JPS60162728A - Improvement of residual stress of pipe - Google Patents
Improvement of residual stress of pipeInfo
- Publication number
- JPS60162728A JPS60162728A JP59015773A JP1577384A JPS60162728A JP S60162728 A JPS60162728 A JP S60162728A JP 59015773 A JP59015773 A JP 59015773A JP 1577384 A JP1577384 A JP 1577384A JP S60162728 A JPS60162728 A JP S60162728A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- tube
- stress
- residual
- induction heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/14—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/42—Induction heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は管の残留応力改善方法に係わり、特に、腐食性
物質が接触させられる管に用いて好適な残留応力改善方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for improving residual stress in pipes, and particularly to a method for improving residual stress suitable for use in pipes that are brought into contact with corrosive substances.
「従来技術」 、
一般に、鉄鋼材料においては、引張シ応力と腐食性物質
とが共存する場合、応力腐食割れが急速に進行すること
が知られて埴る。"Prior Art" Generally, it is known that stress corrosion cracking rapidly progresses in steel materials when tensile stress and corrosive substances coexist.
そζで従来では、前述した問題点を解消する丸めに、管
の腐食性物質が存在する側の面に残存する残留引張力応
力を除去するか、あるいは該面に積極的に残留圧縮応力
を生じさせることが考えられておル、その−具体例とし
て、第1図〜第参図に示す残留応力改善方法が挙げられ
る。。Therefore, in the past, in order to solve the above-mentioned problems, the residual tensile stress remaining on the surface of the pipe on the side where the corrosive substance is present must be removed, or the residual compressive stress must be actively applied to that surface. As a specific example, there are methods for improving residual stress shown in FIGS. .
ここに挙げる従来の残留応力改善方法は、管の内部に腐
食性物質が存在する場合に、鎖管の内面Knn正圧縮応
力生じさせるようにしたものである。The conventional residual stress improvement method mentioned here is to generate a positive compressive stress Knn on the inner surface of the chain pipe when a corrosive substance is present inside the pipe.
すなわち、管1の外周に第7図に示すように誘導加熱コ
イル2を配設し、該誘導加熱コイル2によって管lを加
熱するとともに、管lの内部に冷却材(冷却水)Wを送
力込んで内面を冷却することにより、管1の内外面間K
mJ図に示すように温度差Tを与えて、第3図に示すよ
うに管lの外面@に降伏点以上の圧縮の熱応カーリσを
生じさせ、かつ、内面側に降伏点以上の引張シの熱応力
+d1を生じさせる。次いで前記誘導加熱を停止して管
lを冷却することにより、第φ図に示すように、管lの
外面@に残留引張力応力+4’を生じさせ、かつ、内面
側に残留圧縮応力−4′を生じさせるのである。That is, an induction heating coil 2 is disposed around the outer circumference of the pipe 1 as shown in FIG. By applying force to cool the inner surface, the distance K between the inner and outer surfaces of the tube 1 is reduced.
By applying a temperature difference T as shown in the mJ diagram, as shown in Figure 3, a compressive thermal curl σ of more than the yield point is produced on the outer surface of the tube l, and a tensile stress of more than the yield point is produced on the inner surface. A thermal stress +d1 is generated. Next, by stopping the induction heating and cooling the tube 1, as shown in Fig. '.
しかしながら、このような従来の残留応力改善方法−あ
っては、管IK3!l留応力改善に必要な温度差を与え
るために、多くの冷却材Wを必要とし、iな、該冷却材
Wを送シ込む丸めの付帯設備を必要とする企め、作業が
煩雑化しやすいといった改善すべき問題点が残されてい
る。However, such conventional residual stress improvement methods - if any, tube IK3! In order to provide the temperature difference necessary to improve the retention stress, a large amount of coolant W is required, and the planning and work tend to become complicated, as it requires special rounding equipment to feed the coolant W. There are still issues that need to be improved.
「発明の目的」
本発明は前述した従来技術の諸事情に鑑みてなされたも
ので、冷却材を用いることなく管の内外面間に残留応力
改善に必要な温度差を与えることのできる管の残留応力
改善方法を提供することを目的とする。``Object of the Invention'' The present invention has been made in view of the circumstances of the prior art described above, and is a method of creating a tube that can provide the temperature difference necessary for improving residual stress between the inner and outer surfaces of the tube without using a coolant. The purpose of this invention is to provide a method for improving residual stress.
「発明の構成」
本発明は前述した目的を達成するために1周波数の異な
る複数の高周波によって管をその一方の面側から管厚方
向に異なる深さで誘導加熱することにより、高周波によ
って発生させられる熱を相互に重畳させて管の内外面間
に変態温度よシも低い温度でかつ降伏点以上の熱応力を
生じさせる温度差を与え、次いで管を冷却することによ
シ、管の他方の面側に残留圧縮応力を生じさせることを
特徴とする。"Structure of the Invention" In order to achieve the above-mentioned object, the present invention generates high-frequency waves by induction heating a tube from one side of the tube at different depths in the tube thickness direction using multiple high-frequency waves with different frequencies. By superimposing the heat generated on each other to create a temperature difference between the inner and outer surfaces of the tube at a temperature lower than the transformation temperature and generating a thermal stress higher than the yield point, and then cooling the tube, the other side of the tube is cooled. It is characterized by generating residual compressive stress on the surface side.
「実施例」
以下、本発明を第j図〜第1ダ図に示す一実施例に基づ
き説明する。"Embodiment" The present invention will be described below based on an embodiment shown in FIGS. J to 1D.
本実施例は、腐食性物質を輸送する管の内面に残留圧縮
応力を生じさせんとし光ものである。This embodiment is intended to create residual compressive stress on the inner surface of a tube transporting a corrosive substance.
すなわち、管1の外周に誘導加熱コイル2を配設し、該
誘導加熱コイル2に1周波数の異なる一種の高周波から
なる第!図に示すような変調波を有する電流Aあるいは
周波数の異なる一種の高周波を重畳させ上第を図に示す
ような重畳波を有する電流Bを流して、管1を管厚方向
に異なる深さで誘導加熱する。That is, an induction heating coil 2 is disposed around the outer periphery of the tube 1, and the induction heating coil 2 is heated by a type of high frequency wave having one different frequency. A current A having a modulated wave as shown in the figure or a type of high frequency wave with different frequencies is superimposed, and a current B having a superimposed wave as shown in the figure is passed through the tube 1 at different depths in the tube thickness direction. Heat by induction.
該誘導加熱の深さは、高周波の周波数に関連して次式で
与えられる。The depth of the induction heating is given by the following equation in relation to the frequency of the radio frequency.
S=(コπJ10″″シμr6f)−1・・・・・・・
・・(1)但し、S:誘導加熱の深さ
σ:導体(管)の導電率
f:高周波の周波数
μr:実効導磁率
このような誘導加熱を行なうことによシ、周波数の高い
高周波によって、第7図(a)、(b)に示すように浅
い加熱領域深さSlの加熱が行なわれるとともに、温度
分布曲線工1で示す温度分布が管1に与えられ、また、
周波数の低い高周波によって、第を図(&)、(b)に
示すように深い加熱領域深さS2の加熱が行なわれると
ともに、温度分布曲線I2で示す温度分布が管1に与え
られ、かつ、該両温度分布が重畳させられる。この結果
、管1に、第2図において温度分布曲線I3で示すよう
に、大きな温度勾配を有する温度分布を生じさせること
ができる。S = (πJ10''''μr6f)-1...
...(1) However, S: Depth of induction heating σ: Electrical conductivity of the conductor (pipe) f: Frequency of high frequency μr: Effective magnetic permeability By performing such induction heating, high frequency , As shown in FIGS. 7(a) and 7(b), heating is performed in a shallow heating region depth Sl, and a temperature distribution shown by temperature distribution curve 1 is given to the tube 1, and,
As shown in Figures (&) and (b), the low frequency high frequency heats the deep heating region depth S2, and provides the tube 1 with a temperature distribution shown by the temperature distribution curve I2, and Both temperature distributions are superimposed. As a result, a temperature distribution having a large temperature gradient can be generated in the tube 1, as shown by the temperature distribution curve I3 in FIG.
前述した加熱操作を管lの内外面間に残留応力改善に必
要な温度差Tを生じさせるまで継続して行ない、第10
図に示すように、管lの内面に降伏点以上の引張シの熱
応力+σ1を生じさせ、また、管1の外面に降伏点以上
の圧縮の熱応力−σ1を生じさせる。そして、前記温度
差Tを生じさせるのに必要な時間は、前述したように管
1内の温 一度分布の勾配を大きくすることができるの
で、極めて短くて済む。The heating operation described above is continued until a temperature difference T necessary for improving the residual stress is generated between the inner and outer surfaces of the tube l, and
As shown in the figure, a tensile thermal stress +σ1 higher than the yield point is generated on the inner surface of the tube 1, and a compressive thermal stress −σ1 higher than the yield point is generated on the outer surface of the tube 1. The time required to generate the temperature difference T can be extremely short because the gradient of the temperature distribution within the tube 1 can be increased as described above.
次いで、前記誘導加熱を停止して管lを冷却することに
よシ、第1/図に示すように、管1の外面に残留引張シ
応力十σ2を生じさせ、かつ、管lの内面に残留圧縮応
力−σ2を生じさせる。Next, by stopping the induction heating and cooling the tube 1, a residual tensile stress σ2 is generated on the outer surface of the tube 1, and a residual tensile stress σ2 is generated on the inner surface of the tube 1, as shown in FIG. Residual compressive stress −σ2 is generated.
一方、前述した管lの冷却の過程で、管1の温度分布が
第2図の鎖線で示すように平均化されたのちにさらに低
下する現象が生じる。該現象に起因して、管1の内外面
間に第1コ図に示すように一様な圧縮の熱応力−σ3が
生じ、さらに管1の冷却にともなって、第1J図に示す
ように管1の内外面間に一様な残留引張シ応力+σ3が
生じて前述した残留応力+σ2−σ2と重畳する。On the other hand, in the process of cooling the tube 1 described above, a phenomenon occurs in which the temperature distribution of the tube 1 is averaged and then further reduced as shown by the chain line in FIG. Due to this phenomenon, a uniform compressive thermal stress -σ3 is generated between the inner and outer surfaces of the tube 1 as shown in Fig. 1, and as the tube 1 is further cooled, as shown in Fig. 1J. A uniform residual tensile stress +σ3 is generated between the inner and outer surfaces of the tube 1, and is superimposed on the aforementioned residual stress +σ2−σ2.
この結果、冷却後における管lには、前記残留応力+σ
2.−σ2と残留側、張応力十σ3との和の残留応力が
生じさせられる。As a result, the residual stress +σ
2. A residual stress is generated which is the sum of −σ2 and the residual tensile stress +σ3.
そして、冷却された管lに生じる残留応力は、前述した
ように、管1の内外面間に温度差Tを生じさせるのに必
要な時間が短く、平均温度の上昇を極力抑えるとともに
温度差Tを十分に生じさせることができるので、前記残
留圧縮応力−σ2の絶対値を残留引張シ応力+σ3の絶
対値よシも大きくすることができる。したがって、冷却
後における管1の内面に第14c図に示すように残留圧
縮応力−σ4を生じさせることができる。As mentioned above, the residual stress generated in the cooled tube 1 is caused by the short time required to generate the temperature difference T between the inner and outer surfaces of the tube 1, and the increase in the average temperature is suppressed as much as possible and the temperature difference T can be sufficiently generated, so that the absolute value of the residual compressive stress -σ2 can be made larger than the absolute value of the residual tensile stress +σ3. Therefore, residual compressive stress -σ4 can be generated on the inner surface of the tube 1 after cooling, as shown in FIG. 14c.
ここで、前述した本実施例を管厚Jagmのステンレス
鋼管に周囲温度10℃下で適用する場合における諸条件
について一例を示せば次のとおシである。Here, an example of various conditions in the case where the above-mentioned embodiment is applied to a stainless steel pipe having a pipe thickness of Jagm at an ambient temperature of 10° C. is as follows.
A)高周波の周波数:f1=ユjKIlz、fz=!o
OHzB)加熱領域の深さ; S1=10wx、、Sg
=コOwIC)vs誘導加熱D出力; i o o o
kWD)加熱時間 ;ノ05〜30戴
該A)〜n)の条件のもとに前記ステ/レス鋼管の処理
を行なった場合、該ステンレス鋼管の内外面間に約コj
0℃〜300℃の温度差を生じさせ、かつ、冷却後にお
ける内面に−!kg/−以下の残留圧縮応力を生じさせ
ることがてきる。A) Frequency of high frequency: f1=YujKIlz, fz=! o
OHzB) Depth of heating area; S1=10wx,,Sg
= KoOwIC) vs induction heating D output; i o o o
kwd) Heating time; No. 05-30 When the stainless steel pipe is treated under the conditions of A) to n), approximately
A temperature difference of 0°C to 300°C is created, and the inner surface after cooling is -! A residual compressive stress of less than kg/- can be generated.
一方、第1j図は、本発明の他の実施例を示すもので、
管lの長さ方向に沿う誘導加熱の範囲りを広くすること
によって、管lの冷却時に温度が平均化されることによ
シ生ずる残留引張シ応力十σ3の影響を抑えて、管1の
内面に生じる残留圧縮応力−σ4を大きくするようにし
たものである。On the other hand, FIG. 1j shows another embodiment of the present invention,
By widening the range of induction heating along the length of the tube 1, the influence of the residual tensile stress σ3 caused by the temperature averaging during cooling of the tube 1 can be suppressed, and the The residual compressive stress -σ4 generated on the inner surface is increased.
すなわち、前記管lの平均半径なRとし、また管厚をt
として、前記誘導加熱の範囲りを394i以上に設定す
ると、管1の被加熱部分が、第1j図に示すように、管
径が大きくなるように熱変形して、該被加熱部分の管l
の長さ方向く沿う変形に対する拘束力が減少する。tf
t1被加熱部分の両端における種々の拘束が被加熱部分
の中心におよぶことを極力抑えることができる。That is, the average radius of the pipe l is R, and the pipe thickness is t.
When the induction heating range is set to 394i or more, the heated portion of the tube 1 is thermally deformed so that the diameter of the tube becomes larger, as shown in FIG.
The restraining force against deformation along the length of is reduced. tf
t1 Various restraints at both ends of the heated portion can be prevented from reaching the center of the heated portion as much as possible.
し光がって、冷却の過程において温度が平均化されるこ
とKともなって生じる一様な圧縮の熱応力−σ3を減少
させることができ、かつ、冷却後における残留引張力応
力+σ3を減少させて、管1の内面に生じる最終的な残
留圧縮応力−σ4を大きくすることができる。Therefore, it is possible to reduce the uniform compressive thermal stress -σ3 caused by temperature averaging during the cooling process, and also to reduce the residual tensile stress +σ3 after cooling. As a result, the final residual compressive stress -σ4 generated on the inner surface of the tube 1 can be increased.
なお、前記実施例中、1つの誘導加熱コイル2によりて
変調波Aあるいは重畳波Bを用いて誘導加熱を行なう例
について説明し七が、とnK代えて、多数の誘導加熱コ
イルを用い、各誘導加熱コイルのそれぞれに異なる周波
数の高周波を流すことによって誘導加熱を行なうように
してもよい「発明の効果」
以上説明したように本発明に係わる管の残留応力改善方
法によれば、次のような優れ九効果を秦する。In the above embodiments, an example in which one induction heating coil 2 performs induction heating using modulated wave A or superimposed wave B is explained. ``Effects of the Invention'' As explained above, according to the method for improving residual stress in a pipe according to the present invention, induction heating may be performed by passing high frequencies of different frequencies through each of the induction heating coils. Excellent nine effects to Qin.
■ 深さの異なる複数の誘導加熱を内時に行なって管を
加熱することにより、該管忙勾配の大きい温度分布を生
じさせることができるので、管の内外面間に残留応力改
善に必要な温度差を十分かつ迅速に与えて冷却材を不要
にすることができる。■ By heating the tube by performing multiple induction heatings at different depths, it is possible to create a temperature distribution with a large gradient in the tube, thereby increasing the temperature required to improve residual stress between the inner and outer surfaces of the tube. The difference can be applied sufficiently and quickly to eliminate the need for coolant.
■ 複数の高周波の周波数を選択して組み合わせること
によシ、加熱領域の深さや温度分布の勾配を容易に調整
することができるので、管厚の変化等に対応して最適な
温度分布を生じさせることができる。■ By selecting and combining multiple high-frequency waves, it is possible to easily adjust the depth of the heating area and the gradient of temperature distribution, creating the optimal temperature distribution in response to changes in pipe thickness, etc. can be done.
■ 前記効果の相乗作用によシ、管の残留応力の改善を
確実かつ効率よ〈実施することができる。(2) Due to the synergistic effect of the above effects, the residual stress in the pipe can be improved reliably and efficiently.
図面中、第1図〜第参図は従来の管の残留応力改善方法
の一例を示すもので、第7図は管の加熱および冷却操作
を説明するための概略側面図、第一図は管の内外面間の
温度分布を示す模擬図、第3図は管の内外面間に生じる
熱応力を示す模擬図、第1図は管の内外面間に生じる残
留応力を示す模擬図、第j図〜第74C図は本発明の一
実施例を示すもので、第よ図および第を図は高周波を示
す模擬図、第7図および第r図は各高周波による加熱領
域の深さおよび管の内外面間に生じさせられる温度分布
を示す模擬図、第り図は、各高周波によって最終的KI
’に生じさせられる温度分布を示す模擬図、第10図お
よび第1J図は管の内外面間に生じさせられる熱応力を
示す模擬図、第11図および第1J図は管の内外面間に
生じさせられる残留応力を示す模擬図、第1参図は管の
内外面間に最終的に生じさせられる残留応力を示す模擬
図、第1j図は本発明の他の実施例を説明するための加
熱方法を示す概略図である。
l・・・・・・管、2・・・・・・紡導加熱ツイル、A
、B・・・・・・電流、S s * S 2・・・・・
・加熱領域深さ、Ix*Ize13・・・・・・温度分
布曲線。
出願人 石川島播磨重工業株式会社
eeeooeeoe。
第2図
第3図
第4図
8犯 −α′
第5図
第6図
第7図
(0)(b)
第8図
(0) (b)
第9図
第1O図 第1図
第12図 第13図
第14図In the drawings, Figures 1 to 3 show an example of a conventional method for improving residual stress in pipes, Figure 7 is a schematic side view for explaining the heating and cooling operations of the pipe, and Figure 1 shows Figure 3 is a simulated diagram showing the thermal stress generated between the inner and outer surfaces of the tube. Figure 1 is a simulated diagram showing the residual stress generated between the inner and outer surfaces of the tube. Figures 7 to 74C show an embodiment of the present invention. Figures 1 and 7 are mock diagrams showing high frequency waves, and Figures 7 and 7 show the depth of the heating area and the tube thickness by each high frequency wave. A simulated diagram showing the temperature distribution generated between the inner and outer surfaces, the final KI
10 and 1J are simulation diagrams showing the thermal stress generated between the inner and outer surfaces of the tube. Figure 1 is a simulated diagram showing the residual stress that is generated. Figure 1 is a simulated diagram that shows the residual stress that is finally generated between the inner and outer surfaces of the tube. Figure 1j is a schematic diagram for explaining another embodiment of the present invention. It is a schematic diagram showing a heating method. l...tube, 2...spun heating twill, A
, B... Current, S s * S 2...
・Heating region depth, Ix*Ize13...Temperature distribution curve. Applicant Ishikawajima Harima Heavy Industries Co., Ltd.eeeeooeeee. Figure 2 Figure 3 Figure 4 Figure 8 Crime -α' Figure 5 Figure 6 Figure 7 (0) (b) Figure 8 (0) (b) Figure 9 Figure 1O Figure 1 Figure 12 Figure 13 Figure 14
Claims (1)
ら厚さ方向く異なる深さで誘導加熱することにより、鎖
管の内外面間に変態温度よりも低い温度でかつ相異なる
方向の降伏点以上の熱応力を生じさせる温度差を与え、
次いで、前記誘導加熱を停止して管を冷却することによ
シ、管の他方の面側に残留圧縮応力を生じさせることを
特徴とする管の残留応力改善方法。By induction heating the tube at different depths in the thickness direction from one side using multiple high-frequency waves with different frequencies, the inner and outer surfaces of the chain tube are heated at a temperature lower than the transformation temperature and above the yield point in different directions. giving a temperature difference that causes a thermal stress of
A method for improving residual stress in a tube, characterized in that the induction heating is then stopped and the tube is cooled to generate residual compressive stress on the other side of the tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59015773A JPS60162728A (en) | 1984-01-31 | 1984-01-31 | Improvement of residual stress of pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59015773A JPS60162728A (en) | 1984-01-31 | 1984-01-31 | Improvement of residual stress of pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60162728A true JPS60162728A (en) | 1985-08-24 |
Family
ID=11898124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59015773A Pending JPS60162728A (en) | 1984-01-31 | 1984-01-31 | Improvement of residual stress of pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60162728A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4886952A (en) * | 1987-06-10 | 1989-12-12 | Yasushi Horiuchi | Power source device for high-frequency induction heating |
US5049207A (en) * | 1988-09-05 | 1991-09-17 | Topy Industries Limited | Heat treatment process for bushing used in track of endless track tractor |
JP2004292853A (en) * | 2003-03-26 | 2004-10-21 | Denki Kogyo Co Ltd | Method for induction hardening bar-type member and apparatus therefor |
JP2005320626A (en) * | 2004-04-06 | 2005-11-17 | Hitachi Ltd | Heat treatment method and apparatus therefor |
US7675959B2 (en) | 2002-12-16 | 2010-03-09 | Energetics Technologies, Llc | Systems and methods of electromagnetic influence on electroconducting continuum |
JP2013529840A (en) * | 2010-06-11 | 2013-07-22 | ラッシーニ フレノス ソシエダ アノニマ デ カピタル ヴァリアブレ | Magnetization and energization of metal, alloy and metal matrix composite parts and components |
-
1984
- 1984-01-31 JP JP59015773A patent/JPS60162728A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4886952A (en) * | 1987-06-10 | 1989-12-12 | Yasushi Horiuchi | Power source device for high-frequency induction heating |
US5049207A (en) * | 1988-09-05 | 1991-09-17 | Topy Industries Limited | Heat treatment process for bushing used in track of endless track tractor |
US7675959B2 (en) | 2002-12-16 | 2010-03-09 | Energetics Technologies, Llc | Systems and methods of electromagnetic influence on electroconducting continuum |
JP2004292853A (en) * | 2003-03-26 | 2004-10-21 | Denki Kogyo Co Ltd | Method for induction hardening bar-type member and apparatus therefor |
JP4551060B2 (en) * | 2003-03-26 | 2010-09-22 | 電気興業株式会社 | Induction hardening method for rod-shaped members |
JP2005320626A (en) * | 2004-04-06 | 2005-11-17 | Hitachi Ltd | Heat treatment method and apparatus therefor |
JP2013529840A (en) * | 2010-06-11 | 2013-07-22 | ラッシーニ フレノス ソシエダ アノニマ デ カピタル ヴァリアブレ | Magnetization and energization of metal, alloy and metal matrix composite parts and components |
US9133534B2 (en) | 2010-06-11 | 2015-09-15 | Rassini Frenos, S.A. De C.V. | Magnetic and electrical processing of metals, metal alloys, metal matrix composite parts and components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60162728A (en) | Improvement of residual stress of pipe | |
US2730599A (en) | Pressure welding by induction heating | |
US20200048754A1 (en) | Low pressure induction carburization | |
US4401486A (en) | Method for annealing work hardened portions of structural beams | |
US2408190A (en) | Magnetic induction heating of thinwalled nonmagnetic metallic tubes | |
JPS5817807B2 (en) | Heat treatment method for piping | |
JP5096065B2 (en) | High frequency induction heating coil and high frequency induction heating method | |
US4588869A (en) | Method for relieving residual stresses by controlling weld heat input | |
JPS58210123A (en) | Heat treatment of clad steel pipe | |
JPS55110729A (en) | Improvement of residual stress in steel pipe | |
JPS60159121A (en) | Improvement of residual stress of pipe | |
GB2128207A (en) | Heat treatment of pipes | |
JPH01240622A (en) | Improvement of residual stress in weld zone of vessel | |
JPS61264132A (en) | Improvement of residual stress of stainless steel pipe or the like | |
JPS5770095A (en) | Method for improving residual stress of weld zone of pipe | |
JPS56119738A (en) | Heat treatment of fusion welded part of main pipe and branched pipe | |
JPS61153226A (en) | Method for improving residual stress in steel plate, or the like | |
JPS61235516A (en) | Heat treatment of welded stainless steel joint | |
JPS6328825A (en) | Improvement of residual stress in metallic tube | |
JPS60135526A (en) | Heat treatment of weld zone of double pipe | |
JPS5576025A (en) | Structure improving heat treatment method of welding heat affected zone of low alloy steel | |
JPS5943828A (en) | Method for relieving residual stress in piping | |
JPH0547317B2 (en) | ||
Lu et al. | Mechanical behavior in local post weld heat treatment (report IV) | |
JP2517618B2 (en) | ERW pipe forming squeeze roll |