JPS5817807B2 - Heat treatment method for piping - Google Patents

Heat treatment method for piping

Info

Publication number
JPS5817807B2
JPS5817807B2 JP51047229A JP4722976A JPS5817807B2 JP S5817807 B2 JPS5817807 B2 JP S5817807B2 JP 51047229 A JP51047229 A JP 51047229A JP 4722976 A JP4722976 A JP 4722976A JP S5817807 B2 JPS5817807 B2 JP S5817807B2
Authority
JP
Japan
Prior art keywords
stress
temperature
piping
piping system
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51047229A
Other languages
Japanese (ja)
Other versions
JPS52130409A (en
Inventor
忠宏 梅本
輝雄 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP51047229A priority Critical patent/JPS5817807B2/en
Publication of JPS52130409A publication Critical patent/JPS52130409A/en
Publication of JPS5817807B2 publication Critical patent/JPS5817807B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は、配管の熱処理方法に係り、特に配管の腐食疲
労・応力腐食割れ等に対する強度を増大させるのに好適
な配管の熱処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of heat treating piping, and more particularly to a method of heat treating piping suitable for increasing the strength of piping against corrosion fatigue, stress corrosion cracking, etc.

従来、原子カプラント、火力プラント、化学プラント等
に用いられて□いる配管は、直管、曲り管等多数を溶接
にて接合し、一本の長い配管を形成しているが、このよ
うな配管においては管溶接時の溶接入熱によってその溶
接部近傍の管内−外面には引張りの残留応力が発生する
Conventionally, the piping used in nuclear power plants, thermal power plants, chemical plants, etc. consists of many straight pipes, bent pipes, etc. joined by welding to form one long pipe. In pipe welding, welding heat input generates tensile residual stress on the inner and outer surfaces of the pipe in the vicinity of the weld.

一般に鉄鋼材料においては、引張応力と腐食因子とが共
存する場合、引張り方向と垂直な方向に粒界腐食割れが
急速に進行することが知られている。
It is generally known that in steel materials, when tensile stress and corrosion factors coexist, intergranular corrosion cracking rapidly progresses in a direction perpendicular to the tensile direction.

従って、配管に流れる流体が腐食性流体の場合は前述の
ごとき管内面に存在する引張りの残留応力が、応力腐食
割れや腐食疲労の原因となるのは言うまでもなG)。
Therefore, if the fluid flowing through the pipe is a corrosive fluid, it goes without saying that the tensile residual stress existing on the inner surface of the pipe as described above will cause stress corrosion cracking and corrosion fatigue.

特に原子カプラントのオーステナイト系ステンレス配管
の場合、又は、化学プラント、石油精製プラント等の配
管内には腐食流体を流すことから、応力腐食割れはしば
しば実用上の問題となっていた。
In particular, stress corrosion cracking has often been a practical problem in the case of austenitic stainless steel piping for atomic couplants, or because corrosive fluids flow through the piping in chemical plants, petroleum refining plants, and the like.

前述のごとき問題を解決する手段としては、管の腐食因
子が存在する面、例えば配管に流れる流体が腐食性流体
の場合には管の内面に圧縮の応力を残留させることによ
って、応力腐食割れや腐食疲労を大巾に低減することが
できる。
One way to solve the above-mentioned problems is to leave compressive stress on the surface of the pipe where corrosive factors exist, such as on the inner surface of the pipe if the fluid flowing through the pipe is a corrosive fluid, to prevent stress corrosion cracking and Corrosion fatigue can be significantly reduced.

従来、かかる圧縮の残留応力を発生させる手段としては
ショットピーニング法と呼ばれる小鋼球を物体表面に高
圧空気等で吹付けてその表面に塑性変型を与える加工方
法があるが、この加工方法は平板や短管に利用すれば効
果があるが、配管を組立てた後には適用が非常に困難な
王、管の全周を均一に処理することはとうてい望めない
という欠点がある。
Conventionally, as a means of generating such compressive residual stress, there is a processing method called shot peening, in which a small steel ball is blown onto the surface of an object with high-pressure air to cause plastic deformation on the surface. Although it is effective when used on pipes and short pipes, it has the disadvantage that it is extremely difficult to apply after the piping has been assembled, and it is impossible to uniformly treat the entire circumference of the pipe.

又、リンデ法と呼ばれる溶接部両側をガス炎で加熱し、
溶接部の残留応力を緩和する方法もあるが、この方法に
よっても残留応力を緩和するだけで逆の残留応力を発生
させることができない。
In addition, both sides of the welded part are heated with a gas flame, which is called the Linde method.
Although there is a method of alleviating the residual stress in the weld, this method only relieves the residual stress and cannot generate the opposite residual stress.

更には一般によ(知られているように処理材を加熱後急
冷することにより熱応力を発生させて残留圧縮応力を得
る方法もある。
Furthermore, as is generally known, there is a method of generating thermal stress by heating and then rapidly cooling the treated material to obtain residual compressive stress.

ところが、このような従来方法では、わずかな処理条件
の違いによっても得られる残留応力が大きく影響を受け
るために、再現性に乏しく極めて不確実なものである。
However, in such conventional methods, the residual stress obtained is greatly affected by even slight differences in processing conditions, so reproducibility is poor and extremely uncertain.

この点を次に示す実験によって確認した。This point was confirmed by the following experiment.

実験方法は304ステンレス鋼管の直管とエルボ管を溶
接接合した円管(第5図示)を加熱した後に水中に浸漬
して冷却し、第5図中のA(直管とエルボ管との溶接部
)とB(直管部)の2位置の応力を測定した。
The experimental method was to heat a circular tube (shown in Figure 5) in which a straight 304 stainless steel tube and an elbow tube were welded together, then immerse it in water to cool it. The stress was measured at two positions: part) and B (straight pipe part).

測定はA、B共管内周面に清って複数個所行なった。Measurements were made at multiple locations on the inner circumferential surfaces of both tubes A and B.

その結果、第6図及び第7図にそれぞれ破線で示すよう
にA、B共に残留引張応力(+側)が発生している個所
がある。
As a result, there are locations where residual tensile stress (+ side) is generated in both A and B, as shown by broken lines in FIGS. 6 and 7, respectively.

このように、従来の熱応力による残留圧縮応力の付与法
では残留圧縮応力を必ず得られるとは限らず確実性に欠
けるものであった。
As described above, with the conventional method of applying residual compressive stress using thermal stress, it is not always possible to obtain residual compressive stress, and there is a lack of reliability.

また、組立て後の長大な配管系を一度に加熱し一度に冷
却することは実際上不可能である。
Moreover, it is practically impossible to heat and cool a long piping system at once after assembly.

以上のごとく、プラント等の配管を組立て後、該配管の
溶接入熱による残留応力を改善する適当な方法はなかっ
たのが現状である。
As described above, at present, there is no suitable method for improving the residual stress caused by welding heat input in the piping of a plant or the like after it is assembled.

本発明は、配管系組立て後における配管の溶接部近傍の
腐食因子が存在する側に冷却材を連続的に流して冷却す
ると共に、腐食因子の存在しない側を変態温度より低い
温度でかつ配管系の肉厚方向の温度勾配が定常化するま
での一定時間加熱して、熱処理対象部の両面間に相異な
る方向の降伏点以上の熱応力が生じるような温度差を発
生させ、これを常温まで冷却することによって、腐食因
子が存在する側に均質な残留圧縮応力を確実に発生させ
ると共にその制御性及び再現性を高めることを特徴とす
るものである。
The present invention cools the piping by continuously flowing a coolant to the side where corrosion factors exist near the welded part of the piping after the piping system is assembled, and cools the piping system by keeping the side where no corrosion factors exist at a temperature lower than the transformation temperature. By heating for a certain period of time until the temperature gradient in the thickness direction becomes steady, a temperature difference is created between both sides of the heat-treated part that generates thermal stress in different directions that exceeds the yield point, and this is then brought to room temperature. By cooling, a homogeneous residual compressive stress is reliably generated on the side where the corrosion factor is present, and its controllability and reproducibility are improved.

以下本発明の最適一実施例を図面に基づいて説明する。An optimal embodiment of the present invention will be described below with reference to the drawings.

第1図および第2図で示すように、配管1の外周には高
出力加熱装置2をその発熱表面が配管1の溶接部外周を
同心でとりまくように配置する。
As shown in FIGS. 1 and 2, a high-output heating device 2 is arranged around the outer periphery of the pipe 1 so that its heat generating surface concentrically surrounds the outer periphery of the welded portion of the pipe 1.

この時の高出力加熱装置としては、例えば誘導加熱装置
のごときものを使用する方が望ましい。
As the high-output heating device at this time, it is preferable to use, for example, an induction heating device.

次いで該加熱装置2によって前記配管1の外面を変態温
度より低い温度でかつ配管系の肉厚方向の温度分布が定
常化するまでの一定時間加熱すると共に、内部に冷却材
3(例えば水)を連続的に流し、配管1の外面と内面と
に温度差を生じさせる。
Next, the heating device 2 heats the outer surface of the piping 1 at a temperature lower than the transformation temperature for a certain period of time until the temperature distribution in the thickness direction of the piping system becomes steady, and coolant 3 (for example, water) is supplied inside. It flows continuously to create a temperature difference between the outer and inner surfaces of the pipe 1.

いま、加熱温度をTo、管内を流れる冷却材3の温度を
Twとすると配管1の内面は冷却材3の温度によって冷
却されTiとなる。
Now, when the heating temperature is To and the temperature of the coolant 3 flowing inside the pipe is Tw, the inner surface of the pipe 1 is cooled by the temperature of the coolant 3 and becomes Ti.

したがって、配管1の内・外画面に生ずる熱応力は、温
度分布を線形と仮定すれば、次式のごとくなる。
Therefore, assuming that the temperature distribution is linear, the thermal stress generated on the inner and outer surfaces of the pipe 1 is expressed by the following equation.

σα=σψ−=−E−α・(To −T i )/2
(1−!’ )+ 但し、σα:軸方向応力、σψ:周方向応力、E:ヤン
グ係数、 α:線膨張係数、 シ:ポアソン比、 であり、配管1の内面が正(引張り)の応力、外面が負
(圧縮)の応力に相当する。
σα=σψ−=−E−α・(To −T i )/2
(1-!' )+ However, σα: axial stress, σψ: circumferential stress, E: Young's coefficient, α: coefficient of linear expansion, C: Poisson's ratio, and the inner surface of pipe 1 is positive (tension). Stress, the outer surface corresponds to negative (compressive) stress.

この式から配管1の内・外面の温度差が大きい程熱応力
σα及びσψも大きくなることがわかる。
From this equation, it can be seen that the greater the temperature difference between the inner and outer surfaces of the pipe 1, the greater the thermal stresses σα and σψ.

この時の配管1における軸方向の応力分布は第3図に示
すごとくであり、図中σyは降伏応力である。
The stress distribution in the axial direction in the pipe 1 at this time is as shown in FIG. 3, where σy is the yield stress.

ちなみに原子カプラント配管を例にとると、該配管はオ
ーステナイト系ステンレス鋼であり、このヤング係数E
は1.9 X 10’kg/m4前後、ポアソン比νは
0.3〜0.5kg/m4位である。
By the way, taking atomic couplant piping as an example, the piping is made of austenitic stainless steel, and the Young's modulus E
is around 1.9 x 10'kg/m4, and Poisson's ratio ν is around 0.3 to 0.5 kg/m4.

同様、降伏点は温度に′よって異なり、温度が高くなる
程降伏点は低くなるが、平均として20に9前後である
Similarly, the yield point varies depending on the temperature, and the higher the temperature, the lower the yield point, but on average it is around 9 in 20.

これらの値を前記式に代入することにより、配管1の内
・外面の温度差(To−Ti)は約200℃であること
が導き出される。
By substituting these values into the above equation, it is derived that the temperature difference (To-Ti) between the inner and outer surfaces of the pipe 1 is approximately 200°C.

したがって降伏点以上の熱応力を配管1の内・外面に発
生させるためには最低でも200℃以上の温度差が必要
であることになる。
Therefore, in order to generate a thermal stress higher than the yield point on the inner and outer surfaces of the pipe 1, a temperature difference of at least 200°C is required.

この温度差(200℃以上)を得るためには内部を冷却
する冷却材3を配管系内にあるバルブ等によって滞留さ
せるようなことがあっては、冷却材がすぐに高温化して
しまうから、この温度変化に伴って加熱温度をも高めて
いかなければならず、このような制御は実質上極めて困
難である。
In order to obtain this temperature difference (200 degrees Celsius or more), if the coolant 3 that cools the inside is allowed to stagnate in a valve or the like in the piping system, the coolant will quickly become hot. Along with this temperature change, the heating temperature must also be increased, and such control is practically extremely difficult.

本発明のごとく連続的に流すことによつて配管1の内面
温度をほぼ一定に保てば外面加熱温度もほぼ一定に保つ
だけで足り、その制御は極めて容易である。
If the inner surface temperature of the pipe 1 is kept almost constant by continuous flow as in the present invention, it is sufficient to keep the outer surface heating temperature almost constant, and this control is extremely easy.

このようにして配管1の内・外面に温度差を発生させ、
降伏点以上の熱応力を与えた後に、配管1を常温状態に
戻すと、第4図に示すごとく、内面は圧縮の応力、外面
は引張りの応力が残留する。
In this way, a temperature difference is generated between the inner and outer surfaces of the pipe 1,
When the pipe 1 is returned to normal temperature after being subjected to a thermal stress equal to or higher than the yield point, compressive stress remains on the inner surface and tensile stress remains on the outer surface, as shown in FIG.

このようにして発生する残留応力は配管の肉厚方向の温
度分布を定常にすることによりコントロールできる。
The residual stress generated in this way can be controlled by making the temperature distribution in the thickness direction of the pipe constant.

そして、本発明では配管肉厚方向の温度分布が定常にな
るまでの一定時間加熱しており、この加熱時間は温度拡
散係数と板厚とから次の関係式によって求めることがで
きる。
In the present invention, heating is performed for a certain period of time until the temperature distribution in the thickness direction of the pipe becomes steady, and this heating time can be determined from the temperature diffusion coefficient and the plate thickness using the following relational expression.

2 τ〉−X O,7 t:板厚、a:温度拡散係数、τ:加熱時間従って加熱
時間は配管系の熱処理対象部に応じて容易に設定でき、
発生させる残留応力をコントロールすることができる。
2 τ〉−X O, 7 t: Plate thickness, a: Temperature diffusion coefficient, τ: Heating time Therefore, the heating time can be easily set according to the part of the piping system to be heat treated,
The generated residual stress can be controlled.

尚、ここにおいても配管系内部を冷却する冷却部材を滞
留させるようにすれば、冷却部材の温度変化により加熱
温度も安定せず、従って上記定常化に至る加熱時間の制
御は不安定であって実際上不可能である。
In this case as well, if the cooling member that cools the inside of the piping system is allowed to stay, the heating temperature will not be stabilized due to temperature changes in the cooling member, and therefore the control of the heating time to reach the steady state described above will be unstable. Practically impossible.

また他の実施例として、腐食因子が管外面に存在するよ
うなプラントの場合は管の内面を加熱し、外面を冷却す
ることによって、第1の実施例とは逆に管外面に圧縮の
応力を残留させることもできるし、腐食因子が管内・外
共に存在する場合には管自体に通電し、管内・外面を冷
却すればよい。
As another example, in the case of a plant where corrosion factors exist on the outside surface of the tube, by heating the inside surface of the tube and cooling the outside surface, compressive stress is applied to the outside surface of the tube, contrary to the first embodiment. If corrosion factors exist both inside and outside the tube, the tube itself may be energized to cool the inside and outside of the tube.

要するに本発明によれば腐食因子が存在する側に圧縮の
応力を残留させることができる。
In short, according to the present invention, compressive stress can be left on the side where the corrosion factor is present.

次に上記実施例を確認するために行なった実験例を示す
Next, an example of an experiment conducted to confirm the above-mentioned example will be shown.

実験方法は第5図に示すものと同様のL字状の円管(3
04ステンレス鋼管の直管とエルボ管を溶接接合したも
の)を用い、測定する位置の管外周面に高周波加熱装置
の加熱コイルを巻き付け、管内部に連続通水して管内面
を冷却しながら加熱コイルに所定時間通電した。
The experimental method was to use an L-shaped circular tube (3
A heating coil of a high-frequency heating device is wrapped around the outer circumferential surface of the tube at the position to be measured, and water is continuously passed through the tube to cool and heat the inner surface of the tube. The coil was energized for a predetermined period of time.

測定位置は第5図中のAとBの2位置でそれぞれ管内周
方向に沿って複数個所測定した。
Measurements were made at two locations A and B in FIG. 5, each along the inner circumferential direction of the tube.

尚、本実験では8位置は直管と直管とが溶接接合された
溶接部になっている。
In this experiment, position 8 is a welded part where two straight pipes are welded together.

高周波加熱装置による加熱条件は表1に示す通りである
The heating conditions using the high frequency heating device are as shown in Table 1.

この実験結果を前述した従来の結果と比較すべく第6図
及び第7図に実線で示す。
The experimental results are shown in solid lines in FIGS. 6 and 7 for comparison with the conventional results described above.

図から明らかなようにすべての測定点で残留圧縮応力が
発生している。
As is clear from the figure, residual compressive stress is generated at all measurement points.

このように、本発明による熱処理方法によれば所望の場
所に確実に残留圧縮応力を得ることができ、その信頼性
は従来のものに比べて格段に優れている。
As described above, according to the heat treatment method of the present invention, it is possible to reliably obtain residual compressive stress at a desired location, and its reliability is much better than that of the conventional method.

なお、配管組立時の溶接入熱によって残留した応力が配
管系全体に分布している場合があり、配管系全体に亘っ
て応力改善する必要がある場合でも本発明による実施が
可能である。
Note that the present invention can be implemented even in cases where stress remaining due to welding heat input during piping assembly is distributed throughout the piping system, and it is necessary to improve stress throughout the piping system.

本発明は前述のとおり、配管の腐食因子が存在しない方
の一面を変態温度より低く加熱すると共に、該配管の他
の一面に冷却材を連続的に流し、前記配管の内・外面に
大きな温度差(降伏点を越える熱応力が発生するのに必
要な温度差)を与え、それによって配管の腐食因子が存
在する側の面に残留圧縮応力を発生させようとするもの
であるから、配管系組み立てのときに溶接入熱によって
発生する残留引張応力を必要に応じて改善子ることがで
きるので、腐食性流体が存在しても応力腐食割れ等の配
管損傷を回避することができると共に、管径の小さいも
のや長尺のものにも適用できる。
As described above, the present invention heats one side of the piping where no corrosive factors exist to a temperature lower than the transformation temperature, and continuously flows a coolant to the other side of the piping, so that the inner and outer surfaces of the piping are heated to a high temperature. (temperature difference required to generate thermal stress exceeding the yield point) and thereby generate residual compressive stress on the side of the piping where the corrosion factor exists. Residual tensile stress generated by welding heat input during assembly can be reduced as necessary, so pipe damage such as stress corrosion cracking can be avoided even in the presence of corrosive fluids, and pipe damage can also be improved. It can also be applied to small diameter or long objects.

また上記残留圧縮応力を確実に発生させるには配管内外
面に前記所定の大きさの温度差を付与すること及び配管
肉厚方向の温度分布が好ましい残留圧縮応力が得られる
ように定常化するまでの一定時間加熱を継続することが
不可欠であるが、管表面を冷却する冷却材が流れの状態
に置かれるから、冷却面の温度分布が均一かつ一定とな
り然もその温度を冷却材供給側で制御できることになっ
て、前記温度差確保、加熱時間の制御が極めて容易とな
り、しかも発生させる応力をコントロールすることがで
きる。
In addition, in order to reliably generate the residual compressive stress, it is necessary to apply a temperature difference of the predetermined size between the inner and outer surfaces of the pipe, and until the temperature distribution in the thickness direction of the pipe becomes steady so as to obtain a preferable residual compressive stress. It is essential to continue heating for a certain period of time, but since the coolant that cools the tube surface is placed in a flow state, the temperature distribution on the cooling surface is uniform and constant, and the temperature cannot be controlled by the coolant supply side. This makes it extremely easy to ensure the temperature difference and control the heating time, and it is also possible to control the stress generated.

従って、従来の熱応力による残留圧縮応力付与法(加熱
後に冷却する方法)に比べて再現性、信頼性の面で格段
に優れている。
Therefore, compared to the conventional method of imparting residual compressive stress using thermal stress (method of cooling after heating), it is much superior in terms of reproducibility and reliability.

また、プラント等の運転後に配管が劣化したような個所
を補修した後にも適用できるという従来にない優れた効
果を有している。
Furthermore, it has an excellent effect that has not been seen before in that it can be applied even after repairing a portion where the piping has deteriorated after operation of a plant or the like.

更には、加熱により相変態を伴なわない例えばオーステ
ナイト系ステンレス管等の腐食条件下で有用な管材にも
適用できる等極めて実用効果の大きいものである。
Furthermore, it has extremely great practical effects, as it can be applied to pipe materials that are useful under corrosive conditions, such as austenitic stainless steel pipes, which do not undergo phase transformation upon heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例をあられした説明図、第2図
は第1図のA=A矢視図、第3図及び第4図は配管内・
外面における応力分布図、第5図は実験に使用した管材
を示す図、第6図及び第1図は測定部の管材周方向の応
力分布図である。 1・・・・・・配管、2・・・・・・加熱装置、計・・
・・・冷却材。
Fig. 1 is an explanatory diagram showing an embodiment of the present invention, Fig. 2 is a view taken from arrow A=A in Fig. 1, and Figs.
A stress distribution diagram on the outer surface, FIG. 5 is a diagram showing the tube material used in the experiment, and FIGS. 6 and 1 are stress distribution diagrams in the circumferential direction of the tube material at the measurement part. 1...Piping, 2...Heating device, meter...
...coolant.

Claims (1)

【特許請求の範囲】[Claims] 1 腐食因子が存在する条件下で使用されるプラント等
の配管系を熱処理する方法において、前記配管系組立て
後、該配管系の溶接部近傍の腐食因子が存在する側の一
面に冷却材を連続的に流すと共に腐食因子が存在しない
側の一面を変態温度より低い温度でかつ配管系の肉厚方
向の温度分布が定常化するまでの一定時間加熱して前記
溶接部近傍の両面間に相異なる方向の降伏点以上の熱応
力が生じるような大きな温度差を発生させた後、前記溶
接部近傍を常温に戻すことによって、配管系の溶接部近
傍の腐食因子が存在する側の面に残留圧縮応力を、腐食
因子が存在しない側の面に残留引張応力をそれぞれ発生
させることを特徴とする配管の熱処理方法。
1. A method for heat treating a piping system in a plant, etc. that is used under conditions where corrosive factors exist, in which, after the piping system is assembled, a coolant is continuously applied to one side of the piping system near the welds where the corrosive factors exist. At the same time, one side of the side where no corrosion factors exist is heated at a temperature lower than the transformation temperature for a certain period of time until the temperature distribution in the wall thickness direction of the piping system becomes steady, and the difference between the two sides near the welded part is heated. After generating a large temperature difference that causes a thermal stress higher than the yield point in the direction, by returning the area near the weld to room temperature, residual compression is created on the side of the piping system where the corrosion factor exists near the weld. A piping heat treatment method characterized by generating stress and residual tensile stress on the side where no corrosion factors are present.
JP51047229A 1976-04-27 1976-04-27 Heat treatment method for piping Expired JPS5817807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51047229A JPS5817807B2 (en) 1976-04-27 1976-04-27 Heat treatment method for piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51047229A JPS5817807B2 (en) 1976-04-27 1976-04-27 Heat treatment method for piping

Publications (2)

Publication Number Publication Date
JPS52130409A JPS52130409A (en) 1977-11-01
JPS5817807B2 true JPS5817807B2 (en) 1983-04-09

Family

ID=12769364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51047229A Expired JPS5817807B2 (en) 1976-04-27 1976-04-27 Heat treatment method for piping

Country Status (1)

Country Link
JP (1) JPS5817807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331442B2 (en) * 1983-02-25 1991-05-07 Matsushita Electric Works Ltd

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748626B2 (en) * 1974-02-12 1982-10-16
JPS592724B2 (en) * 1976-08-16 1984-01-20 株式会社日立製作所 Heat treatment method for piping
JPS5594441A (en) * 1979-01-09 1980-07-17 Ishikawajima Harima Heavy Ind Co Ltd Heat treating method of pipe
JPS55122825A (en) * 1979-03-15 1980-09-20 Usui Internatl Ind Co Ltd High pressure fluid pipe and manufacture thereof
JPS5620865A (en) * 1979-07-30 1981-02-26 Ishikawajima Harima Heavy Ind Co Ltd Controlling method of crack growing direction in pressure container
JPS58199814A (en) * 1982-05-15 1983-11-21 Nippon Steel Corp Production of steel pipe having excellent resistance to stress corrosion cracking
JPS6033315A (en) * 1983-08-02 1985-02-20 Ishikawajima Harima Heavy Ind Co Ltd Heat treatment of pipe line
JP4599957B2 (en) * 2004-09-16 2010-12-15 株式会社Ihi High frequency induction heating residual stress improvement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270914A (en) * 1975-11-07 1977-06-13 Hitachi Ltd Heat treatment of pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270914A (en) * 1975-11-07 1977-06-13 Hitachi Ltd Heat treatment of pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331442B2 (en) * 1983-02-25 1991-05-07 Matsushita Electric Works Ltd

Also Published As

Publication number Publication date
JPS52130409A (en) 1977-11-01

Similar Documents

Publication Publication Date Title
JPS5817807B2 (en) Heat treatment method for piping
JPS60255930A (en) Heating method and apparatus for improving residual stress in welded part of branched pipe
US4608101A (en) Method for heat treating pipe with double-pipe section
JPS6033315A (en) Heat treatment of pipe line
Yang et al. A study on the mechanical stress relieving in a butt-welded-pipe
Han et al. Simulation and analysis of residual stress and microstructure transformation for post weld heat treatment of a welded pipe
JPS6130626A (en) Heat treatment of metal tube
US4588869A (en) Method for relieving residual stresses by controlling weld heat input
JPS63112089A (en) Improving method for residual stress of double metal pipe and the like
JPH11209825A (en) Post-welding heat treatment equipment
EP2505677B1 (en) Method and apparatus for relieving stress in a pipeline
JPS5952689B2 (en) Method for improving residual stress on the inner and outer surfaces of steel pipes
JPS5943822A (en) Heat treatment of pipes
JPH0246654B2 (en) CHUKUTAINOZANRYUORYOKUKAIZENHOHO
JPS6018293A (en) Method for relieving residual stress of welded joint part
JPH0230716A (en) Method for improving residual stress in circumferential weld zone
JPS5852428A (en) Heat treatment for improving stress of shaft
JPH0699755B2 (en) Heat treatment method for metal tubes
JPS5943828A (en) Method for relieving residual stress in piping
JPS60131923A (en) Heat treatment of weld zone of double-walled pipe
JPH08294729A (en) Bending of high strength thick steel tube
Gao et al. Integrated modeling for residual stress and failure behavior in welded Grade 91 steel cladded with nickel alloy
JPS62247025A (en) Heat treatment method of nozzle
Prakash et al. Techno-economical comparative evaluation of diverse local heat treatment strategies for thick-walled pipe welds
Dunaev et al. Aspects of the Production Technology of Largesized Clad Plates and Large Diameter Pipes Made From Them