JP5719107B2 - Stainless steel flexible tube - Google Patents

Stainless steel flexible tube Download PDF

Info

Publication number
JP5719107B2
JP5719107B2 JP2009253978A JP2009253978A JP5719107B2 JP 5719107 B2 JP5719107 B2 JP 5719107B2 JP 2009253978 A JP2009253978 A JP 2009253978A JP 2009253978 A JP2009253978 A JP 2009253978A JP 5719107 B2 JP5719107 B2 JP 5719107B2
Authority
JP
Japan
Prior art keywords
stainless steel
pipe
tube
flexible
flexible tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009253978A
Other languages
Japanese (ja)
Other versions
JP2011099496A (en
Inventor
松山 宏之
宏之 松山
昌文 高井良
昌文 高井良
央 岩崎
央 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2009253978A priority Critical patent/JP5719107B2/en
Priority to TW099135731A priority patent/TWI524952B/en
Priority to KR1020127010506A priority patent/KR101380091B1/en
Priority to PCT/JP2010/068567 priority patent/WO2011055636A1/en
Priority to CN2010800482343A priority patent/CN102667288A/en
Publication of JP2011099496A publication Critical patent/JP2011099496A/en
Application granted granted Critical
Publication of JP5719107B2 publication Critical patent/JP5719107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/14Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics
    • F16L11/15Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics corrugated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/02Energy absorbers; Noise absorbers
    • F16L55/033Noise absorbers
    • F16L55/0337Noise absorbers by means of a flexible connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/0218Flexible soft ducts, e.g. ducts made of permeable textiles

Description

本発明は、ステンレス鋼製フレキシブル管に関する。   The present invention relates to a stainless steel flexible tube.

エアコンは冷媒を介した熱交換機であり、その配管には、一般に、熱伝導性に優れた銅管が使われている。また、銅管は、熱伝導性だけではなく加工性にも優れていることから、熱伝導性が関与しない室内外機の接続配管にも銅管が使用されている。ここで、一般家庭用エアコンであれば、配管長さが4〜5m程度あれば十分接続が可能であるが、ビルやクレーンなどの業務用エアコンの場合、室内機と室外機が離れた場所に設置されることが多いため、接続配管は数10m、場合によっては100m近くも必要になることがある。そのような場合、現状の銅管では板厚が0.8mm以上あるため、重量が大きくなり、持ち運び性が悪くなるという問題がある。また、エアコンの冷房能力によっては接続配管の管径が大きくなるため、配管の曲げ加工を行うのにベンダーのような曲げ装置が必要となる。さらには、配管の長尺化が困難なため、配管同士の接続作業が増加するなど、施工性が非常に劣るという問題がある。
その他にも、配管の重量が増加するため、配管吊り下げ箇所で被覆管がつぶれやすくなるので、配管外面で結露しやすくなって配管が錆びやすくなるという問題もあることから、現状においては、被覆管つぶれ防止のために結露防止シートを用いたりしている。
An air conditioner is a heat exchanger through a refrigerant, and a copper pipe having excellent heat conductivity is generally used for its piping. In addition, since copper pipes are excellent not only in heat conductivity but also in workability, copper pipes are also used in connection pipes for indoor and outdoor units that do not involve heat conductivity. Here, if it is a general household air conditioner, it can be connected enough if the pipe length is about 4 to 5 m. However, in the case of a commercial air conditioner such as a building or crane, the indoor unit and the outdoor unit are separated from each other. Since it is often installed, the connection pipe may be several tens of meters, and in some cases, close to 100 meters may be required. In such a case, the current copper pipe has a plate thickness of 0.8 mm or more, and thus there is a problem that the weight increases and the portability deteriorates. Further, since the pipe diameter of the connecting pipe increases depending on the cooling capacity of the air conditioner, a bending device such as a bender is required for bending the pipe. Furthermore, since it is difficult to lengthen the piping, there is a problem that workability is very inferior, for example, the connection work between the piping is increased.
In addition, since the weight of the piping increases, the cladding tube tends to be crushed at the suspended part of the piping.Therefore, there is also a problem that the piping tends to condense and the piping tends to rust. Condensation prevention sheets are used to prevent tube crushing.

上記問題を解決するため、まず、軽量化に関し、銅よりも軽いアルミ合金の適用が検討されている(例えば、特許文献1を参照)。しかしながら、アルミ管とした場合、接続のために両端に銅管が溶接されるため、加工の手間とコストがかかるという問題がある。   In order to solve the above problems, first, application of an aluminum alloy that is lighter than copper is being considered for weight reduction (see, for example, Patent Document 1). However, when an aluminum pipe is used, a copper pipe is welded to both ends for connection, and thus there is a problem that it takes time and cost for processing.

一方、ステンレス鋼は、その優れた耐食性から屋内外の各種給水・給湯・ガス用配管等に用いられている。また、ステンレス鋼は強度が高いため、板厚を薄くしてフレキシブル管にすることにより、銅やアルミ管のようにある程度の曲げ加工ができるとともに(例えば、特許文献2を参照)、板厚が薄いことで従来の銅管に比べてかなりの軽量化が可能となる。これらステンレス鋼製のフレキシブル管は、SUS304、304L、316、316Lといったオーステナイト系ステンレス鋼が多く使われているが、オーステナイト系ステンレス鋼と比較して安価で加工硬化が小さいフェライト系ステンレス鋼製のフレキシブル管については、自動車排気系での採用が検討されている(例えば、特許文献3を参照)。   On the other hand, stainless steel is used for various types of indoor and outdoor water supply, hot water supply, gas piping and the like because of its excellent corrosion resistance. In addition, since stainless steel has high strength, it can be bent to some extent like a copper or aluminum tube by thinning the plate thickness into a flexible tube (see, for example, Patent Document 2), and the plate thickness is too high. Since it is thin, it can be considerably lighter than conventional copper tubes. Austenitic stainless steels such as SUS304, 304L, 316, and 316L are often used for these stainless steel flexible tubes, but they are flexible and made of ferritic stainless steel that is less expensive and less hard to work than austenitic stainless steel. As for the pipe, adoption in an automobile exhaust system is being studied (for example, see Patent Document 3).

そこで、本発明者等は鋭意検討を行い、フェライト系ステンレス鋼を用いてエアコンに接続可能となるように、フレキシブル管の曲げ加工性およびフレア加工性を検討して、その素材および波形形状条件を見出した(特許文献4を参照)。しかしながら、このフレキシブル管を実際にエアコンにつないで評価したところ、冷媒ガスの流れが強くなるとともに、フレキシブル管の波形形状に起因すると推定される流体騒音が発生するおそれがあることが判明した。   Therefore, the present inventors have intensively studied, examined the bending workability and flaring workability of the flexible pipe so that it can be connected to an air conditioner using ferritic stainless steel, and determined the material and the waveform shape condition. (See Patent Document 4). However, when this flexible pipe was actually connected to an air conditioner and evaluated, it was found that the flow of the refrigerant gas becomes strong and there is a possibility of generating fluid noise estimated to be caused by the waveform shape of the flexible pipe.

この流体騒音は、ガスヒーターやボイラなどの熱交換器において、ダクト、伝熱管群、および機体の流れの3つに起因して発生する気柱共鳴現象と同等のものと推定される。これは、ダクト内を流れる気体流速の上昇とともに、伝熱管群で放出されるカルマン渦の周波数が増大し、ダクトの気柱共鳴周波数と一致して騒音が発生することが知られており(非特許文献1)、フレキシブル管においては、ガスの流れに伴い、波型形状に起因して発生するカルマン渦の周波数と、フレキシブル管との共鳴周波数が一致することで発生したものと推定される。これらフレキシブル管の流体騒音対策としては、例えば、管内部を流動する空気が多数の溝に流入しないような壁を設けるフレキシブル管が検討されている(例えば、特許文献5、6を参照)。しかしながら、特許文献5、6に記載の方法では、工業的に安定製造するのは多大なコストがかかるという問題があった。   This fluid noise is presumed to be equivalent to an air column resonance phenomenon that occurs in a heat exchanger such as a gas heater or a boiler due to three of the duct, the heat transfer tube group, and the flow of the airframe. It is known that the frequency of Karman vortices emitted from the heat transfer tube group increases as the flow velocity of the gas flowing in the duct increases, and noise is generated in line with the air column resonance frequency of the duct (non- Patent Document 1), in a flexible tube, it is presumed that the frequency of Karman vortex generated due to the corrugated shape and the resonance frequency of the flexible tube coincide with the gas flow. As a countermeasure against fluid noise of these flexible pipes, for example, a flexible pipe having a wall that prevents the air flowing inside the pipe from flowing into many grooves has been studied (for example, see Patent Documents 5 and 6). However, in the methods described in Patent Documents 5 and 6, there is a problem that it takes a great deal of cost for industrially stable production.

特開2003−227583号公報JP 2003-227583 A 特開2006−177529号公報JP 2006-177529 A 特開平11−159616号公報JP-A-11-159616 特開2009−185351号公報JP 2009-185351 A 特開2008−220922号公報JP 2008-220922 A 特開2006−64126号公報JP 2006-64126 A

「事例に学ぶ流体関連振動」,日本機械学会編,技法堂出版,2003年,第2章,P.90“Fluid-related vibrations learned from examples”, edited by the Japan Society of Mechanical Engineers, Technical Hall Publishing, 2003, Chapter 2, p. 90

本発明は上記問題に鑑みてなされたものであり、経済的に優れ、施工時の曲げ加工性が改善されるとともに、冷媒ガスの流れに起因すると推定される流体騒音発生を防止できるステンレス鋼製フレキシブル管を提供することを目的とする。   The present invention has been made in view of the above problems, and is made of stainless steel that is economically superior, improves bending workability at the time of construction, and can prevent generation of fluid noise estimated to be caused by the flow of refrigerant gas. An object is to provide a flexible tube.

本発明者等は、上記問題を解決するために鋭意検討を重ねたところ、施工時の曲げ加工性を確保するためには、フレキシブル管の波型形状を大きくするのが好ましく(特許文献4参照)、一方、流体騒音を抑制するためには限りなく直管に近づけるのが好ましいことを知見した。そして、この相反する特性を両立させるため、各種ステンレス鋼を用いてフレキシブル管の曲げ加工性と流体騒音抑制を両立できる形状について検討した結果、素管外径とフレキシブル管の山山ピッチと山谷深さの関係が重要であることを見出し、本発明を完成した。
The inventors of the present invention have made extensive studies in order to solve the above problems, and in order to ensure bending workability during construction, it is preferable to increase the corrugated shape of the flexible tube (see Patent Document 4). On the other hand, in order to suppress the fluid noise, it has been found that it is preferable to approach the straight pipe as much as possible. And this in order to achieve both the contradictory properties, the results of investigation of shape capable both bending workability and fluid noise suppression of the flexible tube by using various stainless steel, prime tube outer diameter and the flexible tube mountains pitch and Yamaya The present inventors have found that the depth relationship is important and completed the present invention.

即ち、本発明のステンレス鋼製フレキシブル管は、素材板厚が0.2〜0.4mmのステンレス鋼製フレキシブル管であって、素管外径d(mm)としたときに、前記ステンレス鋼製フレキシブル管に形成された波形形状が、素管外径d/山谷深さDd:1721.5であり、かつ、素管外径d/山部から山部のピッチ:2.5〜の波形形状であり、前記ステンレス鋼製フレキシブル管の片端から内部に1気圧の空気を5L/minで流した際の、前記ステンレス鋼製フレキシブル管の逆端から50cmの位置における流体騒音レベルが50dB未満であることを特徴とする。
また、本発明のステンレス鋼製フレキシブル管は、両端または片端に素管部を有していても良い。
また、本発明のステンレス鋼製フレキシブル管は、前記素管部と、前記波形形状からなる可撓部とが、交互にそれぞれ複数箇所配置されていても良い。
また、本発明のステンレス鋼製フレキシブル管は、該ステンレス鋼製フレキシブル管の全長が、螺旋状に旋回したコイル形状であっても良い。
また、本発明のステンレス鋼製フレキシブル管は、両端または片端に素管部を有し、さらに、前記素管部の両方または片方にフレア加工部を有していても良い。
That is, the stainless steel flexible pipe of the present invention is a stainless steel flexible pipe having a material plate thickness of 0.2 to 0.4 mm, and the stainless steel flexible pipe is made of the stainless steel when the outer diameter is d (mm). The corrugated shape formed in the flexible tube is the raw tube outer diameter d / mountain valley depth Dd: 17 to 21.5 , and the raw tube outer diameter d / pitch from the peak portion to the peak portion P : 2.5 to 4 and the fluid noise level at a position 50 cm from the opposite end of the stainless steel flexible tube when air at 1 atm flows from one end of the stainless steel flexible tube to the inside at 5 L / min. It is characterized by being less than 50 dB.
Moreover, the stainless steel flexible pipe of the present invention may have a raw pipe part at both ends or one end.
In the stainless steel flexible pipe of the present invention, the raw pipe portion and the flexible portion having the corrugated shape may be alternately arranged at a plurality of locations.
Further, the stainless steel flexible tube of the present invention may have a coil shape in which the entire length of the stainless steel flexible tube is spirally swirled.
Moreover, the flexible pipe made of stainless steel of the present invention may have a raw pipe part at both ends or one end, and may further have a flared part on both or one side of the raw pipe part.

本発明のステンレス鋼製フレキシブル管によれば、上記構成の如く素材板厚と波型形状を規定することにより、例えば、エアコン、特に、業務用のエアコン室内外機の接続配管向けや空調機器用の配管の軽量化が可能となるとともに、施工時の曲げ加工が可能となり、さらに、冷媒ガスの流れによる流体騒音が抑制できる。
また、フレキシブル管の両端または片端に素管部を有する構成とした場合には、施工現場で接続のためのフレア加工を行い、室内外機や配管同士を接続することが可能となる。また、素管部と波型形状部が交互にそれぞれ複数個所配置された構成とした場合には、任意の位置で切断して接続することが可能となる。
また、当該フレキシブル管の全長が螺旋状に旋回したコイル形状として構成した場合には、任意の長さのフレキシブル管の持ち運びが可能になるとともに、施工性が向上する。
さらには、フレキシブル管の両端または片端に素管部を有し、その両方または片方にフレア加工部を有する構成とした場合には、施工現場でフレア加工することなく即座に接続することが可能となる。
According to the stainless steel flexible pipe of the present invention, by defining the material plate thickness and the corrugated shape as in the above configuration, for example, for air conditioners, particularly for connection pipes of air conditioner indoor and outdoor units for business use and for air conditioners. It is possible to reduce the weight of the pipe, to enable bending during construction, and to suppress fluid noise due to the flow of the refrigerant gas.
Moreover, when it is set as the structure which has an elementary pipe part in the both ends or one end of a flexible pipe, it becomes possible to perform the flare process for a connection at a construction site, and to connect indoor and outdoor units and piping. Moreover, when it is set as the structure by which the raw-tube part and the corrugated-shaped part are each arrange | positioned alternately two places, it becomes possible to cut | disconnect and connect in arbitrary positions.
In addition, when the flexible tube is configured in a coil shape in which the entire length of the flexible tube is spirally turned, the flexible tube having an arbitrary length can be carried and the workability is improved.
Furthermore, if the flexible pipe has a tube section at both ends or one end and a flare processing section at both or one end, it can be connected immediately without flaring at the construction site. Become.

本発明の実施形態のステンレス鋼製フレキシブル管を示す模式断面図である。It is a schematic cross section which shows the stainless steel flexible pipe of embodiment of this invention. 本発明の実施形態のステンレス鋼製フレキシブル管を説明する模式図であり、コイル状に巻き取られた状態を示す斜視図である。It is a schematic diagram explaining the stainless steel flexible tube of embodiment of this invention, and is a perspective view which shows the state wound up by the coil shape. 本発明の実施形態のステンレス鋼製フレキシブル管を説明する模式図であり、フレキシブル管の波形形状と施工時曲げ加工性、および流体騒音の関係を示すグラフである。It is a schematic diagram explaining the stainless steel flexible pipe | tube of embodiment of this invention, and is a graph which shows the relationship between the waveform shape of a flexible pipe | tube, bending workability at the time of construction, and fluid noise.

以下、本発明のステンレス鋼製フレキシブル管の実施の形態について、図1〜図3を適宜参照しながら説明する。なお、本実施形態は、本発明のステンレス鋼製フレキシブル管の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り本発明を限定するものではない。   Hereinafter, embodiments of the stainless steel flexible pipe of the present invention will be described with reference to FIGS. In addition, since this embodiment demonstrates in detail in order to make the meaning of the stainless steel flexible pipe of this invention understand better, this invention is not limited unless there is particular designation | designated.

本発明のステンレス鋼製フレキシブル管(以下、単にフレキシブル管と略称することがある)10は、図1に示すように、板厚が0.2〜0.4mm以下のステンレス鋼を素材とするものであり、素管外径d(mm)としたときに、当該フレキシブル管10に形成される波形形状が、素管外径d/山谷深さDd:1721.5であり、かつ、素管外径d/山部から山部のピッチ:2.5〜の波形形状とされ、概略構成されている。図1は、本発明の実施形態にかかるステンレス鋼製フレキシブル管10の断面図である。 The stainless steel flexible pipe (hereinafter sometimes simply referred to as a flexible pipe) 10 of the present invention is made of stainless steel having a plate thickness of 0.2 to 0.4 mm or less as shown in FIG. When the raw tube outer diameter d (mm) is set, the corrugated shape formed in the flexible tube 10 is the raw tube outer diameter d / mountain valley depth Dd: 17 to 21.5 , and The outer diameter d of the pipe / the pitch P from the peak portion to the peak portion P : 2.5 to 4 , and is roughly configured. FIG. 1 is a sectional view of a stainless steel flexible tube 10 according to an embodiment of the present invention.

図1に示すように、フレキシブル管10は、端部に設けられたフレア加工部14と、素管部12と、波形形状とされた可撓部20とで構成されている。可撓部20は、フレキシブル管10の周面の円周方向に沿った、独立した山部22と谷部24とが交互に配置されて波形形状が形成されている。また、フレアナット30は、回転およびスライドが自在な状態でフレキシブル管10に挿入されている。   As shown in FIG. 1, the flexible tube 10 includes a flare processing portion 14 provided at an end portion, a raw tube portion 12, and a flexible portion 20 having a corrugated shape. The flexible portion 20 has a wave shape formed by alternately arranging independent crests 22 and troughs 24 along the circumferential direction of the peripheral surface of the flexible tube 10. The flare nut 30 is inserted into the flexible tube 10 so as to be freely rotatable and slidable.

フレアナット30は、所定のトルクで締め付けて、配管同士を接続するために使用され、一般的に、フレア加工前にフレキシブル管に挿入しておく。   The flare nut 30 is used to connect the pipes by tightening with a predetermined torque, and is generally inserted into the flexible pipe before flare processing.

可撓部20の波形の形状としては、特に限定されず、例えば、山部の頭頂部、谷部の底部の形状が曲面を形成しているのが一般的ではあるが、鋭角な凸部を形成していても良い。   The corrugated shape of the flexible portion 20 is not particularly limited. For example, the shape of the top portion of the peak portion and the bottom portion of the valley portion generally form a curved surface. It may be formed.

可撓部20の波形形状について、図1を用いて、以下に詳細に説明する。
本発明においては、可撓部20の波形形状と素管外径dとの大きさの関係が重要である。本発明では、素管外径d(mm)と、山部外径dm(mm)と谷部外径dv(mm)の差である山谷深さDdの比(d/Dd)が15〜23の範囲であり、かつ、素管外径dと、山部頭頂から隣の山部頭頂までの長さである波形形状のピッチP(mm)の比(d/P)が2.5〜5.5の波形形状であるのが好ましい。また、より好ましくは、d/Ddが17〜21.5、かつ、d/Pが2.5〜4である。
The waveform shape of the flexible portion 20 will be described in detail below with reference to FIG.
In the present invention, the relationship between the corrugated shape of the flexible portion 20 and the outer diameter d of the raw tube is important. In the present invention, the ratio (d / Dd) of the valley depth Dd which is the difference between the raw tube outer diameter d (mm) and the peak outer diameter dm (mm) and the valley outer diameter dv (mm) is 15-23. And the ratio (d / P) of the pitch P (mm) of the corrugated shape, which is the length from the top of the ridge to the top of the adjacent ridge, is 2.5 to 5 .5 waveform shape is preferred. More preferably, d / Dd is 17 to 21.5, and d / P is 2.5 to 4.

素管外径d/山谷深さDdが15より小さいと、素管外径に相対する山谷深さが大きくなることで、曲げ加工時の歪みがいくつかの波部に分散されて座屈し難くなり、施工性は向上するものの、波型形状に起因するカルマン渦の周波数とフレキシブル管の気柱共鳴周波数が一致して流体騒音が発生しやすくなる。また、素管外径d/山谷深さDdが23を超えると、相対的に山谷深さが小さくなることで流体騒音は抑制されるものの、施工時の曲げ加工性が劣化する。
また、素管外径d/ピッチPが2.5よりも小さいと、相対的に山谷深さが小さくなり、流体騒音は抑制されるものの、施工時の曲げ加工性が劣化する。また、素管外径d/ピッチPが5.5を超えると、相対的に山谷深さが大きくなり、施工性は向上するものの流体騒音が発生しやすくなる。
When the outer diameter d / mountain depth Dd is smaller than 15, the depth of the valley corresponding to the outer diameter of the pipe is increased, so that the distortion at the time of bending is dispersed in several wave portions and is not easily buckled. Although the workability is improved, the frequency of Karman vortex due to the corrugated shape and the air column resonance frequency of the flexible tube coincide with each other, and fluid noise is likely to occur. If the outer diameter d / mountain depth Dd exceeds 23, the depth of the valley is relatively reduced, and fluid noise is suppressed. However, bending workability during construction deteriorates.
Further, when the outer diameter d / pitch P is smaller than 2.5, the depth of the valley is relatively small and the fluid noise is suppressed, but the bending workability at the time of construction deteriorates. Further, if the outer diameter d / pitch P of the pipe exceeds 5.5, the depth of the valley is relatively increased, and although the workability is improved, fluid noise is likely to occur.

上述した波形形状の規定に関しては、後述の実施例において、下記表2で示す実施例のデータを基に、施工時曲げ加工性、および流体騒音発生について整理した結果を図3に示している。   Regarding the above-mentioned definition of the waveform shape, FIG. 3 shows the results of arranging the bending workability during construction and the generation of fluid noise based on the data of the examples shown in Table 2 below in the examples described later.

本発明において説明する「素管」とは、一般的に、鋼帯または鋼板から電気抵抗溶接またはアーク溶接によって製造した管をいい、本発明においては、引き抜き管を含み、可撓部を設けていない箇所を示す。
また、素管部12の場所は特に限定されず、可撓部20の両側あるいは片側に配置されていても良いし、複数の素管部12と複数の可撓部20とが交互に配置されていても良い。
The “element tube” described in the present invention generally refers to a tube manufactured from a steel strip or steel plate by electric resistance welding or arc welding, and in the present invention, includes a drawn tube and is provided with a flexible portion. Indicates no part.
Further, the location of the raw tube portion 12 is not particularly limited, and may be disposed on both sides or one side of the flexible portion 20, and the plurality of raw tube portions 12 and the plurality of flexible portions 20 are alternately disposed. May be.

また、素管外径dは、特に規定するものではないが、例えば、家庭用エアコン接続配管では、冷媒液側が6.35mm、冷媒ガス側が9.52mmの、2種類の素管外径のものが一般的に使用されており、また業務用大型エアコンの場合、冷媒液側は9.52mmや4分管、冷媒ガス側が4分管、15.88mm、19.05mm等のものが使用されている。また、その他、空調用として、20mmを超える配管も使用されることがある。
従って、本発明においては、素管外径dは6〜30mmの範囲で適宜決定することが好ましい。
In addition, the outer diameter d of the raw pipe is not particularly specified. For example, in a household air conditioner connection pipe, there are two types of outer diameters of the raw pipe, the refrigerant liquid side is 6.35 mm and the refrigerant gas side is 9.52 mm. In the case of commercial large air conditioners, the refrigerant liquid side is 9.52 mm or a quarter tube, the refrigerant gas side is a quarter tube, 15.88 mm, 19.05 mm, or the like. In addition, piping exceeding 20 mm may be used for air conditioning.
Therefore, in the present invention, the outer diameter d of the raw tube is preferably determined as appropriate in the range of 6 to 30 mm.

本発明において、フレキシブル管10の素材となるステンレス鋼の板厚は、0.2〜0.4mmである。ステンレス鋼の板厚が0.2mmよりも薄いと、フレキシブル管としての強度が低下することのみならず、フレア加工時に所定の拡管率まで加工することができず、フレア加工先端部において括れ(割れ)が発生する。さらに、市場での入手性を考慮して、その下限を0.2mmとした。また、ステンレス鋼の板厚が0.4mmを超えると、施工現場での曲げ加工性が著しく低下する。
従って、素材となるステンレス鋼の板厚は、0.2〜0.4mmとした。
In the present invention, the thickness of the stainless steel used as the material for the flexible tube 10 is 0.2 to 0.4 mm. If the thickness of the stainless steel plate is less than 0.2 mm, not only the strength as a flexible tube is lowered, but also it cannot be processed up to a predetermined tube expansion rate at the time of flaring, and it is constricted (cracked at the flared tip). ) Occurs. Furthermore, in consideration of availability in the market, the lower limit was set to 0.2 mm. Further, if the thickness of the stainless steel exceeds 0.4 mm, the bending workability at the construction site is remarkably lowered.
Accordingly, the thickness of the stainless steel material is 0.2 to 0.4 mm.

本発明において用いられるステンレス鋼の組成は、特に限定されない。例えば、JISに規定されたものとして、オーステナイト系ステンレス鋼であるSUS304、304L、316、316L等を使用することができ、フェライト系ステンレス鋼であれば、SUS430、SUS430J1L、SUS430LX、SUS436L、SUS436J1L、SUS444等がある。また、フェライト系ステンレス鋼はオーステナイト系ステンレス鋼のように多量のNiを含有していないため安価であり、また、オーステナイト系ステンレス鋼と比較して加工硬化が小さいため、施工性に優れるという特徴がある。   The composition of the stainless steel used in the present invention is not particularly limited. For example, as specified in JIS, SUS304, 304L, 316, 316L, etc., which are austenitic stainless steels, can be used. Etc. In addition, ferritic stainless steel is inexpensive because it does not contain a large amount of Ni like austenitic stainless steel, and it has low work hardening compared to austenitic stainless steel, so it has excellent workability. is there.

本発明においては、フレキシブル管の製造方法は特に限定されない。例えば、板厚0.2〜0.4mmのステンレス鋼板を、既存の方法を用いて溶接管や引き抜き管として素管を得た後、前記素管に刃状の金型を押しつけることで波形形状を形成する方法が挙げられる。また、例えば、ステンレス鋼板に対して、凹凸ロールで波形を形成し、波形成形した鋼板を巻きながら溶接して製管する方法等を挙げることができる。   In the present invention, the method for producing the flexible tube is not particularly limited. For example, a stainless steel plate having a thickness of 0.2 to 0.4 mm is obtained by using a conventional method to obtain a raw pipe as a welded pipe or a drawn pipe, and then pressing a blade-shaped mold onto the raw pipe to form a corrugated shape The method of forming is mentioned. In addition, for example, a method of forming a corrugated shape with a concavo-convex roll on a stainless steel plate, welding the corrugated steel plate while winding it, and the like can be mentioned.

本発明によれば、可撓部20の波形形状を、素管外径d/山谷深さDd:15〜23、かつ、素管外径d/山部から山部のピッチP:2.5〜5.5にすることで、施工時の曲げ加工性と、冷媒ガスの流れに起因する流体騒音の抑制の両方を実現することが可能となる。
また、本発明のステンレス鋼製フレキシブル管は、両端または片端に素管部を有することで、フレア加工が容易になるので、施工現場で接続のためのフレア加工を行って、室内外機や配管同士を接続することが可能となる。特に、複数の可撓部と複数の素管部とが交互に配置された長尺のフレキシブル管とすることで、施工現場で必要とする長さに応じて任意の位置で素管部を切断し、端部に素管部を有するフレキシブル管を得ることができる。
According to the present invention, the corrugated shape of the flexible portion 20 is as follows: the raw tube outer diameter d / mountain depth Dd: 15-23, and the pipe outer diameter d / peak-to-peak pitch P: 2.5. By setting it to -5.5, it becomes possible to implement | achieve both the bending workability at the time of construction, and the suppression of the fluid noise resulting from the flow of a refrigerant gas.
In addition, since the stainless steel flexible pipe of the present invention has a bare pipe part at both ends or one end, flare processing becomes easy, so flare processing for connection at the construction site, indoor and outdoor units and piping It becomes possible to connect each other. In particular, by making a long flexible pipe in which a plurality of flexible parts and a plurality of raw pipe parts are alternately arranged, the raw pipe part is cut at an arbitrary position according to the length required at the construction site. And the flexible pipe | tube which has a raw pipe part in an edge part can be obtained.

図1に示す例のフレキシブル管10は、可撓部20は、それぞれ独立した山部22と谷部24とが一定のピッチで並んでいるもの(ワンピッチ型)であるが、これには限定されず、例えば、周面部に山部と谷部とが螺旋状に形成されていても良い。また、フレキシブル管10を実際に配管として使用する場合、通常の家庭用エアコンでは接続配管として4〜5m程度の長さが必要であり、また、ビルやクレーンなどの配管であれば10mを超え、場合によっては100m近くにまでなることが少なくない。こうした状況において、運搬のしやすさ等を考慮すると、図2に示す例のフレキシブル管40のように、全長がコイル状に巻き取られたコイル形状(パイプ・イン・コイル)とするのが好ましい。このような構成とすることで、フレキシブル管の長さが長くなればなるほど、現状の銅管に対して軽量化が図られるので、任意の長さのフレキシブル管の持ち運びが可能となり、施工時の持ち運び性や取り扱いを含めた施工性が良好になる。なお、図2に示す例では、可撓部20と素管部12が同じ位置で巻き取られているが、可撓部と素管部の長さを変えることにより、または巻き取るコイル径を変えることにより、可撓部と素管部の位置がずれても良い。   In the flexible tube 10 of the example shown in FIG. 1, the flexible portion 20 is one in which independent peak portions 22 and valley portions 24 are arranged at a constant pitch (one pitch type), but is not limited thereto. For example, the peak part and the trough part may be formed in the surrounding surface part at the spiral. In addition, when the flexible pipe 10 is actually used as a pipe, an ordinary household air conditioner requires a length of about 4 to 5 m as a connection pipe, and if it is a pipe of a building or crane, it exceeds 10 m. In some cases, it is often close to 100 m. In consideration of the ease of transportation and the like in this situation, it is preferable to use a coil shape (pipe-in-coil) in which the entire length is wound in a coil shape like the flexible tube 40 shown in FIG. . By adopting such a configuration, the longer the length of the flexible pipe, the lighter the weight of the current copper pipe, so the flexible pipe of any length can be carried and Workability including portability and handling is improved. In the example shown in FIG. 2, the flexible portion 20 and the raw tube portion 12 are wound at the same position, but the coil diameter to be wound is changed by changing the length of the flexible portion and the raw tube portion. By changing, the position of the flexible part and the raw pipe part may be shifted.

図1に示す例のフレキシブル管10では、端部にフレア加工部14が設けられているが、このフレア加工部を設けず、素管部12がフレキシブル管10の端部になっても良いし、あるいは可撓部20が端部であっても良い。また、フレア加工部14、素管部12あるいは可撓部20は、フレキシブル管10の両端に設けられても良いし、片端のみであっても良い。また、フレキシブル管10の端部の両方または片方にフレア加工部14を有する構成とした場合には、施工現場でフレア加工することなく即座に接続することが可能となる。   In the example of the flexible tube 10 shown in FIG. 1, the flared portion 14 is provided at the end portion, but the flared portion may not be provided, and the raw tube portion 12 may be the end portion of the flexible tube 10. Alternatively, the flexible portion 20 may be an end portion. Further, the flared portion 14, the raw tube portion 12, or the flexible portion 20 may be provided at both ends of the flexible tube 10 or only at one end. Moreover, when it is set as the structure which has the flare process part 14 in the both ends or one side of the flexible tube 10, it becomes possible to connect immediately, without performing flare processing at a construction site.

以上説明したような、本発明に係るステンレス鋼製フレキシブル管によれば、上記構成の如く素材板厚と波型形状を規定することにより、例えば、エアコン、特に、業務用のエアコン室内外機の接続配管向けや空調機器用の配管の軽量化が可能となるとともに、施工時の曲げ加工が可能となり、さらに、冷媒ガスの流れによる流体騒音が抑制できるので、産業上の効果は極めて高い。   According to the stainless steel flexible pipe according to the present invention as described above, by defining the material plate thickness and corrugated shape as in the above configuration, for example, an air conditioner, in particular, a commercial air conditioner indoor / outdoor unit. It is possible to reduce the weight of pipes for connecting pipes and air conditioners, bend at the time of construction, and further suppress fluid noise due to the flow of refrigerant gas, so the industrial effect is extremely high.

以下、本発明に係るステンレス鋼製フレキシブル管の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, examples of the stainless steel flexible pipe according to the present invention will be given and the present invention will be described more specifically, but the present invention is not originally limited to the following examples, and the purpose described above and below It is also possible to carry out with appropriate modifications within a range that can be adapted, and these are all included in the technical scope of the present invention.

[フレキシブル管の製造]
まず、下記表1に示す成分のSUS430LX(A)とSUS304(B)鋼板を用い、下記表2に示す板厚で、9.525mmφのTIG溶接管を製造した。
次いで、上記TIG溶接管を用いて、下記表2の記載の従い、長さ170mmの可撓部と長さ30mmの素管部とを交互に複数配置した、全長4mの長尺フレキシブル管を製造し、運搬のために全長コイル状に巻いて、コイル径約1mのフレキシブル管パイプ・イン・コイルとした。
そして、このフレキシブル管パイプ・イン・コイルについて、波形形状部で挟まれた素管部を切断することで、両端に素管部を有し中央部に波形形状の可撓部を有するフレキシブル管約1mを切り出し、曲げ加工性と流体騒音発生有無について、後述する手順で評価した。
[Manufacture of flexible pipes]
First, SUS430LX (A) and SUS304 (B) steel plates having the components shown in Table 1 below were used to produce 9.525 mmφ TIG welded pipes with the plate thicknesses shown in Table 2 below.
Next, using the TIG welded pipe, a long flexible pipe having a total length of 4 m is manufactured in which a plurality of flexible parts having a length of 170 mm and a plurality of raw pipe parts having a length of 30 mm are alternately arranged according to the description in Table 2 below. Then, it was wound into a full length coil for transportation, and a flexible pipe with a coil diameter of about 1 m was formed.
And about this flexible pipe pipe-in-coil, by cutting the raw pipe part sandwiched by the corrugated part, a flexible pipe about having a raw pipe part at both ends and a corrugated flexible part at the center. 1 m was cut out, and bending workability and the presence / absence of fluid noise were evaluated according to the procedure described later.

[評価試験]
上記手順で得られたフレキシブル管について、以下に説明する手順で評価を行った。
なお、以下に説明する流体騒音発生有無の評価は、製造したすべての条件のフレキシブル管について、実際のエアコンに接続して評価することは困難であることから、簡易評価として実施したものである。そして、本実施例では、評価したフレキシブル管の中から、いくつかの条件で、同様のフレキシブル管パイプ・イン・コイルを、さらに1巻製造し、エアコン試験に供試することで、実際の機器での異音発生有無を確認した。
[Evaluation test]
The flexible tube obtained by the above procedure was evaluated according to the procedure described below.
It should be noted that the evaluation of the occurrence of fluid noise described below is performed as a simple evaluation because it is difficult to evaluate the manufactured flexible pipes connected to an actual air conditioner. In this embodiment, one more volume of the same flexible pipe pipe-in-coil is manufactured from the evaluated flexible pipes under some conditions, and is subjected to an air conditioner test. The presence or absence of abnormal noise was confirmed.

<曲げ加工性>
(試験方法)
曲げ加工性については、実際のエアコンの施工を想定し、フレキシブル管に対して、曲げRが300mmのベンダーを用いて90度曲げを行うことで評価した。
<Bending workability>
(Test method)
The bending workability was evaluated by assuming that an actual air conditioner was installed and bending the flexible pipe by 90 degrees using a bender with a bending R of 300 mm.

(評価基準)
上記試験方法により、曲げ加工時に坐屈や扁平が発生しないものを合格とし、結果を下記表2に示した。
(Evaluation criteria)
According to the above test method, those that did not buckle or flatten during bending were accepted, and the results are shown in Table 2 below.

<流体騒音発生有無評価>
(試験方法)
実際にフレキシブル管をエアコンに接続して評価するのは困難であるため、フレキシブル配管の片端にゴムホースをつなぎ、ガスボンベから、空気を1気圧で5L/minで流すことで評価した。
<Evaluation of fluid noise occurrence>
(Test method)
Since it is difficult to actually connect a flexible pipe to an air conditioner, evaluation was performed by connecting a rubber hose to one end of the flexible pipe and flowing air from a gas cylinder at 1 L at 5 L / min.

(評価基準)
フレキシブル管の内部に空気を1気圧で5L/minで流して、フレキシブル管のゴムを接続した側と逆端から50cmの位置で、騒音計を用いて流体騒音を計測した。一般に、流体騒音が発生しない場合の騒音レベルは50dB未満であり、50dB以上になると流体異音が発生し、また、60dB以上になると耳障りな笛吹き音のような流体異音となる。そこで、計測値が50dB未満を合格、50dB以上を不合格とした。
(Evaluation criteria)
Air was allowed to flow at 5 L / min at 1 atm inside the flexible tube, and fluid noise was measured using a noise meter at a position 50 cm from the opposite end of the flexible tube to which rubber was connected. In general, the noise level when no fluid noise is generated is less than 50 dB. When the noise level is 50 dB or more, an abnormal noise is generated. When the noise level is 60 dB or more, an abnormal noise such as a whistling noise is generated. Therefore, a measured value of less than 50 dB was accepted and 50 dB or more was rejected.

<エアコン接続試験>
(試験方法)
上記流体騒音試験を行ったフレキシブル管の一部を、実際にエアコンにつないで評価した。
<Air conditioner connection test>
(Test method)
A part of the flexible pipe subjected to the fluid noise test was actually connected to an air conditioner for evaluation.

(評価基準)
上記の試験方法と同様に、エアコン室内外機配管から1m離れた位置に騒音計を固定して異音発生有無を測定し、50dB未満を合格、50dB以上を不合格とした。
(Evaluation criteria)
Similarly to the above test method, a noise meter was fixed at a position 1 m away from the air conditioner indoor / outdoor piping, and the presence / absence of abnormal noise was measured. The result was less than 50 dB, and 50 dB or more was rejected.

下記表1にフレキシブル管の素材鋼種(成分組成)を示すとともに、下記表2に評価結果の一覧を示す。   Table 1 below shows the steel grade (component composition) of the flexible pipe, and Table 2 shows a list of evaluation results.

Figure 0005719107
Figure 0005719107

Figure 0005719107
Figure 0005719107

[評価結果]
表2に示すように、曲げ加工性については、板厚を本発明の規定範囲である0.2〜0.4mmとした実施例1、2、及び参考例3〜6は、90度曲げを実施することができた。一方、板厚が本発明の規定範囲を外れる比較例1や、波形形状が本発明の規定範囲を外れる比較例2、3は、非常に硬いために曲げるのが困難であり、途中で座屈した。このことから、比較例1〜3のフレキシブル管は、人手で曲げ加工を行うようなエアコン室内外機接続配管などの用途への適用は、極めて困難であることが明らかとなった。
[Evaluation results]
As shown in Table 2, with respect to bending workability, Examples 1 , 2, and 7 and Reference Examples 3 to 6 in which the plate thickness was 0.2 to 0.4 mm which is the specified range of the present invention were bent at 90 degrees. Could be implemented. On the other hand, Comparative Example 1 in which the plate thickness deviates from the specified range of the present invention and Comparative Examples 2 and 3 in which the corrugated shape deviates from the specified range of the present invention are difficult to bend because they are very hard and buckle in the middle. did. From this, it became clear that the flexible pipes of Comparative Examples 1 to 3 are extremely difficult to apply to uses such as an air conditioner indoor / outdoor unit connecting pipe that is bent manually.

流体騒音については、板厚および波形形状が本発明の規定範囲である実施例1、2、7は、内部に空気を流しても、笛吹音のような異音は発生しないことが確認できた。しかしながら、波形形状が本発明の規定範囲を外れる比較例4、5、6は、笛吹音のような異音が発生したことから、エアコン接続配管などへの適用は、極めて困難であることが明らかとなった。 Regarding the fluid noise, it was confirmed that Examples 1 , 2, and 7 in which the plate thickness and the waveform shape were within the specified range of the present invention did not generate abnormal noise such as whistling sound even when air was flown inside. . However, in Comparative Examples 4, 5, and 6 in which the waveform shape deviates from the specified range of the present invention, an abnormal noise such as a whistling sound was generated, so that it is clearly difficult to apply to an air conditioner connection pipe or the like. It became.

次に、上述の流体騒音試験を行っ参考例3、5、6と、比較例2のフレキシブル管を実際のエアコンに接続して異音発生有無を評価した。この結果、参考例3、5、6では異音の発生はなかったが、比較例2では笛吹音のような異音が発生し、上記流体騒音試験結果と同様であることが確認できた。 Next, Reference Example 3, 5 and 6 performing the fluid noise test described above to evaluate the abnormal sound occurrence or non-occurrence connecting a flexible tube of the ratio Comparative Examples 2 to the actual air conditioner. As a result, although no abnormal noise was generated in Reference Examples 3, 5, and 6, abnormal noise such as whistling sound was generated in Comparative Example 2, and it was confirmed that the result was the same as the fluid noise test result.

また、上述したように、表2に示す実施例、参考例及び比較例のデータについて、施工時の曲げ加工性、および流体異音発生について整理した結果を図3のグラフに示す。図3のグラフ中における「○(合格)」、「×(不合格)」のプロット位置において、左側が曲げ加工性の評価結果であり、右側が流体騒音発生の評価結果である。
図3のグラフから明らかなように、本発明で規定する波形形状とされた実施例(本発明の請求項1で規定する範囲内)のフレキシブル管は、施行時の曲げ加工性、および流体騒音発生の評価が、何れも合格(○)であり、これら各特性に優れている。
In addition, as described above, the graph of FIG. 3 shows the results of arranging the bending workability at the time of construction and the occurrence of fluid abnormal noise for the data of the examples , reference examples, and comparative examples shown in Table 2. In the graph of FIG. 3, the left side is an evaluation result of bending workability and the right side is an evaluation result of fluid noise generation at the plot positions of “◯ (passed)” and “× (failed)”.
As is apparent from the graph of FIG. 3, the flexible pipe of the embodiment (within the range defined in claim 1 of the present invention) having the waveform shape defined by the present invention is capable of bending workability and fluid noise during operation. The evaluation of occurrence is all passing (◯), and these properties are excellent.

以上説明した実施例の結果より、本発明のステンレス鋼製フレキシブル管が、経済的に優れ、施工時の曲げ加工性が改善されるとともに、冷媒ガスの流れに起因すると推定される流体騒音発生を防止できることが明らかとなった。   From the results of the examples described above, the stainless steel flexible pipe of the present invention is economically superior, improves bending workability during construction, and generates fluid noise that is estimated to be caused by the flow of refrigerant gas. It became clear that it can be prevented.

本発明によれば、例えば、エアコン接続配管のように、施工時の曲げ性と流体騒音が抑制されたステンレス鋼製のフレキシブル管を、従来の銅に替わって提供することで軽量化が図られ、施工性を大幅に改善することが可能となることから、産業的の価値は極めて大きい。   According to the present invention, for example, a flexible pipe made of stainless steel in which bendability and fluid noise during construction are suppressed, such as an air conditioner connection pipe, is provided in place of conventional copper, thereby reducing weight. Since the workability can be greatly improved, the industrial value is extremely large.

10…ステンレス鋼製フレキシブル管(フレキシブル管)、
12…素管部、
14…フレア加工部、
20…可撓部、
22…山部、
24…谷部、
40…コイル状に巻き取られたフレキシブル管、
d…素管外径、
Dd…山谷深さ、
P…山部から山部のピッチ(山部頭頂部と山部頭頂部とからなるピッチ)
10 ... Stainless steel flexible pipe (flexible pipe),
12 ... Elementary tube part,
14 ... Flare processing part,
20 ... flexible part,
22 ... Yamabe,
24 ... Tanibe,
40: flexible tube wound in a coil shape,
d: Raw pipe outer diameter,
Dd ... Yamaya depth,
P: Pitch from mountain to mountain (pitch composed of mountain peak and mountain peak)

Claims (5)

素材板厚が0.2〜0.4mmのステンレス鋼製フレキシブル管であって、
素管外径d(mm)としたときに、前記ステンレス鋼製フレキシブル管に形成された波形形状が、素管外径d/山谷深さDd:1721.5であり、かつ、素管外径d/山部から山部のピッチ:2.5〜の波形形状であり、
前記ステンレス鋼製フレキシブル管の片端から内部に1気圧の空気を5L/minで流した際の、前記ステンレス鋼製フレキシブル管の逆端から50cmの位置における流体騒音レベルが50dB未満であることを特徴とするステンレス鋼製フレキシブル管。
A stainless steel flexible tube having a material plate thickness of 0.2 to 0.4 mm,
When the outer diameter d (mm) of the raw tube is set, the corrugated shape formed in the stainless steel flexible tube is the outer diameter of the raw tube d / the depth of the valleys Dd: 17 to 21.5 , and the raw tube Outer diameter d / pitch from peak to peak P : 2.5 to 4 corrugated shape,
The fluid noise level at a position 50 cm from the opposite end of the stainless steel flexible tube when air of 1 atm is flowed from one end of the stainless steel flexible tube to the inside at 5 L / min is less than 50 dB. Stainless steel flexible tube.
両端または片端に素管部を有していることを特徴とする請求項1に記載のステンレス鋼製フレキシブル管。   The stainless steel flexible pipe according to claim 1, wherein the pipe has a pipe section at both ends or one end. 前記素管部と、前記波形形状とされた可撓部とが、交互にそれぞれ複数箇所配置されていることを特徴とする請求項2に記載のステンレス鋼製フレキシブル管。   The stainless steel flexible tube according to claim 2, wherein the raw tube portions and the flexible portions having the corrugated shape are alternately arranged at a plurality of locations. 前記ステンレス鋼製フレキシブル管の全長が、螺旋状に旋回したコイル形状であることを特徴とする請求項1〜3に記載のステンレス鋼製フレキシブル管。   4. The stainless steel flexible tube according to claim 1, wherein a total length of the stainless steel flexible tube is a coil shape spirally swirled. 5. 両端または片端に素管部を有し、さらに、前記素管部の両方または片方にフレア加工部を有することを特徴とする請求項1〜4のいずれかに記載のステンレス鋼製フレキシブル管。   5. The stainless steel flexible pipe according to claim 1, further comprising a raw pipe portion at both ends or one end, and further having a flared portion on both or one side of the raw pipe portion.
JP2009253978A 2009-11-05 2009-11-05 Stainless steel flexible tube Active JP5719107B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009253978A JP5719107B2 (en) 2009-11-05 2009-11-05 Stainless steel flexible tube
TW099135731A TWI524952B (en) 2009-11-05 2010-10-20 Flexible stainless steel tube
KR1020127010506A KR101380091B1 (en) 2009-11-05 2010-10-21 Stainless steel flexible pipe
PCT/JP2010/068567 WO2011055636A1 (en) 2009-11-05 2010-10-21 Stainless steel flexible pipe
CN2010800482343A CN102667288A (en) 2009-11-05 2010-10-21 Stainless steel flexible pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009253978A JP5719107B2 (en) 2009-11-05 2009-11-05 Stainless steel flexible tube

Publications (2)

Publication Number Publication Date
JP2011099496A JP2011099496A (en) 2011-05-19
JP5719107B2 true JP5719107B2 (en) 2015-05-13

Family

ID=43969876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253978A Active JP5719107B2 (en) 2009-11-05 2009-11-05 Stainless steel flexible tube

Country Status (5)

Country Link
JP (1) JP5719107B2 (en)
KR (1) KR101380091B1 (en)
CN (1) CN102667288A (en)
TW (1) TWI524952B (en)
WO (1) WO2011055636A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185523A1 (en) * 2015-05-15 2016-11-24 Jfeエンジニアリング株式会社 Buckling waveform steel pipe
EP3312525B1 (en) * 2016-10-20 2020-10-21 LG Electronics Inc. Air conditioner
KR102296771B1 (en) * 2017-03-31 2021-09-02 엘지전자 주식회사 Indoor unit for air conditioner
CN111331000B (en) * 2018-12-18 2022-09-09 浙江盾安禾田金属有限公司 Manufacturing method of air conditioner connecting pipe and air conditioner connecting pipe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200614U (en) * 1981-06-15 1982-12-20
JPH1047540A (en) * 1996-08-03 1998-02-20 Showa Rasenkan Seisakusho:Kk Unit piping method and stainless steel pipe for piping
JPH10122440A (en) * 1996-10-16 1998-05-15 Nisshin Steel Co Ltd Corrugated stainless steel pipe
JP2006064126A (en) * 2004-08-30 2006-03-09 Yokohama Rubber Co Ltd:The Flexible tube
CN2924230Y (en) * 2006-07-12 2007-07-18 航天晨光股份有限公司 Low-flow-resistance noise-eliminating corrugated pipe
CN2937739Y (en) * 2006-07-21 2007-08-22 泰州市博特机械制造有限公司 Non-welding joint metal hose
KR100809741B1 (en) * 2007-03-12 2008-03-06 삼성광주전자 주식회사 Flexible hose and vacuum cleaner having the same
JP5184122B2 (en) * 2008-02-07 2013-04-17 新日鐵住金ステンレス株式会社 Ferritic stainless steel flexible tube

Also Published As

Publication number Publication date
JP2011099496A (en) 2011-05-19
CN102667288A (en) 2012-09-12
WO2011055636A1 (en) 2011-05-12
TW201130579A (en) 2011-09-16
TWI524952B (en) 2016-03-11
KR20120082008A (en) 2012-07-20
KR101380091B1 (en) 2014-04-01

Similar Documents

Publication Publication Date Title
JP5184122B2 (en) Ferritic stainless steel flexible tube
JP6172950B2 (en) Double tube for heat exchanger
JP5719107B2 (en) Stainless steel flexible tube
KR101897385B1 (en) Bended heat exchanger
JP2016031158A (en) Heat exchanger
JP2013053804A (en) Structure of triple pipe, and heat exchanger
JP2006046888A (en) Composite heat exchanger tube
JP6211313B2 (en) Triple tube heat exchanger
JP5709733B2 (en) Double pipe
CN105202950A (en) Shell-and-tube type heat exchanger
JP2012077917A (en) Inner grooved corrugated tube, and heat exchanger
JP2005009832A (en) Double pipe type heat exchanger
JP4947162B2 (en) Heat exchanger
JP2006234355A (en) Heat exchanger
JP2010112565A (en) Heat exchanger
JP6207833B2 (en) Heat exchanger
JP2012007773A (en) Heat exchanger
WO2015107970A1 (en) Heat transfer tube for heat exchanger and heat exchanger
JP5540683B2 (en) Heat exchanger and water heater provided with the same
KR20140085109A (en) Pipe for heat exchanger piping
CN212618824U (en) Air conditioning system and air conditioner with same
JP2008281263A (en) Heat exchanger
JP5494017B2 (en) Heat exchanger and heat pump water heater using the same
JP2005140451A (en) Heat exchanger tube faced with fin member
JP3192275U (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140527

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150320

R150 Certificate of patent or registration of utility model

Ref document number: 5719107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250