JP4599957B2 - High frequency induction heating residual stress improvement method - Google Patents
High frequency induction heating residual stress improvement method Download PDFInfo
- Publication number
- JP4599957B2 JP4599957B2 JP2004270395A JP2004270395A JP4599957B2 JP 4599957 B2 JP4599957 B2 JP 4599957B2 JP 2004270395 A JP2004270395 A JP 2004270395A JP 2004270395 A JP2004270395 A JP 2004270395A JP 4599957 B2 JP4599957 B2 JP 4599957B2
- Authority
- JP
- Japan
- Prior art keywords
- constant
- coil
- frequency induction
- pipe
- residual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000006698 induction Effects 0.000 title claims description 133
- 238000010438 heat treatment Methods 0.000 title claims description 104
- 238000000034 method Methods 0.000 title claims description 41
- 239000000463 material Substances 0.000 claims description 88
- 206010070834 Sensitisation Diseases 0.000 claims description 29
- 230000008313 sensitization Effects 0.000 claims description 29
- 238000003466 welding Methods 0.000 claims description 22
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 17
- 239000000498 cooling water Substances 0.000 claims description 17
- 239000010953 base metal Substances 0.000 claims description 13
- 238000010586 diagram Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 14
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Heat Treatment Of Articles (AREA)
Description
本発明は、オーステナイト系ステンレス鋼製配管の溶接継手部の内面の残留応力を改善する高周波誘導加熱残留応力改善法に関するものである。 The present invention relates to a high-frequency induction heating residual stress improving method for improving the residual stress of the inner surface of the welded joint portion of the austenitic stainless steel pipe.
原子力プラントにおけるPLR系配管は、オーステナイト系ステンレス鋼製にて構成されている。オーステナイト系ステンレス鋼製の配管継手部の溶接においては、継手部内面に残留引張応力が残り、応力腐食割れ(Stress Corrosion Cracking−以下、SCCと称する)が発生することがある。 The PLR piping in the nuclear power plant is made of austenitic stainless steel. In welding a pipe joint made of austenitic stainless steel, residual tensile stress may remain on the inner surface of the joint, and stress corrosion cracking (hereinafter referred to as SCC) may occur.
そこで、原子力プラントにおいては、SCCを防止するために、高周波誘導加熱残留応力改善法(Induction Heating Stress Improvement−IHSI)が利用されている。この高周波誘導加熱残留応力改善法は、溶接継手部の配管の内面に生じた残留引張応力を除去するために、溶接継手部外周に高周波誘導コイルを配置し、配管内に冷却水を流しながら、高周波誘導コイルに高周波電流を流して溶接継手部及びその近傍を加熱し、応力改善に必要な内外面温度差を発生させた後、溶接継手部を常温に戻すことにより、配管内面に残る残留引張応力を低減するようにしている。 Therefore, in a nuclear power plant, in order to prevent SCC, a high frequency induction heating residual stress improvement method (Induction Heating Stress Improvement-IHSI) is used. This high frequency induction heating residual stress improvement method is to dispose the residual tensile stress generated on the inner surface of the pipe of the welded joint part, by placing a high frequency induction coil on the outer periphery of the welded joint part and flowing cooling water through the pipe, A high-frequency current is passed through the high-frequency induction coil to heat the welded joint and its vicinity, generate a temperature difference between the inner and outer surfaces necessary for stress improvement, and then return the welded joint to room temperature, thereby remaining residual tension on the pipe inner surface. The stress is reduced.
この高周波誘導加熱残留応力改善法では、非特許文献1に示されているように、溶接材部(デポ部)近傍内面の残留引張応力が98MPa以下になるように改善することが従来より要求されている。
In this high frequency induction heating residual stress improvement method, as shown in
この要求を満たすためには、配置する高周波誘導コイルのコイル幅をL(mm)とし、且つ配管の内外面温度差をΔTとすると、以下の(5)式及び(6)式の条件を満たせばよいことが非特許文献1に規定されている。
In order to satisfy this requirement, if the coil width of the high frequency induction coil to be arranged is L (mm) and the temperature difference between the inner and outer surfaces of the pipe is ΔT, the conditions of the following equations (5) and (6) can be satisfied. Non-Patent
また、従来、配管に用いられていたオーステナイト系ステンレス鋼は、例えばSUS304であり、その鋭敏化を防止するためには最高加熱温度を一律550℃以下にすることが決められている。 Conventionally, austenitic stainless steel used for piping is, for example, SUS304, and the maximum heating temperature is uniformly set to 550 ° C. or less in order to prevent sensitization.
しかしながら、SCC対策として、上記の条件で残留応力を改善しても、未だSCCの発生を完全になくすことができないことが判明した。すなわち、従来の高周波誘導加熱残留応力改善法においては、デポ部近傍内面の残留応力が98MPa以下であればよいとされていたが、実際には、溶接材部(デポ部)と母材部との境界に引張応力が作用し、これがSCCを発生させる原因となる可能性があることが判明した。 However, as a countermeasure against SCC, it has been found that even if the residual stress is improved under the above conditions, the occurrence of SCC cannot be completely eliminated. That is, in the conventional high frequency induction heating residual stress improvement method, the residual stress on the inner surface in the vicinity of the deposit portion should be 98 MPa or less, but actually, the welding material portion (depot portion), the base material portion, It has been found that tensile stress acts on the boundary of this, which may cause SCC.
そこで、本発明者等は、デポ部と母材部との境界に残る残留応力及び高周波誘導コイルのコイル端から継手部中心までの距離であるコイルかぶり代に着目し、その境界での残留応力が、少なくとも引張応力ではなく圧縮応力となる、すなわちデポ部と母材部の境界で残留引張応力を0MPa以下とすることができる高周波誘導加熱残留応力改善法及び高周波誘導コイルを試作し、本発明を為すに至った。 Therefore, the present inventors pay attention to the residual stress remaining at the boundary between the deposit part and the base material part and the coil cover allowance which is the distance from the coil end of the high frequency induction coil to the center of the joint part, and the residual stress at the boundary. However, at least a compressive stress is generated instead of a tensile stress, that is, a high-frequency induction heating residual stress improving method and a high-frequency induction coil capable of reducing the residual tensile stress to 0 MPa or less at the boundary between the deposit portion and the base material portion are manufactured. I came to do it.
一方、溶接継手部が、配管の屈曲部やプラグが形成された部分の近傍にある場合には、高周波誘導コイルの中心位置が溶接継手部の中心位置と一致させられないことがある。この場合、高周波誘導コイルが、溶接継手部を中心として配置されたときと加熱条件が変わるため、残留応力改善効果がやや弱くなることが判明した。そこで、この場合の高周波誘導コイルのコイル端から継手部中心までの距離であるコイルかぶり代についても条件に加えて残留引張応力が0MPa以下となる施工条件を規定した。 On the other hand, when the weld joint is in the vicinity of the bent portion of the pipe or the portion where the plug is formed, the center position of the high-frequency induction coil may not be matched with the center position of the weld joint. In this case, it has been found that the effect of improving the residual stress is slightly weakened because the heating conditions are different from those when the high-frequency induction coil is arranged around the weld joint. Therefore, in addition to the conditions for the coil covering allowance, which is the distance from the coil end of the high-frequency induction coil to the center of the joint in this case, the construction conditions are defined such that the residual tensile stress is 0 MPa or less.
請求項1の発明は、オーステナイト系ステンレス鋼製配管の溶接継手部の内面の残留応力を改善すべく、その溶接継手部外周に高周波誘導コイルをその継手部を中心に所定幅で配置し、且つ上記配管内に冷却水を流しながら上記高周波誘導コイルに高周波電流を流して溶接継手部を加熱する高周波誘導加熱残留応力改善法において、溶接材部と母材部との境界の残留引張応力を0MPa以下とすべく、上記配管の溶接継手部の実際の内外面温度差をΔT0、高周波誘導コイルを配置するコイル幅をLとし、且つ溶接中心から10mmの位置での残留引張応力が98MPa以下となる内外面温度差をΔTとしたとき、ΔT0とΔTを数1、Lを数2で定義し、
上記(1)式中のΔTを求めておき、その内外面温度差ΔTに基づいて定数Aが1.0〜1.9の範囲の条件で、且つKが2.0〜4.0の範囲の条件で、溶接材部と母材部との境界の残留応力を解析して各定数Aにおける定数Kと残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる定数Kの範囲(3.0〜4.0)を求めておき、
次いで、コイル幅Lがその定数Kの範囲(3.0〜4.0)のコイルについて、上記(1)式中のΔT0を変化させ、溶接材部と母材部との境界の残留応力を解析して各定数KにおけるΔT 0 と残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる内外面温度差ΔT0の範囲を求めると共に上記(1)式から定数Aの範囲を決定しておき、
これら解析結果から残留引張応力が0MPa以下となる定数Kと定数Aの組み合わせを決定し、その決定した定数Kと定数Aに基づいて、配管の内外面に温度差ΔT0を与え、且つコイル幅Lを設定して高周波誘導加熱するに際して、
定数Kを3.0以上としたとき定数Aを1.7以上とし、
定数Kを3.5以上としたとき定数Aを1.6以上とし、
定数Kを4.0以上としたとき定数Aを1.5以上とすることを特徴とする高周波誘導加熱残留応力改善法である。
In order to improve the residual stress of the inner surface of the welded joint portion of the austenitic stainless steel pipe, the high frequency induction coil is arranged with a predetermined width around the joint portion on the outer periphery of the welded joint portion. In the high-frequency induction heating residual stress improvement method in which a high-frequency current is passed through the high-frequency induction coil and the weld joint is heated while flowing cooling water through the pipe, the residual tensile stress at the boundary between the welded part and the base material is set to 0 MPa. In order to make the following, the actual inner and outer surface temperature difference of the welded joint portion of the pipe is ΔT 0 , the coil width in which the high frequency induction coil is disposed is L, and the residual tensile stress at a
ΔT in the above equation (1) is obtained, the constant A is in the range of 1.0 to 1.9 based on the inner and outer surface temperature difference ΔT, and K is in the range of 2.0 to 4.0. The residual stress at the boundary between the welded material part and the base metal part is analyzed under the conditions described above, and the relationship between the constant K and the residual stress in each constant A is obtained and graphed , and the residual tensile stress is based on the graph. The range of the constant K (3.0 to 4.0) in which is 0 MPa or less is obtained,
Next, with respect to the coil having a coil width L in the range of the constant K ( 3.0 to 4.0 ), ΔT 0 in the equation (1) is changed, and the residual stress at the boundary between the welded material portion and the base material portion is changed. The relationship between ΔT 0 and the residual stress at each constant K is obtained and graphed, and the range of the inner and outer surface temperature difference ΔT 0 where the residual tensile stress is 0 MPa or less is obtained based on the graph and (1) in advance to determine the range of the constant a from the equation,
From these analysis results, a combination of constant K and constant A at which the residual tensile stress is 0 MPa or less is determined, and based on the determined constant K and constant A, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe, and the coil width When setting L and performing high frequency induction heating ,
When the constant K is 3.0 or more, the constant A is 1.7 or more,
When the constant K is 3.5 or more, the constant A is 1.6 or more,
This is a high frequency induction heating residual stress improvement method characterized in that the constant A is 1.5 or more when the constant K is 4.0 or more .
請求項2の発明は、オーステナイト系ステンレス鋼製配管の溶接継手部の内面の残留応力を改善すべく、その溶接継手部外周に高周波誘導コイルをそのコイル端から継手部中心までの距離のうち短い方の距離であるコイルかぶり代がdとなるようにずらして配置し、且つ上記配管内に冷却水を流しながら上記高周波誘導コイルに高周波電流を流して溶接継手部を加熱する高周波誘導加熱残留応力改善法において、一方の上記配管の溶接継手部近傍の厚さをtとし、他方の上記配管の溶接継手部の厚さを定数B×tとした場合の溶接材部と母材部との境界の残留引張応力を0MPa以下とすべく、上記配管の溶接継手部の実際の内外面温度差をΔT0、高周波誘導コイルを配置するコイル幅をLとし、且つ溶接中心から10mmの位置での残留引張応力が98MPa以下となる内外面温度差をΔTとしたとき、ΔT0とΔTを数3、Lを数4、dを数5で定義し、
上記(1)式中のΔTを求めておき、その内外面温度差ΔTに基づいて定数Aが1.0〜1.9の範囲の条件で、且つKが2.0〜4.0の範囲の条件で、溶接材部と母材部との境界の残留応力を解析して各定数Aにおける定数Kと残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる定数Kの範囲(3.0〜4.0)を求めておき、
次いで、コイル幅Lがその定数Kの範囲(3.0〜4.0)のコイルについて、定数K’が1.0、定数Bが1.0の条件で、上記(1)式中のΔT0を変化させ、溶接材部と母材部との境界の残留応力を解析して各定数KにおけるΔT 0 と残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる内外面温度差ΔT0の範囲を求めると共に上記(1)式から定数Aの範囲を決定しておき、
これら解析結果から残留引張応力が0MPa以下となる定数Kと定数Aの組み合わせを決定し、定数Bが1.0、定数K’が1.0以上となるようにコイルかぶり代dを設定した場合に、その決定した定数Kと定数Aに基づいて、配管の内外面に温度差ΔT0を与え、且つコイル幅Lを設定して高周波誘導加熱するに際して、
定数Kを3.0以上とし、定数Aを1.8以上とすることを特徴とする高周波誘導加熱残留応力改善法である。
In the invention of
ΔT in the above equation (1) is obtained, the constant A is in the range of 1.0 to 1.9 based on the inner and outer surface temperature difference ΔT, and K is in the range of 2.0 to 4.0. The residual stress at the boundary between the welded material part and the base metal part is analyzed under the conditions described above, and the relationship between the constant K and the residual stress in each constant A is obtained and graphed , and the residual tensile stress is based on the graph. The range of the constant K (3.0 to 4.0) in which is 0 MPa or less is obtained,
Next, with respect to the coil whose coil width L is in the range of the constant K (3.0 to 4.0), ΔT in the above equation (1) under the condition that the constant K ′ is 1.0 and the constant B is 1.0. By changing 0 , the residual stress at the boundary between the welded material part and the base material part is analyzed to obtain the relationship between ΔT 0 and the residual stress at each constant K and graphed , and the residual tension based on the graph stress leave determining the scope of the constant a from the equation (1) with determining the range of the inner and outer surface temperature difference [Delta] T 0 equal to or less than 0 MPa,
When the combination of the constant K and the constant A at which the residual tensile stress is 0 MPa or less is determined from these analysis results, and the coil cover allowance d is set so that the constant B is 1.0 and the constant K ′ is 1.0 or more Further, based on the determined constant K and constant A, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe, and the coil width L is set to perform high frequency induction heating .
This is a high frequency induction heating residual stress improving method characterized in that the constant K is 3.0 or more and the constant A is 1.8 or more .
請求項3の発明は、オーステナイト系ステンレス鋼製配管の溶接継手部の内面の残留応力を改善すべく、その溶接継手部外周に高周波誘導コイルをそのコイル端から継手部中心までの距離のうち短い方の距離であるコイルかぶり代がdとなるようにずらして配置し、且つ上記配管内に冷却水を流しながら上記高周波誘導コイルに高周波電流を流して溶接継手部を加熱する高周波誘導加熱残留応力改善法において、一方の上記配管の溶接継手部近傍の厚さをtとし、他方の上記配管の溶接継手部の厚さを定数B×tとした場合の溶接材部と母材部との境界の残留引張応力を0MPa以下とすべく、上記配管の溶接継手部の実際の内外面温度差をΔT0、高周波誘導コイルを配置するコイル幅をLとし、且つ溶接中心から10mmの位置での残留引張応力が98MPa以下となる内外面温度差をΔTとしたとき、ΔT0とΔTを数6、Lを数7、dを数8で定義し、
上記(1)式中のΔTを求めておき、その内外面温度差ΔTに基づいて定数Aが1.0〜1.9の範囲の条件で、且つKが2.0〜4.0の範囲の条件で、溶接材部と母材部との境界の残留応力を解析して各定数Aにおける定数Kと残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる定数Kの範囲(3.0〜4.0)を求めておき、
次いで、コイル幅Lがその定数Kの範囲(3.0〜4.0)のコイルについて、定数K’が1.0、定数Bが1.5の条件で、上記(1)式中のΔT0を変化させ、溶接材部と母材部との境界の残留応力を解析して各定数KにおけるΔT 0 と残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる内外面温度差ΔT0の範囲を求めると共に上記(1)式から定数Aの範囲を決定しておき、
これら解析結果から残留引張応力が0MPa以下となる定数Kと定数Aの組み合わせを決定し、定数Bが1.5、定数K’が1.0以上となるようにコイルかぶり代dを設定した場合に、その決定した定数Kと定数Aに基づいて、配管の内外面に温度差ΔT0を与え、且つコイル幅Lを設定して高周波誘導加熱するに際して、
定数Kを3.0以上とし、定数Aを1.4以上とすることを特徴とする高周波誘導加熱残留応力改善法である。
The invention according to
ΔT in the above equation (1) is obtained, the constant A is in the range of 1.0 to 1.9 based on the inner and outer surface temperature difference ΔT, and K is in the range of 2.0 to 4.0. The residual stress at the boundary between the welded material part and the base metal part is analyzed under the conditions described above, and the relationship between the constant K and the residual stress in each constant A is obtained and graphed , and the residual tensile stress is based on the graph. The range of the constant K (3.0 to 4.0) in which is 0 MPa or less is obtained,
Next, with respect to the coil having a coil width L in the range of the constant K (3.0 to 4.0), ΔT in the above equation (1) under the condition that the constant K ′ is 1.0 and the constant B is 1.5. By changing 0 , the residual stress at the boundary between the welded material part and the base material part is analyzed to obtain the relationship between ΔT 0 and the residual stress at each constant K and graphed , and the residual tension based on the graph stress leave determining the scope of the constant a from the equation (1) with determining the range of the inner and outer surface temperature difference [Delta] T 0 equal to or less than 0 MPa,
When the combination of the constant K and the constant A at which the residual tensile stress is 0 MPa or less is determined from these analysis results, and the coil cover allowance d is set so that the constant B is 1.5 and the constant K ′ is 1.0 or more Further, based on the determined constant K and constant A, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe, and the coil width L is set to perform high frequency induction heating .
This is a high frequency induction heating residual stress improving method characterized in that the constant K is 3.0 or more and the constant A is 1.4 or more .
請求項4の発明は、オーステナイト系ステンレス鋼製配管の溶接継手部の内面の残留応力を改善すべく、その溶接継手部外周に高周波誘導コイルをそのコイル端から継手部中心までの距離のうち短い方の距離であるコイルかぶり代がdとなるようにずらして配置し、且つ上記配管内に冷却水を流しながら上記高周波誘導コイルに高周波電流を流して溶接継手部を加熱する高周波誘導加熱残留応力改善法において、一方の上記配管の溶接継手部近傍の厚さをtとし、他方の上記配管の溶接継手部の厚さを定数B×tとした場合の溶接材部と母材部との境界の残留引張応力を0MPa以下とすべく、上記配管の溶接継手部の実際の内外面温度差をΔT0、高周波誘導コイルを配置するコイル幅をLとし、且つ溶接中心から10mmの位置での残留引張応力が98MPa以下となる内外面温度差をΔTとしたとき、ΔT0とΔTを数9、Lを数10、dを数11で定義し、
上記(1)式中のΔTを求めておき、その内外面温度差ΔTに基づいて定数Aが1.0〜1.9の範囲の条件で、且つKが2.0〜4.0の範囲の条件で、溶接材部と母材部との境界の残留応力を解析して各定数Aにおける定数Kと残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる定数Kの範囲(3.0〜4.0)を求めておき、
次いで、コイル幅Lがその定数Kの範囲(3.0〜4.0)のコイルについて、定数K’が0.5、定数Bが1.0の条件で、上記(1)式中のΔT0を変化させ、溶接材部と母材部との境界の残留応力を解析して各定数KにおけるΔT 0 と残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる内外面温度差ΔT0の範囲を求めると共に上記(1)式から定数Aの範囲を決定しておき、
これら解析結果から残留引張応力が0MPa以下となる定数Kと定数Aの組み合わせを決定し、定数Bが1.0、定数K’が0.5以上となるようにコイルかぶり代dを設定した場合に、その決定した定数Kと定数Aに基づいて、配管の内外面に温度差ΔT0を与え、且つコイル幅Lを設定して高周波誘導加熱するに際して、
定数Kを3.0以上とし、定数Aを2.0以上とすることを特徴とする高周波誘導加熱残留応力改善法である。
The invention according to claim 4, to improve the residual stress of the inner surface of the welded joint portion of the austenitic stainless steel pipe, short of the distance the high-frequency induction coil to the welded joint from the outer periphery thereof a coil end to joint center The high frequency induction heating residual stress is arranged so that the coil cover allowance, which is the distance, is shifted so as to be d, and the welding joint is heated by supplying a high frequency current to the high frequency induction coil while flowing cooling water in the pipe. In the improvement method, the boundary between the welded material part and the base material part when the thickness of the welded joint part of one of the pipes is t and the thickness of the welded joint part of the other pipe is a constant B × t In order to make the residual tensile stress of 0 MPa or less, the actual temperature difference between the inner and outer surfaces of the welded joint of the pipe is ΔT 0 , the coil width in which the high frequency induction coil is arranged is L, and the residual at a
ΔT in the above equation (1) is obtained, the constant A is in the range of 1.0 to 1.9 based on the inner and outer surface temperature difference ΔT, and K is in the range of 2.0 to 4.0. The residual stress at the boundary between the welded material part and the base metal part is analyzed under the conditions described above, and the relationship between the constant K and the residual stress in each constant A is obtained and graphed , and the residual tensile stress is based on the graph. The range of the constant K (3.0 to 4.0) in which is 0 MPa or less is obtained,
Next, with respect to the coil having a coil width L in the range of the constant K (3.0 to 4.0), ΔT in the above equation (1) under the condition that the constant K ′ is 0.5 and the constant B is 1.0. By changing 0 , the residual stress at the boundary between the welded material part and the base material part is analyzed to obtain the relationship between ΔT 0 and the residual stress at each constant K and graphed , and the residual tension based on the graph stress leave determining the scope of the constant a from the equation (1) with determining the range of the inner and outer surface temperature difference [Delta] T 0 equal to or less than 0 MPa,
When the combination of the constant K and the constant A at which the residual tensile stress is 0 MPa or less is determined from these analysis results, and the coil cover allowance d is set so that the constant B is 1.0 and the constant K ′ is 0.5 or more Further, based on the determined constant K and constant A, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe, and the coil width L is set to perform high frequency induction heating .
This is a high frequency induction heating residual stress improving method characterized in that the constant K is set to 3.0 or more and the constant A is set to 2.0 or more .
請求項5の発明は、オーステナイト系ステンレス鋼製配管の溶接継手部の内面の残留応力を改善すべく、その溶接継手部外周に高周波誘導コイルをそのコイル端から継手部中心までの距離のうち短い方の距離であるコイルかぶり代がdとなるようにずらして配置し、且つ上記配管内に冷却水を流しながら上記高周波誘導コイルに高周波電流を流して溶接継手部を加熱する高周波誘導加熱残留応力改善法において、一方の上記配管の溶接継手部近傍の厚さをtとし、他方の上記配管の溶接継手部の厚さを定数B×tとした場合の溶接材部と母材部との境界の残留引張応力を0MPa以下とすべく、上記配管の溶接継手部の実際の内外面温度差をΔT0、高周波誘導コイルを配置するコイル幅をLとし、且つ溶接中心から10mmの位置での残留引張応力が98MPa以下となる内外面温度差をΔTとしたとき、ΔT0とΔTを数12、Lを数13、dを数14で定義し、
上記(1)式中のΔTを求めておき、その内外面温度差ΔTに基づいて定数Aが1.0〜1.9の範囲の条件で、且つKが2.0〜4.0の範囲の条件で、溶接材部と母材部との境界の残留応力を解析して各定数Aにおける定数Kと残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる定数Kの範囲(3.0〜4.0)を求めておき、
次いで、コイル幅Lがその定数Kの範囲(3.0〜4.0)のコイルについて、定数K’が0.5、定数Bが2.0の条件で、上記(1)式中のΔT0を変化させ、溶接材部と母材部との境界の残留応力を解析して各定数KにおけるΔT 0 と残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる内外面温度差ΔT0の範囲を求めると共に上記(1)式から定数Aの範囲を決定しておき、
これら解析結果から残留引張応力が0MPa以下となる定数Kと定数Aの組み合わせを決定し、定数Bが2.0、定数K’が0.5以上となるようにコイルかぶり代dを設定した場合に、その決定した定数Kと定数Aに基づいて、配管の内外面に温度差ΔT0を与え、且つコイル幅Lを設定して高周波誘導加熱するに際して、
定数Kを3.0以上とし、定数Aを1.6以上とすることを特徴とする高周波誘導加熱残留応力改善法である。
The invention of
ΔT in the above equation (1) is obtained, the constant A is in the range of 1.0 to 1.9 based on the inner and outer surface temperature difference ΔT, and K is in the range of 2.0 to 4.0. The residual stress at the boundary between the welded material part and the base metal part is analyzed under the conditions described above, and the relationship between the constant K and the residual stress in each constant A is obtained and graphed , and the residual tensile stress is based on the graph. The range of the constant K (3.0 to 4.0) in which is 0 MPa or less is obtained,
Next, with respect to a coil having a coil width L in the range of the constant K (3.0 to 4.0), ΔT in the above equation (1) under the condition that the constant K ′ is 0.5 and the constant B is 2.0. By changing 0 , the residual stress at the boundary between the welded material part and the base material part is analyzed to obtain the relationship between ΔT 0 and the residual stress at each constant K and graphed , and the residual tension based on the graph stress leave determining the scope of the constant a from the equation (1) with determining the range of the inner and outer surface temperature difference [Delta] T 0 equal to or less than 0 MPa,
When the combination of the constant K and the constant A at which the residual tensile stress is 0 MPa or less is determined from these analysis results, and the coil cover allowance d is set so that the constant B is 2.0 and the constant K ′ is 0.5 or more Further, based on the determined constant K and constant A, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe, and the coil width L is set to perform high frequency induction heating .
This is a high frequency induction heating residual stress improving method characterized in that the constant K is 3.0 or more and the constant A is 1.6 or more .
請求項6の発明は、上記高周波誘導コイルで加熱される溶接継手部は、配管に鋭敏化が発生する鋭敏化時間τを数15で定義したとき、
配管に鋭敏化が発生する鋭敏化温度と鋭敏化時間τの関係を示した鋭敏化線図に基づいて、鋭敏化が発生しない加熱温度及び加熱時間で加熱される請求項1から5いずれかに記載の高周波誘導加熱残留応力改善法である。
In the invention of
Based on the sensitized diagram sensitization is showing the relationship between the sensitization temperature and sensitization time generated τ to the pipe, from
請求項7の発明は、上記高周波誘導コイルのコイル幅両端におけるコイルの導線の配列ピッチを、上記コイル幅中心側における導線の配列ピッチよりも短くした請求項1から6いずれかに記載の高周波誘導加熱残留応力改善法である。 A seventh aspect of the present invention is the high frequency induction according to any one of the first to sixth aspects, wherein the arrangement pitch of the conductive wires of the coil at both ends of the high frequency induction coil is shorter than the arrangement pitch of the conductive wires at the coil width center side. It is a heating residual stress improvement method.
本発明によれば、高周波誘導コイルの中心位置が溶接継手部の中心位置と一致させられない場合でも、溶接材部(デポ部)と母材部の境界で残留引張応力を0MPa以下とすることができるといった優れた効果を発揮する。 According to the present invention, even when the center position of the high-frequency induction coil cannot be matched with the center position of the weld joint, the residual tensile stress is set to 0 MPa or less at the boundary between the weld material part (depot part) and the base material part. Exhibits excellent effects such as
高周波誘導加熱残留応力改善法(IHSI)は、既設原子力発電所のオーステナイト系ステンレス鋼製配管のSCC対策工法の一つとして開発されており、溶接線近傍内面熱影響部における残留引張応力を改善する工法である。 High Frequency Induction Heating Residual Stress Improvement Method (IHSI) has been developed as one of the SCC countermeasures for austenitic stainless steel pipes in existing nuclear power plants, and improves residual tensile stress in the heat affected zone near the weld line. It is a construction method.
本発明に係る高周波誘導加熱残留応力改善法は、図1に示すように、配管1の溶接継手部2の外周に高周波誘導コイル3をその継手部2を中心に所定幅で配置する。或いは溶接継手部2近傍の配管1表面にプラグ等の突起物(図示せず)が形成されている場合には、図2に示すように、高周波誘導コイル3を配管1の溶接継手部2の外周に、コイル端から継手部2の中心までの距離であるコイルかぶり代dが所定の値になるようにオフセット配置する。
In the high frequency induction heating residual stress improving method according to the present invention, as shown in FIG. 1, a high
そして、上記配管1内に冷却水を流しながら高周波誘導コイル3に高周波加熱電源4から高周波電流を流して継手部2を加熱し、配管1の厚さ方向に大きな温度差を発生させる。このとき、配管1の加熱部の外面5では圧縮の降伏が生じ、内面6では引張りの降伏が生じる。なお、図1及び図2では、高周波誘導コイル3は、一体的な模式図で示したが、図8乃至図10に示すように、導線10,11,12を複数周巻き回して構成されている。
Then, while flowing cooling water through the
次に加熱を停止すると、配管1の内外面5,6の温度差はなくなり、配管1の外面5の圧縮降伏した所では引張りの残留応力が残り、配管1の内面6の引張降伏した所では圧縮の残留応力が生じる。
Next, when the heating is stopped, the temperature difference between the inner and
高周波誘導加熱残留応力改善法は、上述の原理を溶接継手部2に適用して、配管1の内面の残留引張応力を軽減或いは圧縮側にするものである。
The high frequency induction heating residual stress improvement method applies the above principle to the welded
従来の改善要求は、上述したように、溶接中心から10mmの位置で、残留引張応力が98MPa以下とすることであった。
As described above, the conventional improvement demand is that the residual tensile stress is 98 MPa or less at a
この場合の基本条件として、高周波誘導コイルを配置するコイル幅L(mm)で、且つ配管の内外面温度差ΔT(℃)とすると、以下の(5)式及び(6)式の条件を満たせばよいことが非特許文献1に規定されていた。なお、この場合の高周波誘導コイルは、溶接継手部を中心として配置されている。
As basic conditions in this case, if the coil width L (mm) in which the high-frequency induction coil is arranged and the temperature difference ΔT (° C.) between the inside and outside of the pipe, the conditions of the following expressions (5) and (6) can be satisfied.
ここで、(5)式により求めた配管の内外面温度差ΔTに基づいて、1.0ΔT、1.3ΔT、1.6ΔT、1.9ΔTの四種それぞれに2.0√(Rt)、2.5√(Rt)、3.0√(Rt)、3.5√(Rt)、4.0√(Rt)の条件で、配管内面の溶接中心から10mmの位置の残留引張応力を解析して、上記要求を満たすことができるコイル幅(コイル長さ)及び配管の内外面温度差を算出した。これによって、図3に示すように、上記従来の要求を満たすための基準は、内外面温度差が1.0ΔT以上で、コイル幅が2.7√(Rt)以上であることが導き出される。なお、この解析における配管溶接は、開先角度が略30°である通常開先を用いて行われている。
Here, 2.0√ (Rt), 2 for each of the four types of 1.0ΔT, 1.3ΔT, 1.6ΔT, and 1.9ΔT, based on the inner and outer surface temperature difference ΔT obtained by the equation (5). .5√ (Rt), 3.0√ (Rt), 3.5√ (Rt), 4.0√ (Rt) and analyzing the residual tensile stress at a
しかし、上記の条件で残留応力を改善しても、溶接中心から10mmの位置で残留応力が98MPa以下となるように改善できるものの、この値では、溶接継手部に引張応力が残存する可能性があるため、溶接材部(デポ部)と母材部との境界に引張応力が作用し、残留応力低減の程度が低い可能性があることが判明した。
However, even if the residual stress is improved under the above conditions, the residual stress can be improved to 98 MPa or less at a
また、例えばSUS316LC(ローカーボン)等の、SCC対策材では、溶接材部近傍でSCCが発生する知見が得られた。これは、溶接による残留応力が溶接材部と母材部との境界で高くなるためであることを見出した。 In addition, in the SCC countermeasure material such as SUS316LC (low carbon), for example, knowledge that SCC is generated in the vicinity of the welded portion was obtained. It has been found that this is because the residual stress due to welding becomes high at the boundary between the welded material portion and the base material portion.
そこで、本発明者等は、応力改善の評価点を溶接材部と母材部との境界とし、残留応力を少なくとも引張応力ではなく圧縮応力となる、すなわち0MPa以下とすることを条件とした。 Therefore, the inventors set the evaluation point for stress improvement as the boundary between the weld material part and the base material part, and set the residual stress to be at least compressive stress instead of tensile stress, that is, 0 MPa or less.
まず、開先角度が略30°である通常開先で、高周波誘導コイル3を溶接継手部2を中心に配置した場合について解析する。
First, the case where the high
(5)式により求めた配管の内外面温度差ΔTに基づいて、1.0ΔT、1.3ΔT、1.6ΔT、1.9ΔTの四種それぞれに、2.0√(Rt)、2.5√(Rt)、3.0√(Rt)、3.5√(Rt)、4.0√(Rt)の条件で、溶接材部(デポ部)7と母材部8との境界の残留応力を解析して算出した(図4参照)。
Based on the pipe inner / outer surface temperature difference ΔT obtained by the equation (5), 2.0√ (Rt), 2.5 for each of four types of 1.0ΔT, 1.3ΔT, 1.6ΔT, and 1.9ΔT. √ (Rt), 3.0√ (Rt), 3.5√ (Rt), 4.0√ (Rt), remaining boundary of weld material portion (depot portion) 7 and
一方、コイル幅Lが、3.0√(Rt)、3.2√(Rt)、3.5√(Rt)、4.0√(Rt)の四種のコイルについて、内外面温度差ΔT0と、溶接材部(デポ部)7と母材部8との境界の残留応力との関係を解析した(図5参照)。 On the other hand, for the four types of coils having coil widths L of 3.0√ (Rt), 3.2√ (Rt), 3.5√ (Rt), and 4.0√ (Rt), the inner / outer surface temperature difference ΔT. 0 and was analyzed the relationship between the residual stress of the boundary between the weld material portion (deposition unit) 7 and the base material portion 8 (see FIG. 5).
これらの解析における配管溶接は、図16に示す通常の開先形状で行われている。図示するように、配管1の内面6側には2mm角のリップが形成され、内面6から19mmの位置までは開先角度が略30°になるように形成されている。内面6より19mm以上離れた位置では、開先角度は略10°となっている。隣接する配管1のリップ間にはインサートリング(図示せず)が設けられている。また、高周波誘導コイル3は、溶接継手部2を中心に所定幅で配置されている。
Pipe welding in these analyzes is performed in the normal groove shape shown in FIG. As shown in the drawing, a 2 mm square lip is formed on the
図4及び図5の解析結果より、配管1の内外面温度差ΔT0が高いほど引張の残留応力は小さく、圧縮側へと移行し、コイル幅(コイル長さ)Lが長いほど、引張の残留応力は小さくなることが判った。
From the analysis results of FIG. 4 and FIG. 5, the residual stress of the tension the higher the inner and outer surfaces the temperature difference [Delta] T 0 of the
そして、図5のグラフより、引張の残留応力が0MPa以下になる内外面温度差ΔT0は、3.0√(Rt)のとき445℃(=1.63ΔT(ΔT=273℃))以上であり、3.5√(Rt)のとき415℃(=1.52ΔT)以上であり、4.0√(Rt)のとき400℃(=1.47ΔT)以上であることを見出した。 From the graph of FIG. 5, the inner and outer surface temperature difference ΔT 0 at which the tensile residual stress is 0 MPa or less is 445 ° C. (= 1.63ΔT (ΔT = 273 ° C. )) or more at 3.0√ (Rt). Yes, it was found to be 415 ° C. (= 1.52ΔT) or more when 3.5√ (Rt) and 400 ° C. (= 1.47ΔT) or more when 4.0√ (Rt).
これらの結果と図4のグラフより、配管1の溶接継手部2の
(1)内外面温度差ΔT0が1.7ΔT以上で、コイル幅Lが3.0√(Rt)以上であること、
(2)内外面温度差ΔT0が1.6ΔT以上で、コイル幅Lが3.5√(Rt)以上であること、
(3)内外面温度差ΔT0が1.5ΔT以上で、コイル幅Lが4.0√(Rt)以上であること、
を、通常の開先形状でコイルを中心配置した場合に、上記条件を満たすための新たな基準とした。
From these results and the graph of FIG. 4, (1) the inner and outer surface temperature difference ΔT 0 of the welded
(2) The inner / outer surface temperature difference ΔT 0 is 1.6ΔT or more and the coil width L is 3.5√ (Rt) or more.
(3) The inner / outer surface temperature difference ΔT 0 is 1.5ΔT or more and the coil width L is 4.0√ (Rt) or more.
Was set as a new standard for satisfying the above condition when the coil was arranged in the center with a normal groove shape.
すなわち、本発明は、オーステナイト系ステンレス鋼製配管1の溶接継手部2の内面の残留応力を改善すべく、その溶接継手部2外周に高周波誘導コイル3をその溶接継手部2を中心に所定幅で配置し、且つ配管1内に冷却水を流しながら高周波誘導コイル3に高周波電流を流して溶接継手部2を加熱する高周波誘導加熱残留応力改善法において、溶接材部(デポ部)7と母材部8との境界の残留引張応力を0MPa以下とすべく、配管1の溶接継手部2の内外面温度差をΔT0、高周波誘導コイルを配置するコイル幅をLとし、
That is, in the present invention, in order to improve the residual stress of the inner surface of the welded
としたとき、定数Aが1.7以上となるように配管の内外面に温度差ΔT0を与え、且つ定数Kが3.0以上となるようにコイル幅を設定して高周波誘導加熱することを特徴とする。 , The temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe so that the constant A becomes 1.7 or more, and the coil width is set so that the constant K becomes 3.0 or more and high frequency induction heating is performed. It is characterized by.
また、上記定数Aが1.6以上となるように配管の内外面に温度差ΔT0を与え、且つ上記定数Kが3.5以上となるようにコイル幅を設定して高周波誘導加熱するようにしてもよい。 Further, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe so that the constant A is 1.6 or more, and the coil width is set so that the constant K is 3.5 or more so that high frequency induction heating is performed. It may be.
さらに、上記定数Aが1.5以上となるように配管の内外面に温度差ΔT0を与え、且つ上記定数Kが4.0以上となるようにコイル幅を設定して高周波誘導加熱するようにしてもよい。 Further, the temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe so that the constant A becomes 1.5 or more, and the coil width is set so that the constant K becomes 4.0 or more so that high frequency induction heating is performed. It may be.
ところで、配管1の最高加熱温度は、配管1が鋭敏化する温度を超えない温度とする。最高加熱温度は、ステンレス鋼材の種類に応じて決まる。例えば、SUS304では、550℃であるが、この場合ΔTは下記の(5)式より273℃(ν=0.3、E=195000、α=15.14×10-6、σy=288)となり、1.7ΔTは、464.1℃となる。冷却水が略50℃であるので、加熱温度は、514.1℃あればよく、最高加熱温度を超えることはない。よって、1.6ΔT及び1.5ΔTについても、加熱温度が最高加熱温度を超えることはない。
By the way, the maximum heating temperature of the
なお、最高加熱温度は、加熱時間に応じて変化する。一例として、図6に、SUS304及びSUS304LCに鋭敏化が発生する鋭敏化温度(加熱温度)と鋭敏化時間(加熱時間)の関係を示した鋭敏化線図、図7に、SUS316及びSUS316L(SUS316LC)に鋭敏化が発生する鋭敏化温度(加熱温度)と鋭敏化時間(加熱時間)の関係を示した鋭敏化線図を示す。ここで、加熱時間τは、下記の数7の式で算出される。 Note that the maximum heating temperature varies according to the heating time. As an example, FIG. 6 is a sensitization diagram showing the relationship between sensitization temperature (heating temperature) at which sensitization occurs in SUS304 and SUS304LC and sensitization time (heating time), and FIG. 7 shows SUS316 and SUS316L (SUS316LC). ) Shows a sensitization diagram showing the relationship between the sensitization temperature (heating temperature) at which sensitization occurs and the sensitization time (heating time). Here, the heating time τ is calculated by the following equation (7).
(7)式によれば、例えばSUS304製の厚さ40mmの配管では、加熱時間τは、311sec(t=40、a=3.59)であり、SUS316であっても加熱時間τは、長くとも10分以下である。従って、SUS304、SUS304LC、SUS316及びSUS316LC(SUS316L)では、最高加熱温度を650℃とすることができる。 According to the equation (7), for example, in a pipe made of SUS304 having a thickness of 40 mm, the heating time τ is 311 sec (t = 40, a = 3.59), and even in SUS316, the heating time τ is long. Both are 10 minutes or less. Therefore, in SUS304, SUS304LC, SUS316, and SUS316LC (SUS316L), the maximum heating temperature can be set to 650 ° C.
これによって、配管1の内外面温度差ΔT0をより大きく確保できることとなり、コイル幅Lの確保が困難な場合でも、溶接材部(デポ部)7と母材部8との境界の残留引張応力を0MPa以下とすることができる。
As a result, the temperature difference ΔT 0 between the inner and outer surfaces of the
次に、高周波誘導コイル3が通常開先の溶接継手部2を中心に所定幅で配置された場合で、コイル幅Lが3.0√(Rt)である本実施の形態に係るコイルと、コイル幅Lが2.7√(Rt)の従来のコイルとで、配管1の外面温度が最高加熱温度になるように加熱した場合における配管1の各部分の温度分布を比較する。図8に本実施の形態に係るコイルによる加熱時の配管1の温度分布、図9に従来のコイルによる加熱時の配管1の温度分布を示す。
Next, in the case where the high
コイル幅Lが3.0√(Rt)の本実施の形態に係るコイルの導線10は等ピッチで14ターン、コイル幅Lが2.7√(Rt)の従来のコイルの導線10は等ピッチで12ターンとした。
The
図8及び図9に示すように、コイル幅が3.0√(Rt)の場合では、2.7√(Rt)の場合よりも、配管1の外面温度が1.7ΔT+内面温度以上となる領域(応力改善効果のある領域)が広く、溶接継手部2の両側で加熱される部分が長くなるので、溶接継手部2において内外面温度差1.7ΔTを確実に確保することができる。よって、加熱を停止した際に配管1の内面6に生じる圧縮の残留応力をより大きくすることができ、応力改善効果が高くなる。
As shown in FIGS. 8 and 9, when the coil width is 3.0√ (Rt), the outer surface temperature of the
従って、溶接材部(デポ部)7と母材部8との境界の残留引張応力を0MPa以下とすることが保証でき、溶接継手部2のSCC発生を確実に防止することができる。
Therefore, it can be ensured that the residual tensile stress at the boundary between the weld material part (depot part) 7 and the
また、本実施の形態に係る高周波誘導コイル3は、内外面温度差1.7ΔTを確保できる範囲が、溶接継手部2よりも十分に広いので、加熱温度を下げることも可能である。
In addition, the high-
さらに、複数種のコイル幅Lに対して、内外面温度差ΔT0を設定しているので、コイル幅Lの確保が困難な場合には、コイル幅Lに応じた内外面温度差ΔT0を付与すれば、溶接材部(デポ部)7と母材部8との境界の残留引張応力を0MPa以下とすることが保証でき、溶接継手部2のSCC発生を確実に防止することができる。また、所定の内外面温度差ΔT0を付与できない場合には、コイル幅Lを長くすればよい。
Furthermore, since the inner / outer surface temperature difference ΔT 0 is set for a plurality of types of coil widths L, when it is difficult to secure the coil width L, the inner / outer surface temperature difference ΔT 0 corresponding to the coil width L is set. If applied, it can be ensured that the residual tensile stress at the boundary between the weld material part (depot part) 7 and the
図10に、本発明に係る高周波誘導コイル3の他の実施の形態を示す。
FIG. 10 shows another embodiment of the high-
かかる実施の形態では、コイル幅方向のうち、両端のコイルの導線11の配列ピッチを、コイル幅中心側における導線12の配列ピッチよりも短くし、さらに、その両端の導線11を、中心側の導線12よりも配管1の外面5に近くなるように配置したことを特徴とする。
In such an embodiment, in the coil width direction, the arrangement pitch of the conducting wires 11 of the coils at both ends is made shorter than the arrangement pitch of the conducting
本実施の形態によれば、コイル幅方向における両端部分の温度を、等ピッチ配列の場合よりも高めることができるので、内外面温度差ΔT0が1.7ΔT+内面温度以上となる領域(応力改善効果のある領域)を図8の場合のコイルと比較して幅広く確保でき、加熱後冷却した際の応力改善効果がさらに高くなる。 According to the present embodiment, the temperature at both end portions in the coil width direction can be increased as compared with the case of the equal pitch arrangement, so that the region where the inner / outer surface temperature difference ΔT 0 is equal to or greater than 1.7ΔT + inner surface temperature (stress improvement) A region having an effect) can be ensured widely compared to the coil in the case of FIG. 8, and the stress improving effect when cooling after heating is further enhanced.
次に、通常開先で、高周波誘導コイル3の中心と溶接継手部2の中心が一致させられない(オフセット配置)場合について解析する。
Next, the case where the center of the high
コイル幅Lが、3.0√(Rt)、3.5√(Rt)、4.0√(Rt)の三種のコイルについて、内外面温度差ΔT0と、溶接材部(デポ部)7と母材部8との境界の残留応力との関係を解析した(図11参照)。
For three types of coils having coil widths L of 3.0√ (Rt), 3.5√ (Rt), 4.0√ (Rt), the inner / outer surface temperature difference ΔT 0 and the welding material portion (depot portion) 7 And the residual stress at the boundary between the
この解析における配管溶接は、図16に示す通常の開先形状で行われている。高周波誘導コイル3は、そのコイル端から継手部2中心までの距離であるコイルかぶり代がdとなるように配置されている。かぶり代dは、下記の(3)式で表される。
Pipe welding in this analysis is performed in the normal groove shape shown in FIG. The high
図11においては、定数K’を1.0として、かぶり代dを設定し、解析を行っている。 In FIG. 11, the constant K ′ is set to 1.0 and the fog allowance d is set for analysis.
さらに、この解析では、接続される配管1の厚さについても着目した。一方の配管1の溶接継手部2近傍の厚さをtとし、他方の配管1の溶接継手部2近傍の厚さを定数B×tとし、定数B=1.0(配管1の厚さtが等しい)となる溶接部2の他に、定数B=1.5となる溶接部2’(図11参照)についても解析を行った。
Furthermore, in this analysis, attention was also paid to the thickness of the
図11の解析結果より、定数B=1.0及び定数B=1.5両方の場合で、配管1の内外面温度差が高いほど引張の残留応力は小さく、圧縮側へと移行することが判った。
From the analysis result of FIG. 11, in the case of both constant B = 1.0 and constant B = 1.5, the higher the temperature difference between the inner and outer surfaces of the
そして、図11のグラフより、引張の残留応力が0MPa以下になる内外面温度差ΔT0は、定数B=1.0の場合には、3.0√(Rt)、3.5√(Rt)、4.0√(Rt)の全てのコイルで、470°(=1.72ΔT)以上であることを見出した。一方、定数B=1.5の場合には、引張の残留応力が0MPa以下になる内外面温度差ΔT0は、380°(=1.39ΔT)以上であることを見出した。 From the graph of FIG. 11, the inner / outer surface temperature difference ΔT 0 at which the tensile residual stress becomes 0 MPa or less is 3.0√ (Rt), 3.5√ (Rt) when the constant B = 1.0. ) It was found that all the coils of 4.0√ (Rt) were 470 ° (= 1.72 ΔT) or more. On the other hand, when the constant B = 1.5, it was found that the inner / outer surface temperature difference ΔT 0 at which the tensile residual stress becomes 0 MPa or less is 380 ° (= 1.39ΔT) or more.
ここで、エルボ管と直管との接続等のように、一方の配管1の継手部2近傍の厚さよりも、他方の配管1の継手部2近傍の厚さが厚いときは、肉厚が増加することで、継手の側部で剛性が変化(増加)するので、残留応力改善効果が高まると考えられる。
Here, when the thickness in the vicinity of the
以上の結果より、
(1)定数B=1.0の場合(接続する配管1の継手部2近傍の厚さが等しい場合)には、コイルかぶり代d=1.0√(Rt)以上で、配管1の溶接継手部2の内外面温度差ΔT0が1.8ΔT以上で、コイル幅Lが3.0√(Rt)以上であることを、
(2)定数B=1.5の場合には、コイルかぶり代d=1.0√(Rt)以上で、配管1の溶接継手部2の内外面温度差ΔT0が1.4ΔT以上で、コイル幅Lが3.0√(Rt)以上であることを、
通常の開先形状でコイルをオフセット配置した場合に、上記条件を満たすための新たな基準とした。
based on the above results,
(1) When the constant B = 1.0 (when the thickness in the vicinity of the
(2) When the constant B = 1.5, the coil cover allowance d = 1.0√ (Rt) or more, and the inner / outer surface temperature difference ΔT 0 of the welded
This is a new standard for satisfying the above conditions when the coil is offset in a normal groove shape.
ところで、配管1の最高加熱温度は、例えば、SUS304では、550℃であるが、この場合ΔTは(3)式より273℃となり、1.8ΔTは、491.4℃となる。冷却水が略50℃であるので、加熱温度は、541.4℃あればよく、最高加熱温度を超えることはない。これと同様に、1.4ΔTについても、加熱温度が最高加熱温度を超えることはない。
By the way, the maximum heating temperature of the
次に、定数K’を0.5として、かぶり代dを設定して、解析を行った。配管1の厚さが定数B=1.0(配管1の厚さtが等しい)となる溶接部2と、定数B=2.0となる溶接部2’’(図12参照)について、解析を行った。
Next, the constant K ′ was set to 0.5, and the fogging allowance d was set for analysis. Analysis is performed on the welded
その他の条件は、図11と同様で、コイル幅Lが、3.0√(Rt)、3.5√(Rt)、4.0√(Rt)の三種のコイルについて、内外面温度差ΔT0と、溶接材部(デポ部)7と母材部8との境界の残留応力との関係を解析した。
The other conditions are the same as in FIG. 11, and the inner and outer surface temperature differences ΔT for three types of coils having coil widths L of 3.0√ (Rt), 3.5√ (Rt), and 4.0√ (Rt). The relationship between 0 and the residual stress at the boundary between the weld material part (depot part) 7 and the
図12の解析結果より、定数B=1.0及び定数B=2.0両方の場合で、配管1の内外面温度差が高いほど引張の残留応力は小さく、圧縮側へと移行することが判った。
From the analysis result of FIG. 12, in both the case where the constant B = 1.0 and the constant B = 2.0, the higher the temperature difference between the inner and outer surfaces of the
そして、図12のグラフより、引張の残留応力が0MPa以下になる内外面温度差ΔT0は、定数B=1.0の場合には、3.0√(Rt)、3.5√(Rt)、4.0√(Rt)の全てのコイルで、525°(=1.92ΔT)以上であることを見出した。なお、この値はグラフの測定値に基づいて(外挿)算出している。一方、定数B=2.0の場合には、引張の残留応力が0MPa以下になる内外面温度差ΔT0は、435°(=1.59ΔT)以上であることを見出した。 From the graph of FIG. 12, the inner and outer surface temperature difference ΔT 0 at which the tensile residual stress becomes 0 MPa or less is 3.0√ (Rt), 3.5√ (Rt) when the constant B = 1.0. ) It was found that all the coils of 4.0√ (Rt) were 525 ° (= 1.92ΔT) or more. This value is calculated (extrapolated) based on the measured value of the graph. On the other hand, when the constant B = 2.0, it was found that the inner / outer surface temperature difference ΔT 0 at which the tensile residual stress becomes 0 MPa or less is 435 ° (= 1.59ΔT) or more.
以上の結果より、
(1)定数B=1.0の場合(接続する配管1の継手部2近傍の厚さが等しい場合)には、コイルかぶり代d=0.5√(Rt)以上で、配管1の溶接継手部2の内外面温度差ΔT0が2.0ΔT以上で、コイル幅Lが3.0√(Rt)以上であることを、
(2)定数B=2.0の場合には、コイルかぶり代d=0.5√(Rt)以上で、配管1の溶接継手部2の内外面温度差ΔT0が1.6ΔT以上で、コイル幅Lが3.0√(Rt)以上であることを、
通常の開先形状でコイルをオフセット配置した場合に、上記条件を満たすための新たな基準とした。
based on the above results,
(1) When the constant B = 1.0 (when the thickness in the vicinity of the
(2) When the constant B = 2.0, the coil cover allowance d = 0.5√ (Rt) or more, and the inner / outer surface temperature difference ΔT 0 of the welded
This is a new standard for satisfying the above conditions when the coil is offset in a normal groove shape.
すなわち、本発明は、オーステナイト系ステンレス鋼製配管1の溶接継手部2の内面の残留応力を改善すべく、その溶接継手部2外周に高周波誘導コイル3をそのコイル端から継手部2中心までの距離のうち短い方の距離であるコイルかぶり代がdとなるようにずらして配置し、且つ配管1内に冷却水を流しながら高周波誘導コイル3に高周波電流を流して溶接継手部2を加熱する高周波誘導加熱残留応力改善法において、一方の配管1の溶接継手部2近傍の厚さをtとし、他方の配管1の溶接継手部2の厚さを定数B×tとした場合の溶接材部7と母材部8との境界の残留引張応力を0MPa以下とすべく、配管1の溶接継手部2の内外面温度差をΔT0、高周波誘導コイル3を配置するコイル幅をLとし、且つ溶接中心から10mmの位置での残留引張応力が98MPa以下となる内外面温度差をΔTとしたとき、ΔT 0 とΔTを数31、Lを数32、dを数33で定義し、
That is, in the present invention, in order to improve the residual stress of the inner surface of the welded
定数Bが1.0の場合に、定数Aが1.8以上となるように配管1の内外面に温度差ΔT0を与え、且つ定数Kが3.0以上となるようにコイル幅Lを設定し、定数K’が1.0以上となるようにコイルかぶり代dを設定して高周波誘導加熱することを特徴とする。
When the constant B is 1.0, a temperature difference ΔT 0 is given to the inner and outer surfaces of the
そして、上記定数Bが1.5の場合に、上記定数Aが1.4以上となるように配管1の内外面に温度差ΔT0を与え、且つ上記定数Kが3.0以上となるようにコイル幅Lを設定し、上記定数K’が1.0以上となるようにコイルかぶり代dを設定して高周波誘導加熱するようにしてもよい。
When the constant B is 1.5, giving a temperature difference [Delta] T 0 on the inner and outer surfaces of the
また、上記定数Bが1.0の場合に、上記定数Aが2.0以上となるように配管の内外面に温度差ΔT0を与え、且つ上記定数Kが3.0以上となるようにコイル幅Lを設定し、上記定数K’が0.5以上となるようにコイルかぶり代dを設定して高周波誘導加熱するようにしてもよい。 Further, when the constant B is 1.0, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe so that the constant A becomes 2.0 or more, and the constant K becomes 3.0 or more. High frequency induction heating may be performed by setting the coil width L and setting the coil cover allowance d so that the constant K ′ is 0.5 or more.
さらに、上記定数Bが2.0の場合に、上記定数Aが1.6以上となるように配管の内外面に温度差ΔT0を与え、且つ上記定数Kが3.0以上となるようにコイル幅Lを設定し、上記定数K’が0.5以上となるようにコイルかぶり代dを設定して高周波誘導加熱するようにしてもよい。 Further, when the constant B is 2.0, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe so that the constant A is 1.6 or more, and the constant K is 3.0 or more. High frequency induction heating may be performed by setting the coil width L and setting the coil cover allowance d so that the constant K ′ is 0.5 or more.
ところで、配管1の最高加熱温度は、例えば、SUS304では、550℃であるが、この場合ΔTは(3)式より273℃となり、2.0ΔTは、546℃となる。冷却水が略50℃であるので、加熱温度は、596℃となり、550℃を越えてしまうが、上述したように、図6及び図7のグラフからの検証により、最高加熱温度は650℃とすることができるので、2.0ΔTでも問題ない。1.6ΔTについても、加熱温度が最高加熱温度を超えることはない。
By the way, the maximum heating temperature of the
次に、高周波誘導コイル3が通常開先で、高周波誘導コイル3の中心と溶接継手部2の中心が一致させられないで配置(定数K’=1.0でのオフセット配置)された場合における、コイル幅Lが3.0√(Rt)である本実施の形態の高周波誘導コイル3(図13参照)と、コイル幅Lが2.7√(Rt)である従来のコイル(図14参照)とで、配管1の外面温度が最高加熱温度となるように加熱した場合の配管の各部分の温度分布を比較する。なお、コイル幅Lが3.0√(Rt)のコイルの導線11,12は、両端のコイルの導線11の配列ピッチを、コイル幅中心側における導線12の配列ピッチよりも短くしている。コイル幅Lが2.7√(Rt)のコイルの導線10は等ピッチで配列されている。
Next, in the case where the high
図13及び図14に示すように、コイル幅が3.0√(Rt)の場合では、2.7√(Rt)の場合よりも、配管1の外面温度が1.8ΔT+内面温度以上となる領域(応力改善効果のある領域)が広く、溶接継手部2の両側で加熱される部分が長くなるので、溶接継手部2において内外面温度差1.8ΔTを確実に確保することができる。よって、加熱を停止した際に配管1の内面6に生じる圧縮の残留応力をより大きくすることができ、応力改善効果が高くなる。
As shown in FIGS. 13 and 14, when the coil width is 3.0√ (Rt), the outer surface temperature of the
従って、溶接材部(デポ部)7と母材部8との境界の残留引張応力を0MPa以下とすることが保証でき、溶接継手部2のSCC発生を確実に防止することができる。
Therefore, it can be ensured that the residual tensile stress at the boundary between the weld material part (depot part) 7 and the
また、本実施の形態に係る高周波誘導コイル3は、内外面温度差1.8ΔTを確保できる範囲が、溶接継手部2よりも十分に広いので、加熱温度を下げることも可能である。
In addition, the high-
また、コイル幅Lが3.0√(Rt)の場合では、両端の導線11の配列ピッチを小さくしているので、2.7√(Rt)の場合よりも、内外面温度差が1.8ΔT以上となる領域(応力改善効果のある領域)が広く、溶接継手部2の両側で加熱される部分が長くなる。よって、加熱を停止した際に配管1の内面6に生じる圧縮の残留応力をより大きくすることができ、応力改善効果が高くなる。
Further, when the coil width L is 3.0√ (Rt), the arrangement pitch of the conducting wires 11 at both ends is made smaller, so the inner and outer surface temperature difference is 1. A region (region having a stress improvement effect) of 8ΔT or more is wide, and a portion heated on both sides of the welded
以上のように、本発明に係る高周波誘導加熱残留応力改善法によれば、コイルかぶり代dと、コイル幅Lと配管1の内外面温度差ΔT0を設定することで、溶接継手部2部分を応力改善効果のある領域に確実に含むことができる。よって、溶接材部(デポ部)7と母材部8との境界の残留引張応力を0MPa以下とすることが保証でき、溶接継手部2のSCC発生を確実に防止することができる。
As described above, according to the high-frequency induction heating residual-stress improving method according to the present invention, by setting the coil head margin d, the coil width L of the inner and outer surfaces temperature difference [Delta] T 0 of the
また、本実施の形態によれば、両端のコイルの導線11の配列ピッチを、コイル幅中心側における導線12の配列ピッチよりも短くしているので、コイル幅における両端部分の温度を高めることができ、内外面温度差が1.8ΔT以上となる領域(応力改善効果のある領域)を拡げることができる。
Further, according to the present embodiment, the arrangement pitch of the conducting wires 11 of the coils at both ends is made shorter than the arrangement pitch of the conducting
なお、上記実施の形態では、配管1が直管同士で、直列に接続された例を挙げて説明したが、配管が直列ではなく、所定の角度をもって接続される場合でも、本発明は適用可能である。この場合、図15に示すように、コイル幅は、一方の配管15の加熱部17の端部と他方の配管16の厚さ方向中心部との距離l1と、他方の配管16の加熱部18の端部と一方の配管15の厚さ方向中心部との距離l2とを加えた長さとする。これによれば、上述の実施の形態と同様の作用効果を得られる。
In the above embodiment, the
1 配管
2 溶接継手部
3 周波数誘導コイル
5 外面
6 内面
7 溶接材部(デポ部)
8 母材部
10 導線
11 導線
12 導線
15 配管
16 配管
DESCRIPTION OF
8
Claims (7)
上記(1)式中のΔTを求めておき、その内外面温度差ΔTに基づいて定数Aが1.0〜1.9の範囲の条件で、且つKが2.0〜4.0の範囲の条件で、溶接材部と母材部との境界の残留応力を解析して各定数Aにおける定数Kと残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる定数Kの範囲(3.0〜4.0)を求めておき、
次いで、コイル幅Lがその定数Kの範囲(3.0〜4.0)のコイルについて、上記(1)式中のΔT0を変化させ、溶接材部と母材部との境界の残留応力を解析して各定数KにおけるΔT 0 と残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる内外面温度差ΔT0の範囲を求めると共に上記(1)式から定数Aの範囲を決定しておき、
これら解析結果から残留引張応力が0MPa以下となる定数Kと定数Aの組み合わせを決定し、その決定した定数Kと定数Aに基づいて、配管の内外面に温度差ΔT0を与え、且つコイル幅Lを設定して高周波誘導加熱するに際して、
定数Kを3.0以上としたとき定数Aを1.7以上とし、
定数Kを3.5以上としたとき定数Aを1.6以上とし、
定数Kを4.0以上としたとき定数Aを1.5以上とすることを特徴とする高周波誘導加熱残留応力改善法。 In order to improve the residual stress of the inner surface of the welded joint of the austenitic stainless steel pipe, a high-frequency induction coil is arranged on the outer periphery of the welded joint with a predetermined width around the joint, and cooling water is poured into the pipe. In the high-frequency induction heating residual stress improvement method in which a high-frequency current is passed through the high-frequency induction coil while heating and the weld joint is heated, the pipe is adjusted so that the residual tensile stress at the boundary between the weld material and the base material is 0 MPa or less. ΔT 0 is the actual inner / outer surface temperature difference of the welded joint portion, L is the coil width in which the high-frequency induction coil is disposed, and ΔT 0 is the inner / outer surface temperature difference at which the residual tensile stress at a position 10 mm from the welding center is 98 MPa or less. Where ΔT 0 and ΔT are defined by Equation 1 and L is defined by Equation 2,
ΔT in the above equation (1) is obtained, the constant A is in the range of 1.0 to 1.9 based on the inner and outer surface temperature difference ΔT, and K is in the range of 2.0 to 4.0. The residual stress at the boundary between the welded material part and the base metal part is analyzed under the conditions described above, and the relationship between the constant K and the residual stress in each constant A is obtained and graphed , and the residual tensile stress is based on the graph. The range of the constant K (3.0 to 4.0) in which is 0 MPa or less is obtained,
Next, with respect to the coil having a coil width L in the range of the constant K ( 3.0 to 4.0 ), ΔT 0 in the equation (1) is changed, and the residual stress at the boundary between the welded material portion and the base material portion is changed. The relationship between ΔT 0 and the residual stress at each constant K is obtained and graphed, and the range of the inner and outer surface temperature difference ΔT 0 where the residual tensile stress is 0 MPa or less is obtained based on the graph and (1) in advance to determine the range of the constant a from the equation,
From these analysis results, a combination of constant K and constant A at which the residual tensile stress is 0 MPa or less is determined, and based on the determined constant K and constant A, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe, and the coil width When setting L and performing high frequency induction heating ,
When the constant K is 3.0 or more, the constant A is 1.7 or more,
When the constant K is 3.5 or more, the constant A is 1.6 or more,
A method for improving high frequency induction heating residual stress, wherein constant A is 1.5 or more when constant K is 4.0 or more .
上記(1)式中のΔTを求めておき、その内外面温度差ΔTに基づいて定数Aが1.0〜1.9の範囲の条件で、且つKが2.0〜4.0の範囲の条件で、溶接材部と母材部との境界の残留応力を解析して各定数Aにおける定数Kと残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる定数Kの範囲(3.0〜4.0)を求めておき、
次いで、コイル幅Lがその定数Kの範囲(3.0〜4.0)のコイルについて、定数K’が1.0、定数Bが1.0の条件で、上記(1)式中のΔT0を変化させ、溶接材部と母材部との境界の残留応力を解析して各定数KにおけるΔT 0 と残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる内外面温度差ΔT0の範囲を求めると共に上記(1)式から定数Aの範囲を決定しておき、
これら解析結果から残留引張応力が0MPa以下となる定数Kと定数Aの組み合わせを決定し、定数Bが1.0、定数K’が1.0以上となるようにコイルかぶり代dを設定した場合に、その決定した定数Kと定数Aに基づいて、配管の内外面に温度差ΔT0を与え、且つコイル幅Lを設定して高周波誘導加熱するに際して、
定数Kを3.0以上とし、定数Aを1.8以上とすることを特徴とする高周波誘導加熱残留応力改善法。 In order to improve the residual stress of the inner surface of the welded joint of austenitic stainless steel piping, a high frequency induction coil is placed on the outer periphery of the welded joint, and the coil cover that is the shorter of the distance from the coil end to the joint center In the high-frequency induction heating residual stress improvement method in which the welding joint portion is heated by flowing a high-frequency current through the high-frequency induction coil while flowing cooling water in the pipe while allowing the cost to be shifted to d, The residual tensile stress at the boundary between the welded material part and the base material part is 0 MPa or less when the thickness in the vicinity of the welded joint part of the pipe is t and the thickness of the welded joint part of the other pipe is a constant B × t. Accordingly, ΔT 0 is the actual temperature difference between the inner and outer surfaces of the weld joint of the pipe, L is the coil width in which the high-frequency induction coil is disposed, and the residual tensile stress at a position 10 mm from the welding center is 98 MPa. When the temperature difference between the inner and outer surfaces is ΔT, ΔT 0 and ΔT are defined by Equation 3, L is defined by Equation 4, and d is defined by Equation 5,
ΔT in the above equation (1) is obtained, the constant A is in the range of 1.0 to 1.9 based on the inner and outer surface temperature difference ΔT, and K is in the range of 2.0 to 4.0. The residual stress at the boundary between the welded material part and the base metal part is analyzed under the conditions described above, and the relationship between the constant K and the residual stress in each constant A is obtained and graphed , and the residual tensile stress is based on the graph. The range of the constant K (3.0 to 4.0) in which is 0 MPa or less is obtained,
Next, with respect to the coil whose coil width L is in the range of the constant K (3.0 to 4.0), ΔT in the above equation (1) under the condition that the constant K ′ is 1.0 and the constant B is 1.0. By changing 0 , the residual stress at the boundary between the welded material part and the base material part is analyzed to obtain the relationship between ΔT 0 and the residual stress at each constant K and graphed , and the residual tension based on the graph stress leave determining the scope of the constant a from the equation (1) with determining the range of the inner and outer surface temperature difference [Delta] T 0 equal to or less than 0 MPa,
When the combination of the constant K and the constant A at which the residual tensile stress is 0 MPa or less is determined from these analysis results, and the coil cover allowance d is set so that the constant B is 1.0 and the constant K ′ is 1.0 or more Further, based on the determined constant K and constant A, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe, and the coil width L is set to perform high frequency induction heating .
A method of improving high frequency induction heating residual stress, wherein the constant K is 3.0 or more and the constant A is 1.8 or more .
上記(1)式中のΔTを求めておき、その内外面温度差ΔTに基づいて定数Aが1.0〜1.9の範囲の条件で、且つKが2.0〜4.0の範囲の条件で、溶接材部と母材部との境界の残留応力を解析して各定数Aにおける定数Kと残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる定数Kの範囲(3.0〜4.0)を求めておき、
次いで、コイル幅Lがその定数Kの範囲(3.0〜4.0)のコイルについて、定数K’が1.0、定数Bが1.5の条件で、上記(1)式中のΔT0を変化させ、溶接材部と母材部との境界の残留応力を解析して各定数KにおけるΔT 0 と残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる内外面温度差ΔT0の範囲を求めると共に上記(1)式から定数Aの範囲を決定しておき、
これら解析結果から残留引張応力が0MPa以下となる定数Kと定数Aの組み合わせを決定し、定数Bが1.5、定数K’が1.0以上となるようにコイルかぶり代dを設定した場合に、その決定した定数Kと定数Aに基づいて、配管の内外面に温度差ΔT0を与え、且つコイル幅Lを設定して高周波誘導加熱するに際して、
定数Kを3.0以上とし、定数Aを1.4以上とすることを特徴とする高周波誘導加熱残留応力改善法。 In order to improve the residual stress of the inner surface of the welded joint of austenitic stainless steel piping, a high frequency induction coil is placed on the outer periphery of the welded joint, and the coil cover that is the shorter of the distance from the coil end to the joint center In the high-frequency induction heating residual stress improvement method in which the welding joint portion is heated by flowing a high-frequency current through the high-frequency induction coil while flowing cooling water in the pipe while allowing the cost to be shifted to d, The residual tensile stress at the boundary between the welded material part and the base material part is 0 MPa or less when the thickness in the vicinity of the welded joint part of the pipe is t and the thickness of the welded joint part of the other pipe is a constant B × t. Accordingly, ΔT 0 is the actual temperature difference between the inner and outer surfaces of the weld joint of the pipe, L is the coil width in which the high-frequency induction coil is disposed, and the residual tensile stress at a position 10 mm from the welding center is 98 MPa. When the temperature difference between the inner and outer surfaces is ΔT, ΔT 0 and ΔT are defined by Equation 6, L is defined by Equation 7, and d is defined by Equation 8,
ΔT in the above equation (1) is obtained, the constant A is in the range of 1.0 to 1.9 based on the inner and outer surface temperature difference ΔT, and K is in the range of 2.0 to 4.0. The residual stress at the boundary between the welded material part and the base metal part is analyzed under the conditions described above, and the relationship between the constant K and the residual stress in each constant A is obtained and graphed , and the residual tensile stress is based on the graph. The range of the constant K (3.0 to 4.0) in which is 0 MPa or less is obtained,
Next, with respect to the coil having a coil width L in the range of the constant K (3.0 to 4.0), ΔT in the above equation (1) under the condition that the constant K ′ is 1.0 and the constant B is 1.5. By changing 0 , the residual stress at the boundary between the welded material part and the base material part is analyzed to obtain the relationship between ΔT 0 and the residual stress at each constant K and graphed , and the residual tension based on the graph stress leave determining the scope of the constant a from the equation (1) with determining the range of the inner and outer surface temperature difference [Delta] T 0 equal to or less than 0 MPa,
When the combination of the constant K and the constant A at which the residual tensile stress is 0 MPa or less is determined from these analysis results, and the coil cover allowance d is set so that the constant B is 1.5 and the constant K ′ is 1.0 or more Further, based on the determined constant K and constant A, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe, and the coil width L is set to perform high frequency induction heating .
A method of improving high frequency induction heating residual stress, wherein the constant K is set to 3.0 or more and the constant A is set to 1.4 or more .
上記(1)式中のΔTを求めておき、その内外面温度差ΔTに基づいて定数Aが1.0〜1.9の範囲の条件で、且つKが2.0〜4.0の範囲の条件で、溶接材部と母材部との境界の残留応力を解析して各定数Aにおける定数Kと残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる定数Kの範囲(3.0〜4.0)を求めておき、
次いで、コイル幅Lがその定数Kの範囲(3.0〜4.0)のコイルについて、定数K’が0.5、定数Bが1.0の条件で、上記(1)式中のΔT0を変化させ、溶接材部と母材部との境界の残留応力を解析して各定数KにおけるΔT 0 と残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる内外面温度差ΔT0の範囲を求めると共に上記(1)式から定数Aの範囲を決定しておき、
これら解析結果から残留引張応力が0MPa以下となる定数Kと定数Aの組み合わせを決定し、定数Bが1.0、定数K’が0.5以上となるようにコイルかぶり代dを設定した場合に、その決定した定数Kと定数Aに基づいて、配管の内外面に温度差ΔT0を与え、且つコイル幅Lを設定して高周波誘導加熱するに際して、
定数Kを3.0以上とし、定数Aを2.0以上とすることを特徴とする高周波誘導加熱残留応力改善法。 In order to improve the residual stress of the inner surface of the welded joint of austenitic stainless steel piping, a high frequency induction coil is placed on the outer periphery of the welded joint, and the coil cover that is the shorter of the distance from the coil end to the joint center In the high-frequency induction heating residual stress improvement method in which the welding joint portion is heated by flowing a high-frequency current through the high-frequency induction coil while flowing cooling water in the pipe while allowing the cost to be shifted to d, The residual tensile stress at the boundary between the welded material part and the base material part is 0 MPa or less when the thickness in the vicinity of the welded joint part of the pipe is t and the thickness of the welded joint part of the other pipe is a constant B × t. Therefore, the actual inner and outer surface temperature difference of the welded joint portion of the pipe is ΔT 0 , the coil width in which the high frequency induction coil is disposed is L, and the residual tensile stress at a position 10 mm from the welding center is 98 MPa. When the temperature difference between the inner and outer surfaces is ΔT, ΔT 0 and ΔT are defined by Equation 9, L is defined by Equation 10, and d is defined by Equation 11,
ΔT in the above equation (1) is obtained, the constant A is in the range of 1.0 to 1.9 based on the inner and outer surface temperature difference ΔT, and K is in the range of 2.0 to 4.0. The residual stress at the boundary between the welded material part and the base metal part is analyzed under the conditions described above, and the relationship between the constant K and the residual stress in each constant A is obtained and graphed , and the residual tensile stress is based on the graph. The range of the constant K (3.0 to 4.0) in which is 0 MPa or less is obtained,
Next, with respect to the coil having a coil width L in the range of the constant K (3.0 to 4.0), ΔT in the above equation (1) under the condition that the constant K ′ is 0.5 and the constant B is 1.0. By changing 0 , the residual stress at the boundary between the welded material part and the base material part is analyzed to obtain the relationship between ΔT 0 and the residual stress at each constant K and graphed , and the residual tension based on the graph stress leave determining the scope of the constant a from the equation (1) with determining the range of the inner and outer surface temperature difference [Delta] T 0 equal to or less than 0 MPa,
When the combination of the constant K and the constant A at which the residual tensile stress is 0 MPa or less is determined from these analysis results, and the coil cover allowance d is set so that the constant B is 1.0 and the constant K ′ is 0.5 or more Further, based on the determined constant K and constant A, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe, and the coil width L is set to perform high frequency induction heating .
A method of improving high frequency induction heating residual stress, wherein the constant K is 3.0 or more and the constant A is 2.0 or more .
上記(1)式中のΔTを求めておき、その内外面温度差ΔTに基づいて定数Aが1.0〜1.9の範囲の条件で、且つKが2.0〜4.0の範囲の条件で、溶接材部と母材部との境界の残留応力を解析して各定数Aにおける定数Kと残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる定数Kの範囲(3.0〜4.0)を求めておき、
次いで、コイル幅Lがその定数Kの範囲(3.0〜4.0)のコイルについて、定数K’が0.5、定数Bが2.0の条件で、上記(1)式中のΔT0を変化させ、溶接材部と母材部との境界の残留応力を解析して各定数KにおけるΔT 0 と残留応力の関係を求めておくと共にグラフ化しておき、そのグラフに基づいて残留引張応力が0MPa以下となる内外面温度差ΔT0の範囲を求めると共に上記(1)式から定数Aの範囲を決定しておき、
これら解析結果から残留引張応力が0MPa以下となる定数Kと定数Aの組み合わせを決定し、定数Bが2.0、定数K’が0.5以上となるようにコイルかぶり代dを設定した場合に、その決定した定数Kと定数Aに基づいて、配管の内外面に温度差ΔT0を与え、且つコイル幅Lを設定して高周波誘導加熱するに際して、
定数Kを3.0以上とし、定数Aを1.6以上とすることを特徴とする高周波誘導加熱残留応力改善法。 In order to improve the residual stress of the inner surface of the welded joint of austenitic stainless steel piping, a high frequency induction coil is placed on the outer periphery of the welded joint, and the coil cover that is the shorter of the distance from the coil end to the joint center In the high-frequency induction heating residual stress improvement method in which the welding joint portion is heated by flowing a high-frequency current through the high-frequency induction coil while flowing cooling water in the pipe while allowing the cost to be shifted to d, The residual tensile stress at the boundary between the welded material part and the base material part is 0 MPa or less when the thickness in the vicinity of the welded joint part of the pipe is t and the thickness of the welded joint part of the other pipe is a constant B × t. Accordingly, ΔT 0 is the actual temperature difference between the inner and outer surfaces of the weld joint of the pipe, L is the coil width in which the high-frequency induction coil is disposed, and the residual tensile stress at a position 10 mm from the welding center is 98 MPa. When the temperature difference between the inner and outer surfaces is ΔT, ΔT 0 and ΔT are defined by Equation 12, L is defined by Equation 13, and d is defined by Equation 14,
ΔT in the above equation (1) is obtained, the constant A is in the range of 1.0 to 1.9 based on the inner and outer surface temperature difference ΔT, and K is in the range of 2.0 to 4.0. The residual stress at the boundary between the welded material part and the base metal part is analyzed under the conditions described above, and the relationship between the constant K and the residual stress in each constant A is obtained and graphed , and the residual tensile stress is based on the graph. The range of the constant K (3.0 to 4.0) in which is 0 MPa or less is obtained,
Next, with respect to a coil having a coil width L in the range of the constant K (3.0 to 4.0), ΔT in the above equation (1) under the condition that the constant K ′ is 0.5 and the constant B is 2.0. By changing 0 , the residual stress at the boundary between the welded material part and the base material part is analyzed to obtain the relationship between ΔT 0 and the residual stress at each constant K and graphed , and the residual tension based on the graph stress leave determining the scope of the constant a from the equation (1) with determining the range of the inner and outer surface temperature difference [Delta] T 0 equal to or less than 0 MPa,
When the combination of the constant K and the constant A at which the residual tensile stress is 0 MPa or less is determined from these analysis results, and the coil cover allowance d is set so that the constant B is 2.0 and the constant K ′ is 0.5 or more Further, based on the determined constant K and constant A, a temperature difference ΔT 0 is given to the inner and outer surfaces of the pipe, and the coil width L is set to perform high frequency induction heating .
A method of improving high frequency induction heating residual stress, characterized in that the constant K is 3.0 or more and the constant A is 1.6 or more .
配管に鋭敏化が発生する鋭敏化温度と鋭敏化時間τの関係を示した鋭敏化線図に基づいて、鋭敏化が発生しない加熱温度及び加熱時間で加熱される請求項1から5いずれかに記載の高周波誘導加熱残留応力改善法。 The weld joint heated by the high-frequency induction coil has a sensitization time τ in which sensitization occurs in the pipe defined by Equation 15,
Based on the sensitized diagram sensitization is showing the relationship between the sensitization temperature and sensitization time generated τ to the pipe, from claim 1, the sensitization is heated at a heating temperature and the heating time does not occur to 5 or The described high frequency induction heating residual stress improvement method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004270395A JP4599957B2 (en) | 2004-09-16 | 2004-09-16 | High frequency induction heating residual stress improvement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004270395A JP4599957B2 (en) | 2004-09-16 | 2004-09-16 | High frequency induction heating residual stress improvement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006082116A JP2006082116A (en) | 2006-03-30 |
JP4599957B2 true JP4599957B2 (en) | 2010-12-15 |
Family
ID=36161034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004270395A Expired - Lifetime JP4599957B2 (en) | 2004-09-16 | 2004-09-16 | High frequency induction heating residual stress improvement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4599957B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52130409A (en) * | 1976-04-27 | 1977-11-01 | Ishikawajima Harima Heavy Ind Co Ltd | Generating method for residual stress on the inner and outer surfaces of pipe |
JPS55110729A (en) * | 1979-02-19 | 1980-08-26 | Ishikawajima Harima Heavy Ind Co Ltd | Improvement of residual stress in steel pipe |
JPS56133426A (en) * | 1980-03-25 | 1981-10-19 | Ebara Corp | Relieving method for residual stress of welded product made of austenite stainless steel |
JPS5953632A (en) * | 1982-09-22 | 1984-03-28 | Mitsubishi Heavy Ind Ltd | Method for improving residual stress in tubular body |
JPS60255930A (en) * | 1984-05-31 | 1985-12-17 | Dai Ichi High Frequency Co Ltd | Heating method and apparatus for improving residual stress in welded part of branched pipe |
JPS63227724A (en) * | 1987-03-14 | 1988-09-22 | Ishikawajima Harima Heavy Ind Co Ltd | Method for improving residual stress of stainless steel pipe or the like |
JPH07188765A (en) * | 1993-12-27 | 1995-07-25 | Ishikawajima Harima Heavy Ind Co Ltd | Improvement of residual stress in branching pipe part and cooling device |
JP2004211187A (en) * | 2003-01-08 | 2004-07-29 | Hitachi Ltd | Method and apparatus for heat treatment of piping system |
-
2004
- 2004-09-16 JP JP2004270395A patent/JP4599957B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52130409A (en) * | 1976-04-27 | 1977-11-01 | Ishikawajima Harima Heavy Ind Co Ltd | Generating method for residual stress on the inner and outer surfaces of pipe |
JPS55110729A (en) * | 1979-02-19 | 1980-08-26 | Ishikawajima Harima Heavy Ind Co Ltd | Improvement of residual stress in steel pipe |
JPS56133426A (en) * | 1980-03-25 | 1981-10-19 | Ebara Corp | Relieving method for residual stress of welded product made of austenite stainless steel |
JPS5953632A (en) * | 1982-09-22 | 1984-03-28 | Mitsubishi Heavy Ind Ltd | Method for improving residual stress in tubular body |
JPS60255930A (en) * | 1984-05-31 | 1985-12-17 | Dai Ichi High Frequency Co Ltd | Heating method and apparatus for improving residual stress in welded part of branched pipe |
JPS63227724A (en) * | 1987-03-14 | 1988-09-22 | Ishikawajima Harima Heavy Ind Co Ltd | Method for improving residual stress of stainless steel pipe or the like |
JPH07188765A (en) * | 1993-12-27 | 1995-07-25 | Ishikawajima Harima Heavy Ind Co Ltd | Improvement of residual stress in branching pipe part and cooling device |
JP2004211187A (en) * | 2003-01-08 | 2004-07-29 | Hitachi Ltd | Method and apparatus for heat treatment of piping system |
Also Published As
Publication number | Publication date |
---|---|
JP2006082116A (en) | 2006-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11959810B2 (en) | Protective tube having vibration reduction | |
CN116174978A (en) | Process for welding conduit connectors for high temperature applications | |
JPS5950730B2 (en) | How to improve residual stress in austenitic stainless steel pipes, etc. | |
JP4599957B2 (en) | High frequency induction heating residual stress improvement method | |
JP4179254B2 (en) | High frequency induction heating residual stress improvement method and high frequency induction coil | |
JP2005226112A (en) | Method for improving high frequency induction heating residual stress, and high frequency induction coil | |
JP5719107B2 (en) | Stainless steel flexible tube | |
US2396704A (en) | Carbon-molybdenum steel product and method of making same | |
WO2015076218A1 (en) | Welded-joint structure in thick-walled large-diameter pipe, and welding method therefor | |
JP4218627B2 (en) | Evaluation method of heating conditions in high frequency induction heating residual stress improvement method and construction method of high frequency induction heating residual stress improvement method | |
JP5298081B2 (en) | Pipe residual stress improvement method and construction management method | |
JP7353041B2 (en) | Flanged cast iron pipe and its manufacturing method | |
JP4254817B2 (en) | High frequency induction heating stress relaxation method | |
JP2019113166A (en) | Pipeline welding part reinforcement structure and boiler plant including the same and pipeline welding part reinforcement method | |
US12049977B2 (en) | Spirally heating submarine pipeline | |
JP5672818B2 (en) | High frequency induction heating residual stress improvement method | |
JPS63112089A (en) | Improving method for residual stress of double metal pipe and the like | |
JP2011196793A (en) | Attaching method of core spraying piping | |
JP3675463B2 (en) | Heat treatment method for piping system | |
KR20160034187A (en) | Fluid heating device | |
JP2004154807A (en) | Welding method for structure and welding support system | |
JP6844305B2 (en) | Temperature measuring device | |
JP2005111513A (en) | Method for reluxing residual tensile stress, and welding apparatus | |
JP2009250828A (en) | Method for two-dimensional analysis of welding deformation and residual stress | |
JP2005195522A (en) | Heat treatment device in piping system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100831 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100913 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4599957 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |