸内の温度分布は
比較的均一となシ第4図■のようになる。この状態から
Used for heating temperature control. With this configuration, the stepped portion of the shaft 1 is heated. At this time, it is desirable that a certain depth range from the surface layer of the shaft 1 be uniformly heated as much as possible. for example,
It is preferable to heat with a low heating power, or to heat intermittently instead of continuously. When heated in this manner, the temperature distribution within the shaft is relatively uniform even though it is high frequency heating, as shown in Figure 4 (2). From this state.

第2図の冷却子6を該加熱部に移動させポンプ8゜管9
およびパルプ10を介して吹込まれる冷却剤7で急速冷
却する。冷却開始直後は第4図■のように表面で引張降
伏を生じ表面直下で圧縮応力を生ずる。さらに冷却して
完全に冷却すると第4図■のように表面で圧縮残留応力
、表面直下で引張残留応力となる。表面層に注目すると
温度、ひずみ、応力の挙動は第1図で説明したと同じ経
過を辿ることになる。
Move the cooler 6 shown in Fig. 2 to the heating section and pump 8° tube 9.
Then, the pulp 10 is rapidly cooled with a coolant 7 blown through the pulp 10. Immediately after the start of cooling, tensile yield occurs at the surface and compressive stress occurs just below the surface, as shown in Figure 4 (2). When it is further cooled and completely cooled, it becomes compressive residual stress at the surface and tensile residual stress just below the surface, as shown in Figure 4 (2). Focusing on the surface layer, the behavior of temperature, strain, and stress follows the same course as explained in FIG. 1.

第5図は本発明の他の実施例を示し、軸1の加熱方法と
して直接通電法を適用したものである。
FIG. 5 shows another embodiment of the present invention, in which a direct energization method is applied as the heating method for the shaft 1.

第5図において、軸1の段付部の周囲に設置された電極
11Aおよび電極11Bに加熱源12から通電し、温度
センサ5によって加熱制御を行い、段付部が所定の温度
に到達後、第2図の場合同様冷却剤7で急速冷却する。
In FIG. 5, electricity is supplied from the heating source 12 to the electrodes 11A and 11B installed around the stepped portion of the shaft 1, heating is controlled by the temperature sensor 5, and after the stepped portion reaches a predetermined temperature, As in the case of FIG. 2, rapid cooling is performed using the coolant 7.

本実施例では高周波加熱に比して均一な加熱ができる。In this embodiment, uniform heating can be achieved compared to high frequency heating.

なお、第2図および第5図の実施例では、加熱処理範囲
をコイル幅および電極間隔によって任意に調整できるの
で、軸封部を形成する段付部、その他の形状不連続部等
の所望の範囲のみを処理できる利点がある。また加熱温
度が低く、かつ処理時間が数分程度と短いため、軸表面
の酸化が一層軽微となり1段付部の変形、金属組織の変
化を生じないので、特に軸封部に有効である。
In the embodiments shown in FIGS. 2 and 5, the heat treatment range can be arbitrarily adjusted by changing the coil width and the electrode spacing, so that desired shapes such as stepped portions forming shaft seals and other discontinuous portions can be formed. It has the advantage of being able to process only a range. In addition, since the heating temperature is low and the processing time is short, about several minutes, oxidation of the shaft surface is even more slight, and deformation of the stepped portion and change in the metal structure do not occur, so it is particularly effective for shaft seals.

以上のように本発明によれば、軸表面の硬化。As described above, according to the present invention, the shaft surface is hardened.

組織変化等を招くことなく、加熱および冷却時の軸表面
および内部の熱ひずみを有効に利用して、軸表面に圧縮
残留応力を付与することができる。
Compressive residual stress can be applied to the shaft surface by effectively utilizing the thermal strain on the shaft surface and inside during heating and cooling without causing any structural changes.

また本発明は焼入硬化させるものでないため、靭性低下
を招くことがない。
Furthermore, since the present invention does not involve quench hardening, there is no reduction in toughness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を模式的に示すもので、第1図(
4)は温度〜時間線図、第1図(至)は応力〜ひすみ線
図、第2図は本発明の一例を示す説明図、第3図は軸の
一般形状を示す説明図、第4図は第2図に示す実施例に
おける軸断面の温度分布および応力分布を示す説明図、
第5図は本発明の他の例を示す説明図である。 1・・・軸、2・・・加熱コイル、5・・・温度センサ
、6・・・蔓 1 図 吟肉 (B) 第3 図 第 4− 図 第 5図
Figure 1 schematically shows the principle of the present invention.
4) is a temperature-time diagram, FIG. 1 (to) is a stress-strain diagram, FIG. 2 is an explanatory diagram showing an example of the present invention, FIG. FIG. 4 is an explanatory diagram showing the temperature distribution and stress distribution of the axial cross section in the embodiment shown in FIG.
FIG. 5 is an explanatory diagram showing another example of the present invention. 1...Shaft, 2...Heating coil, 5...Temperature sensor, 6...Tree 1. Fig. 3 (B) Fig. 3 Fig. 4- Fig. 5

Claims (1)

【特許請求の範囲】 1、鋼製軸をその金属組織が変化しない温度範囲におい
て加熱し、しかる後に軸表面を急速冷却すことを特徴と
する軸の応力改善熱処理法。 2、鋼製軸がポンプ軸である特許請求の範囲第1項記載
の軸の応力改善熱処理法。 3、ポンプ軸の軸封部を特徴とする特許請求の範囲第2
項記載の軸の応力改善熱処理法。 4、軸の周方向には全周に、かつ軸方向には局部的に加
熱する加熱手段によって熱処理する特許請求の範囲第1
項乃至第3項のいずれかに記載の軸の応力改善熱処理法
[Claims] 1. A stress improvement heat treatment method for a shaft, which is characterized by heating a steel shaft in a temperature range in which its metallographic structure does not change, and then rapidly cooling the shaft surface. 2. The stress improving heat treatment method for a shaft according to claim 1, wherein the steel shaft is a pump shaft. 3. Claim 2 characterized by a shaft sealing portion of the pump shaft
Shaft stress improvement heat treatment method described in section. 4. Claim 1, in which heat treatment is performed by a heating means that heats the entire circumference of the shaft in the circumferential direction and locally in the axial direction.
4. The shaft stress improvement heat treatment method according to any one of items 1 to 3.
JP14785581A 1981-09-21 1981-09-21 Heat treatment for improving stress of shaft Pending JPS5852428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14785581A JPS5852428A (en) 1981-09-21 1981-09-21 Heat treatment for improving stress of shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14785581A JPS5852428A (en) 1981-09-21 1981-09-21 Heat treatment for improving stress of shaft

Publications (1)

Publication Number Publication Date
JPS5852428A true JPS5852428A (en) 1983-03-28

Family

ID=15439776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14785581A Pending JPS5852428A (en) 1981-09-21 1981-09-21 Heat treatment for improving stress of shaft

Country Status (1)

Country Link
JP (1) JPS5852428A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193545A (en) * 1986-02-20 1987-08-25 Fujitsu Ltd Oscillating moving-coil type motor
JPS62193546A (en) * 1986-02-20 1987-08-25 Fujitsu Ltd Encoder motor
FR2678195A1 (en) * 1991-06-26 1992-12-31 Siderurgie Fse Inst Rech Method of inductively treating metal, especially steel, workpieces which are cracked or liable to be so
KR100656776B1 (en) 2005-12-14 2006-12-13 차영길 Composite materials shaft manufacturing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193545A (en) * 1986-02-20 1987-08-25 Fujitsu Ltd Oscillating moving-coil type motor
JPS62193546A (en) * 1986-02-20 1987-08-25 Fujitsu Ltd Encoder motor
JPH0419792B2 (en) * 1986-02-20 1992-03-31 Fujitsu Ltd
JPH0419791B2 (en) * 1986-02-20 1992-03-31 Fujitsu Ltd
FR2678195A1 (en) * 1991-06-26 1992-12-31 Siderurgie Fse Inst Rech Method of inductively treating metal, especially steel, workpieces which are cracked or liable to be so
KR100656776B1 (en) 2005-12-14 2006-12-13 차영길 Composite materials shaft manufacturing apparatus

Similar Documents

Publication Publication Date Title
US4229235A (en) Heat-treating method for pipes
EP1927668B1 (en) Restoration method for deteriorated part and restoration apparatus for deteriorated part
WO1997017197A1 (en) Stainless steel surface claddings of continuous caster rolls
JPS5852428A (en) Heat treatment for improving stress of shaft
JPH04191315A (en) Method for heat-treating composite material
JPH02104421A (en) Warm spinning methods for metastable austenitic stainless steel
KR102560881B1 (en) Local heat treatment method of work roll
JPS60162728A (en) Improvement of residual stress of pipe
JPS58210123A (en) Heat treatment of clad steel pipe
JPS6127445B2 (en)
JP3675463B2 (en) Heat treatment method for piping system
JP2004308887A (en) High strength connecting rod and manufacturing method thereof
JPS5576025A (en) Structure improving heat treatment method of welding heat affected zone of low alloy steel
JPH0547317B2 (en)
Lu et al. Mechanical behavior in local post weld heat treatment (report IV)
JPS60223618A (en) Bending method of metallic material
JPS5830375B2 (en) Method for reducing residual stress in circumferential welds of steel pipes
JP5096387B2 (en) Induction hardening method
JPS61235516A (en) Heat treatment of welded stainless steel joint
JPS58197215A (en) Improvement of corrosion resistance of austenitic stainless steel
JP2020050938A (en) Hardening method
JPH01240622A (en) Improvement of residual stress in weld zone of vessel
JPS6179712A (en) Inprovement of fatigue strength by producing residual stress
JPS606235A (en) Hot forging method of mechanical parts
JPH02194125A (en) Method for preventing deformation of crank shaft