WO2011055636A1 - Stainless steel flexible pipe - Google Patents

Stainless steel flexible pipe Download PDF

Info

Publication number
WO2011055636A1
WO2011055636A1 PCT/JP2010/068567 JP2010068567W WO2011055636A1 WO 2011055636 A1 WO2011055636 A1 WO 2011055636A1 JP 2010068567 W JP2010068567 W JP 2010068567W WO 2011055636 A1 WO2011055636 A1 WO 2011055636A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
stainless steel
flexible
tube
raw
Prior art date
Application number
PCT/JP2010/068567
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 松山
昌文 高井良
央 岩崎
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to CN2010800482343A priority Critical patent/CN102667288A/en
Priority to KR1020127010506A priority patent/KR101380091B1/en
Publication of WO2011055636A1 publication Critical patent/WO2011055636A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/14Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics
    • F16L11/15Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics corrugated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/02Energy absorbers; Noise absorbers
    • F16L55/033Noise absorbers
    • F16L55/0337Noise absorbers by means of a flexible connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/0218Flexible soft ducts, e.g. ducts made of permeable textiles

Definitions

  • the present invention relates to a stainless steel flexible tube.
  • An air conditioner is a heat exchanger through a refrigerant, and a copper pipe having excellent heat conductivity is generally used for its piping.
  • copper pipes are excellent not only in heat conductivity but also in workability, copper pipes are also used in connection pipes for indoor and outdoor units that do not involve heat conductivity.
  • the pipe length is about 4 to 5 m, it can be connected sufficiently.
  • the indoor unit and the outdoor unit are often installed in remote locations, so the connecting pipe exceeds 10 m, and in some cases, close to 100 m may be required. .
  • the thickness of the current copper pipe is 0.8 mm or more, there is a problem that the weight increases and the portability deteriorates.
  • the pipe diameter of the connecting pipe becomes large, so that a bending device such as a bender is required for bending the pipe.
  • workability is very inferior, for example, the connection work between the piping is increased.
  • the weight of the pipe increases, the cladding pipe is easily crushed at the pipe hanging position. For this reason, there is also a problem that the condensation is likely to occur on the outer surface of the pipe and the pipe is liable to rust. Therefore, in the present situation, a condensation prevention sheet is used to prevent the cladding tube from being crushed.
  • This fluid noise is presumed to be equivalent to the air column resonance phenomenon that occurs due to the flow of the duct, heat transfer tube group, and fuselage in the heat exchanger such as a gas heater and boiler. It is known that the frequency of Karman vortices emitted from the heat transfer tube group increases as the flow velocity of the gas flowing in the duct increases, and noise is generated in accordance with the air column resonance frequency of the duct (Non-Patent Document 1). ). In the flexible tube, it is presumed that fluid noise is generated due to the coincidence of the Karman vortex frequency generated due to the corrugated shape and the resonance frequency of the flexible tube with the gas flow.
  • the present invention has been made in view of the above problems, and is made of stainless steel that is economically superior, improves bending workability at the time of construction, and can prevent generation of fluid noise estimated to be caused by the flow of refrigerant gas.
  • An object is to provide a flexible tube.
  • the inventors of the present invention preferably increase the corrugated shape of the flexible tube in order to ensure bending workability during construction (see Patent Document 4).
  • Patent Document 4 On the other hand, in order to suppress the fluid noise, it has been found that it is preferable to approach the straight pipe as much as possible.
  • the shape which can make the bending workability of a flexible pipe and suppression of a fluid noise compatible was examined using various stainless steel. As a result, the inventors have found that the relationship between the outer diameter of the raw pipe, the mountain pitch of the flexible pipe, and the depth of the valley is important, and completed the present invention.
  • a stainless steel flexible tube according to an aspect of the present invention is made of metal stainless steel having a material plate thickness of 0.2 to 0.4 mm or less, and has a flexible portion in which a corrugated shape is formed.
  • d (mm) the corrugated shape is the raw tube outer diameter d / mountain valley depth Dd: 15 to 23, and the pipe outer diameter d / peak to peak pitch p: 2. Satisfies 5 to 5.5.
  • the stainless steel flexible tube according to one embodiment of the present invention may have a base tube at both ends or one end. In the stainless steel flexible tube according to an aspect of the present invention, a plurality of the tube portions and the flexible portions having the corrugated shape may be alternately arranged.
  • the flexible tube made of stainless steel according to one aspect of the present invention may have a coil shape in which the entire flexible tube is spirally turned.
  • the stainless steel flexible pipe according to one embodiment of the present invention may have a raw pipe portion at both ends or one end, and may further have a flared portion at both or one side of the raw pipe portion.
  • connection pipes for air conditioners for example, connection pipes for air conditioners, particularly commercial air conditioner indoor and outdoor units
  • connection pipes for air conditioners particularly commercial air conditioner indoor and outdoor units
  • connection pipes for air conditioners particularly commercial air conditioner indoor and outdoor units
  • bending during construction is possible, and further, fluid noise due to the flow of refrigerant gas can be suppressed.
  • the flexible pipe has the raw pipe portions at both ends or one end, it is possible to connect the indoor and outdoor units and the pipes by performing flare processing for connection at the construction site.
  • a plurality of raw tube portions and corrugated portions (flexible portions) are alternately arranged, it is possible to cut and connect at arbitrary positions.
  • the flexible tube having an arbitrary length can be carried and the workability is improved.
  • a flexible pipe has a raw pipe part at both ends or one end, and further has a flare processing part at both or one of the raw pipe parts, it becomes possible to immediately connect without flare processing at the construction site. .
  • FIGS. 1 to 3 embodiments of a stainless steel flexible tube according to an aspect of the present invention will be described with reference to FIGS. 1 to 3 as appropriate.
  • this embodiment is described in detail in order to better understand the gist of the stainless steel flexible tube according to one aspect of the present invention, the present invention is not limited unless otherwise specified. .
  • the flexible tube 10 includes a flare processing portion 14 provided at an end portion, a raw tube portion 12, and a flexible portion 20 having a corrugated shape.
  • a flare processing portion 14 provided at an end portion
  • a raw tube portion 12 and a flexible portion 20 having a corrugated shape.
  • independent ridges 22 and valleys 24 along the circumferential direction of the peripheral surface of the flexible tube 10 are alternately arranged to form a wave shape.
  • the flare nut 30 is inserted into the flexible tube 10 so as to be freely rotatable and slidable.
  • the flare nut 30 is used to connect the pipes by tightening with a predetermined torque, and is generally inserted into the flexible pipe before flare processing.
  • the shape of the waveform of the flexible portion 20 is not particularly limited.
  • the shape of the top of the peak and the bottom of the valley is generally curved, but even if it is an acute convex portion. good.
  • the relationship between the corrugated shape of the flexible portion 20 and the outer diameter d of the raw tube is important.
  • 1/2 of the difference between the crest outer diameter dm (mm) and the trough outer diameter dv (mm) is defined as the crest depth Dd (mm), and the next crest from the crest top
  • the length to the top of the head is defined as the pitch P (mm) of the waveform shape.
  • the ratio (d / Dd) of the outer diameter d (mm) of the raw tube to the depth Dd (mm) of the valley is 15 to 23, and the outer diameter d (mm) of the raw tube and the pitch P (mm ) Ratio (d / P) is preferably in the range of 2.5 to 5.5. More preferably, d / Dd is 17 to 21.5 and d / P is 2.5 to 4.
  • the outer diameter d / mountain depth Dd is smaller than 15, the depth of the valley corresponding to the outer diameter of the pipe increases, so that distortion during bending is dispersed in several wave portions and is not easily buckled. As a result, workability is improved.
  • the frequency of the Karman vortex resulting from the corrugated shape matches the air column resonance frequency of the flexible tube, and fluid noise is likely to occur.
  • the outer diameter d of the raw tube / the depth Dd of the valley exceeds 23
  • the fluid noise is suppressed by relatively decreasing the depth of the valley.
  • the outer diameter d / pitch P is less than 2.5, the depth of the valley is relatively small, and fluid noise is suppressed.
  • bending workability during construction deteriorates.
  • the raw pipe outer diameter d / pitch P exceeds 5.5, the depth of the valley is relatively increased, and the workability is improved.
  • fluid noise tends to occur.
  • FIG. 3 shows the results of arranging the bending workability during construction and the generation of fluid noise based on the data of Examples shown in Table 2 described later.
  • the “element tube” generally refers to a tube manufactured by electric resistance welding or arc welding using a steel strip or a steel plate, and in one embodiment of the present invention, a drawn tube is used. Including.
  • the “element tube portion” indicates a portion where no flexible portion is provided.
  • the location of the raw tube portion 12 is not particularly limited, and may be arranged on both sides or one side of the flexible portion 20, and the plurality of raw tube portions 12 and the plurality of flexible portions 20 are alternately arranged. May be.
  • the raw tube outer diameter d is not particularly defined.
  • the outer diameter of the raw pipe of the refrigerant liquid pipe is 6.35 mm
  • the outer diameter of the raw pipe of the refrigerant gas pipe is 9.52 mm.
  • These two types of pipes having an outer diameter of the raw pipe are generally used.
  • pipes with an outer diameter of 9.52 mm or quadrants are used as refrigerant liquid pipes.
  • a quadrant a pipe having an outer diameter of 15.88 mm, 19.05 mm, or the like is used.
  • pipes having an outer diameter of more than 20 mm may be used for air conditioning. Therefore, in the present invention, it is preferable to appropriately determine the outer diameter d of the raw tube within a range of 6 to 30 mm.
  • the composition of the stainless steel used in one embodiment of the present invention is not particularly limited.
  • SUS304, 304L, 316, 316L, etc. can be used if it is an austenitic stainless steel.
  • SUS430, SUS430J1L, SUS430LX, SUS436L, SUS436J1L, SUS444, or the like can be used.
  • Ferritic stainless steel is inexpensive because it does not contain a large amount of Ni unlike austenitic stainless steel.
  • ferritic stainless steel is superior in workability because it has less work hardening than austenitic stainless steel.
  • the method for manufacturing the flexible tube is not particularly limited.
  • a stainless steel plate having a thickness of 0.2 to 0.4 mm is used to produce a raw pipe as a welded pipe or a drawn pipe by an existing method, and then a corrugated shape is formed by pressing a blade-shaped mold against the raw pipe.
  • the method of forming is mentioned.
  • a method of forming a flexible tube by forming a corrugation on a stainless steel plate using an uneven roll, and then welding the corrugated steel plate while winding it may be mentioned.
  • the corrugated shape of the flexible portion 20 has a tube outer diameter d / mountain valley depth Dd: 15 to 23, and a tube outer diameter d / peak to peak pitch P:
  • the stainless steel flexible pipe of one embodiment of the present invention has the raw pipe portions at both ends or one end, thereby facilitating flaring. For this reason, it becomes possible to connect the indoor and outdoor units and the pipes by performing flare processing for connection at the construction site.
  • the raw pipe part is cut at an arbitrary position according to the length required at the construction site, A flexible tube having an element tube at the end can be obtained.
  • the flexible portion 20 is one in which the independent crests 22 and troughs 24 are arranged at a constant pitch (one pitch type), but is not limited thereto. .
  • a peak portion and a valley portion may be formed in a spiral shape on the peripheral surface portion.
  • an ordinary home air conditioner requires a length of about 4 to 5 m as a connection pipe.
  • it is piping, such as a building and a crane, it will exceed 10 m and it may become close to 100 m depending on the case.
  • a flared portion 14 is provided at the end.
  • this flared portion may not be provided, and the raw tube portion 12 may be disposed at the end portion of the flexible tube 10, or the flexible portion 20 may be disposed at the end portion.
  • the flare processing part 14, the raw pipe part 12, or the flexible part 20 may be provided at both ends of the flexible pipe 10, or may be provided only at one end.
  • the stainless steel flexible tube according to one aspect of the present invention, by defining the material plate thickness and the corrugated shape as described above, for example, an air conditioner, in particular, a commercial air conditioner room It is possible to reduce the weight of connecting pipes for external units and piping for air conditioning equipment. In addition, bending during construction is possible, and further, fluid noise due to the flow of refrigerant gas can be suppressed. For this reason, the industrial effect is extremely high.
  • interposed by the waveform-shaped part (flexible part) is cut
  • Table 1 shows the material grade (component composition) of the flexible pipe
  • Table 2 shows a list of evaluation results.
  • the results of the bending workability during construction and the occurrence of abnormal fluid noise are arranged in the graph of FIG. 3 for the data of the examples and comparative examples shown in Table 2.
  • the left side is an evaluation result of bending workability and the right side is an evaluation result of occurrence of fluid noise at the plot positions of “ ⁇ (passed)” and “ ⁇ (failed)”.
  • the flexible pipe of the example having the waveform shape defined in the present embodiment is capable of bending workability and generation of fluid noise.
  • Each of the evaluations is a pass ( ⁇ ), and these properties are excellent.
  • the stainless steel flexible pipe of one aspect of the present invention is economically excellent, the bending workability during construction is improved, and the fluid is estimated to be caused by the flow of the refrigerant gas It became clear that the generation of noise could be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

This stainless steel flexible pipe is made of a stainless steel sheet, which is metallic, and the material thickness of which is 0.2 - 0.4 mm or less. Furthermore, the stainless steel flexible pipe comprises a pliable section wherein a waveform shape is formed. The waveform shape is such that the ratio d/Dd is 15 -23, where d is the outside diameter (mm) of the basic pipe, and Dd is the depth between the crest and the trough; and that the relational expression d/p = 2.5 - 5.5 is satisfied, where d is the outside diameter of the basic pipe, and p is the crest-to-crest spacing. The stainless steel flexible pipe may comprise a basic pipe section at both ends or one end. A basic pipe section and a pliable section may be alternately disposed in a plurality of places. The whole flexible pipe may have a coiled shape formed by being helically spiraled. The stainless steel flexible pipe may, in addition to comprising a basic pipe section at both ends or one end, comprise a flared section at both ends or one end of the basic pipe section.

Description

ステンレス鋼製フレキシブル管Stainless steel flexible tube
 本発明は、ステンレス鋼製フレキシブル管に関する。
 本願は、2009年11月5日に、日本に出願された特願2009-253978号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a stainless steel flexible tube.
This application claims priority based on Japanese Patent Application No. 2009-253978 filed in Japan on November 5, 2009, the contents of which are incorporated herein by reference.
 エアコンは冷媒を介した熱交換機であり、その配管には、一般に、熱伝導性に優れた銅管が使われている。また、銅管は、熱伝導性だけではなく加工性にも優れていることから、熱伝導性が関与しない室内外機の接続配管にも銅管が使用されている。ここで、一般家庭用エアコンであれば、配管長さが4~5m程度あれば十分接続が可能である。しかし、ビルやクレーンなどの業務用エアコンの場合、室内機と室外機が離れた場所に設置されることが多いため、接続配管は10mを超え、場合によっては100m近くも必要になることがある。そのような場合、現状の銅管では板厚が0.8mm以上であるため、重量が大きくなり、持ち運び性が悪くなるという問題がある。また、エアコンの冷房能力によっては、接続配管の管径が大きくなるため、配管の曲げ加工を行うのにベンダーのような曲げ装置が必要となる。さらには、配管の長尺化が困難なため、配管同士の接続作業が増加するなど、施工性が非常に劣るという問題がある。
 その他にも、配管の重量が増加するため、配管吊り下げ箇所で被覆管がつぶれやすくなる。このため、配管外面で結露しやすくなって配管が錆びやすくなるという問題もあることから、現状においては、被覆管つぶれ防止のために結露防止シートを用いたりしている。
An air conditioner is a heat exchanger through a refrigerant, and a copper pipe having excellent heat conductivity is generally used for its piping. In addition, since copper pipes are excellent not only in heat conductivity but also in workability, copper pipes are also used in connection pipes for indoor and outdoor units that do not involve heat conductivity. Here, in the case of a general household air conditioner, if the pipe length is about 4 to 5 m, it can be connected sufficiently. However, in the case of commercial air conditioners such as buildings and cranes, the indoor unit and the outdoor unit are often installed in remote locations, so the connecting pipe exceeds 10 m, and in some cases, close to 100 m may be required. . In such a case, since the thickness of the current copper pipe is 0.8 mm or more, there is a problem that the weight increases and the portability deteriorates. In addition, depending on the cooling capacity of the air conditioner, the pipe diameter of the connecting pipe becomes large, so that a bending device such as a bender is required for bending the pipe. Furthermore, since it is difficult to lengthen the piping, there is a problem that workability is very inferior, for example, the connection work between the piping is increased.
In addition, since the weight of the pipe increases, the cladding pipe is easily crushed at the pipe hanging position. For this reason, there is also a problem that the condensation is likely to occur on the outer surface of the pipe and the pipe is liable to rust. Therefore, in the present situation, a condensation prevention sheet is used to prevent the cladding tube from being crushed.
 上記問題を解決するため、まず、軽量化に関し、銅よりも軽いアルミ合金の適用が検討されている(例えば、特許文献1を参照)。しかしながら、アルミ管とした場合、接続のために両端に銅管が溶接されるため、加工の手間とコストがかかるという問題がある。 In order to solve the above problems, first, application of an aluminum alloy that is lighter than copper is being considered for weight reduction (see, for example, Patent Document 1). However, when an aluminum pipe is used, a copper pipe is welded to both ends for connection, and thus there is a problem that it takes time and cost for processing.
 一方、ステンレス鋼は、その優れた耐食性から屋内外の各種給水・給湯・ガス用配管等に用いられている。また、ステンレス鋼は強度が高いため、板厚を薄くしてフレキシブル管にすることができる。これにより、銅やアルミ管のようにある程度の曲げ加工ができるとともに(例えば、特許文献2を参照)、板厚が薄いことで従来の銅管に比べてかなりの軽量化が可能となる。これらステンレス鋼製のフレキシブル管には、SUS304、304L、316、316Lといったオーステナイト系ステンレス鋼が多く使われている。オーステナイト系ステンレス鋼と比較して安価で加工硬化が小さいフェライト系ステンレス鋼製のフレキシブル管については、自動車排気系での採用が検討されている(例えば、特許文献3を参照)。 On the other hand, stainless steel is used for various indoor and outdoor water supply, hot water supply, gas piping, etc. due to its excellent corrosion resistance. Moreover, since stainless steel has high strength, it is possible to make a flexible pipe by reducing the plate thickness. Thereby, while being able to bend to some extent like a copper and an aluminum pipe (for example, refer to patent documents 2), considerable weight reduction is attained compared with the conventional copper pipe because board thickness is thin. For these stainless steel flexible tubes, austenitic stainless steels such as SUS304, 304L, 316, 316L are often used. Adoption of a ferritic stainless steel flexible pipe that is cheaper and less work-hardening than austenitic stainless steel is being considered for use in an automobile exhaust system (see, for example, Patent Document 3).
 そこで、本発明者等は鋭意検討を行い、フェライト系ステンレス鋼を用いてエアコンに接続可能となるように、フレキシブル管の曲げ加工性およびフレア加工性を検討して、その素材および波形形状の条件を見出した(特許文献4を参照)。しかしながら、このフレキシブル管を実際にエアコンにつないで評価したところ、冷媒ガスの流れが強くなるとともに、フレキシブル管の波形形状に起因すると推定される流体騒音が発生するおそれがあることが判明した。 Therefore, the present inventors have intensively studied, examined the bending workability and flaring workability of the flexible tube so that it can be connected to an air conditioner using ferritic stainless steel, and the conditions of the material and corrugated shape. (See Patent Document 4). However, when this flexible pipe was actually connected to an air conditioner and evaluated, it was found that the flow of the refrigerant gas becomes strong and there is a possibility of generating fluid noise estimated to be caused by the waveform shape of the flexible pipe.
 この流体騒音は、ガスヒーターやボイラなどの熱交換器において、ダクト、伝熱管群、および機体の流れの3つに起因して発生する気柱共鳴現象と同等のものと推定される。ダクト内を流れる気体流速の上昇とともに、伝熱管群で放出されるカルマン渦の周波数が増大し、ダクトの気柱共鳴周波数と一致して騒音が発生することが知られている(非特許文献1)。フレキシブル管においては、ガスの流れに伴い、波型形状に起因して発生するカルマン渦の周波数と、フレキシブル管との共鳴周波数が一致することにより、流体騒音が発生したと推定される。これらフレキシブル管の流体騒音の対策としては、例えば、管内部を流動する空気が多数の溝に流入しないような壁を設けるフレキシブル管が検討されている(例えば、特許文献5、6を参照)。しかしながら、特許文献5、6に記載の方法では、工業的に安定して製造するには多大なコストがかかるという問題があった。 This fluid noise is presumed to be equivalent to the air column resonance phenomenon that occurs due to the flow of the duct, heat transfer tube group, and fuselage in the heat exchanger such as a gas heater and boiler. It is known that the frequency of Karman vortices emitted from the heat transfer tube group increases as the flow velocity of the gas flowing in the duct increases, and noise is generated in accordance with the air column resonance frequency of the duct (Non-Patent Document 1). ). In the flexible tube, it is presumed that fluid noise is generated due to the coincidence of the Karman vortex frequency generated due to the corrugated shape and the resonance frequency of the flexible tube with the gas flow. As a countermeasure against fluid noise of these flexible pipes, for example, a flexible pipe having a wall that prevents the air flowing inside the pipe from flowing into many grooves has been studied (for example, see Patent Documents 5 and 6). However, the methods described in Patent Documents 5 and 6 have a problem that it takes a great deal of cost for industrially stable production.
特開2003-275832号公報JP 2003-275832 A 特開2006-177529号公報JP 2006-177529 A 特開平11-159616号公報JP 11-159616 A 特開2009-185351号公報JP 2009-185351 A 特開2008-220922号公報JP 2008-220922 A 特開2006-64126号公報JP 2006-64126 A
 本発明は上記問題に鑑みてなされたものであり、経済的に優れ、施工時の曲げ加工性が改善されるとともに、冷媒ガスの流れに起因すると推定される流体騒音発生を防止できるステンレス鋼製フレキシブル管を提供することを目的とする。 The present invention has been made in view of the above problems, and is made of stainless steel that is economically superior, improves bending workability at the time of construction, and can prevent generation of fluid noise estimated to be caused by the flow of refrigerant gas. An object is to provide a flexible tube.
 本発明者等は、上記問題を解決するために鋭意検討を重ねた結果、施工時の曲げ加工性を確保するためには、フレキシブル管の波型形状を大きくすることが好ましく(特許文献4参照)、一方、流体騒音を抑制するためには、限りなく直管に近づけることが好ましいことを知見した。そして、この相反する特性を両立させるため、各種ステンレス鋼を用いて、フレキシブル管の曲げ加工性と流体騒音の抑制を両立できる形状について検討した。その結果、素管外径とフレキシブル管の山山ピッチと山谷深さの関係が重要であることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the inventors of the present invention preferably increase the corrugated shape of the flexible tube in order to ensure bending workability during construction (see Patent Document 4). On the other hand, in order to suppress the fluid noise, it has been found that it is preferable to approach the straight pipe as much as possible. And in order to make this contradictory characteristic compatible, the shape which can make the bending workability of a flexible pipe and suppression of a fluid noise compatible was examined using various stainless steel. As a result, the inventors have found that the relationship between the outer diameter of the raw pipe, the mountain pitch of the flexible pipe, and the depth of the valley is important, and completed the present invention.
 本発明の一態様に係るステンレス鋼製フレキシブル管は、素材板厚が0.2~0.4mm以下の金属ステンレス鋼からなり、波形形状が形成された可撓部を有し、素管外径d(mm)としたときに、前記波形形状が、素管外径d/山谷深さDd:15~23であり、かつ、素管外径d/山部から山部のピッチp:2.5~5.5を満たす。
 本発明の一態様に係るステンレス鋼製フレキシブル管は、両端または片端に素管部を有していても良い。
 本発明の一態様に係るステンレス鋼製フレキシブル管は、前記素管部と、前記波形形状からなる可撓部とが、交互にそれぞれ複数箇所配置されていても良い。
 本発明の一態様に係るステンレス鋼製フレキシブル管は、前記フレキシブル管の全体が、螺旋状に旋回したコイル形状であっても良い。
 本発明の一態様に係るステンレス鋼製フレキシブル管は、両端または片端に素管部を有し、さらに、前記素管部の両方または片方にフレア加工部を有していても良い。
A stainless steel flexible tube according to an aspect of the present invention is made of metal stainless steel having a material plate thickness of 0.2 to 0.4 mm or less, and has a flexible portion in which a corrugated shape is formed. d (mm), the corrugated shape is the raw tube outer diameter d / mountain valley depth Dd: 15 to 23, and the pipe outer diameter d / peak to peak pitch p: 2. Satisfies 5 to 5.5.
The stainless steel flexible tube according to one embodiment of the present invention may have a base tube at both ends or one end.
In the stainless steel flexible tube according to an aspect of the present invention, a plurality of the tube portions and the flexible portions having the corrugated shape may be alternately arranged.
The flexible tube made of stainless steel according to one aspect of the present invention may have a coil shape in which the entire flexible tube is spirally turned.
The stainless steel flexible pipe according to one embodiment of the present invention may have a raw pipe portion at both ends or one end, and may further have a flared portion at both or one side of the raw pipe portion.
 本発明の一態様に係るステンレス鋼製フレキシブル管によれば、上記したように素材板厚と波型形状を規定することにより、例えば、エアコン、特に、業務用のエアコン室内外機の接続配管や空調機器用の配管の軽量化が可能となる。また、施工時の曲げ加工が可能となり、さらに、冷媒ガスの流れによる流体騒音が抑制できる。
 フレキシブル管の両端または片端に素管部を有する場合には、施工現場で接続のためのフレア加工を行い、室内外機や配管同士を接続することが可能となる。また、素管部と波形形状部(可撓部)が交互にそれぞれ複数個所配置されている場合には、任意の位置で切断して接続することが可能となる。
 フレキシブル管の全体が、螺旋状に旋回したコイル形状である場合には、任意の長さのフレキシブル管の持ち運びが可能になるとともに、施工性が向上する。
 フレキシブル管の両端または片端に素管部を有し、さらにその素管部の両方または片方にフレア加工部を有する場合には、施工現場でフレア加工することなく即座に接続することが可能となる。
According to the stainless steel flexible pipe according to an aspect of the present invention, by defining the material plate thickness and the corrugated shape as described above, for example, connection pipes for air conditioners, particularly commercial air conditioner indoor and outdoor units, It is possible to reduce the weight of piping for air conditioning equipment. In addition, bending during construction is possible, and further, fluid noise due to the flow of refrigerant gas can be suppressed.
When the flexible pipe has the raw pipe portions at both ends or one end, it is possible to connect the indoor and outdoor units and the pipes by performing flare processing for connection at the construction site. In addition, when a plurality of raw tube portions and corrugated portions (flexible portions) are alternately arranged, it is possible to cut and connect at arbitrary positions.
When the entire flexible tube has a spirally coiled shape, the flexible tube having an arbitrary length can be carried and the workability is improved.
When a flexible pipe has a raw pipe part at both ends or one end, and further has a flare processing part at both or one of the raw pipe parts, it becomes possible to immediately connect without flare processing at the construction site. .
本発明の実施形態のステンレス鋼製フレキシブル管を示す模式断面図である。It is a schematic cross section which shows the stainless steel flexible pipe of embodiment of this invention. 本発明の実施形態のステンレス鋼製フレキシブル管を説明する模式図であり、コイル状に巻き取られた状態を示す斜視図である。It is a schematic diagram explaining the stainless steel flexible tube of embodiment of this invention, and is a perspective view which shows the state wound up by the coil shape. 本発明の実施形態のステンレス鋼製フレキシブル管を説明する模式図であり、フレキシブル管の波形形状と、施工時曲げ加工性および流体騒音との関係を示すグラフである。It is a schematic diagram explaining the stainless steel flexible pipe of embodiment of this invention, and is a graph which shows the relationship between the waveform shape of a flexible pipe, bending workability at the time of construction, and fluid noise.
 以下、本発明の一態様に係るステンレス鋼製フレキシブル管の実施の形態について、図1~図3を適宜参照しながら説明する。なお、本実施形態は、本発明の一態様に係るステンレス鋼製フレキシブル管の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り本発明を限定するものではない。 Hereinafter, embodiments of a stainless steel flexible tube according to an aspect of the present invention will be described with reference to FIGS. 1 to 3 as appropriate. In addition, since this embodiment is described in detail in order to better understand the gist of the stainless steel flexible tube according to one aspect of the present invention, the present invention is not limited unless otherwise specified. .
 図1は、本発明の実施形態にかかるステンレス鋼製フレキシブル管10の断面図である。
 本発明の一態様に係るステンレス鋼製フレキシブル管(以下、単にフレキシブル管と略称することがある)10は、図1に示すように、板厚が0.2~0.4mm以下のステンレス鋼を素材として形成されている。素管外径をd(mm)としたときに、フレキシブル管10に形成される波形形状が、素管外径d/山谷深さDd:15~23であり、かつ、素管外径d/山部から山部のピッチp:2.5~5.5を満たすように概略構成されている。
FIG. 1 is a sectional view of a stainless steel flexible tube 10 according to an embodiment of the present invention.
As shown in FIG. 1, a stainless steel flexible tube (hereinafter sometimes simply referred to as a flexible tube) 10 according to one embodiment of the present invention is made of stainless steel having a plate thickness of 0.2 to 0.4 mm or less. It is formed as a material. When the outer diameter of the tube is d (mm), the corrugated shape formed in the flexible tube 10 is the tube outer diameter d / mountain valley depth Dd: 15 to 23, and the tube outer diameter d / The pitch is roughly constituted so as to satisfy the pitch p from 2.5 to 5.5.
 図1に示すように、フレキシブル管10は、端部に設けられたフレア加工部14と、素管部12と、波形形状とされた可撓部20とを有する。可撓部20には、フレキシブル管10の周面の円周方向に沿った、独立した山部22と谷部24とが交互に配置されて波形形状が形成されている。また、フレアナット30は、回転およびスライドが自在な状態でフレキシブル管10に挿入されている。 As shown in FIG. 1, the flexible tube 10 includes a flare processing portion 14 provided at an end portion, a raw tube portion 12, and a flexible portion 20 having a corrugated shape. In the flexible part 20, independent ridges 22 and valleys 24 along the circumferential direction of the peripheral surface of the flexible tube 10 are alternately arranged to form a wave shape. The flare nut 30 is inserted into the flexible tube 10 so as to be freely rotatable and slidable.
 フレアナット30は、所定のトルクで締め付けて、配管同士を接続するために使用され、一般的に、フレア加工前にフレキシブル管に挿入しておく。 The flare nut 30 is used to connect the pipes by tightening with a predetermined torque, and is generally inserted into the flexible pipe before flare processing.
 可撓部20の波形の形状としては、特に限定されず、例えば、山部の頭頂部、谷部の底部の形状が曲面であることが一般的ではあるが、鋭角な凸部であっても良い。 The shape of the waveform of the flexible portion 20 is not particularly limited. For example, the shape of the top of the peak and the bottom of the valley is generally curved, but even if it is an acute convex portion. good.
 可撓部20の波形形状について、図1を用いて、以下に詳細に説明する。
 本発明の一態様においては、可撓部20の波形形状と素管外径dとの大きさの関係が重要である。本発明の一態様では、山部外径dm(mm)と谷部外径dv(mm)の差の1/2を山谷深さDd(mm)と規定し、山部頭頂から隣の山部頭頂までの長さを波形形状のピッチP(mm)と規定する。素管外径d(mm)と山谷深さDd(mm)の比(d/Dd)が15~23の範囲であり、かつ、素管外径d(mm)と波形形状のピッチP(mm)の比(d/P)が2.5~5.5の範囲であることが好ましい。より好ましくは、d/Ddが17~21.5であり、かつd/Pが2.5~4である。
The waveform shape of the flexible portion 20 will be described in detail below with reference to FIG.
In one aspect of the present invention, the relationship between the corrugated shape of the flexible portion 20 and the outer diameter d of the raw tube is important. In one embodiment of the present invention, 1/2 of the difference between the crest outer diameter dm (mm) and the trough outer diameter dv (mm) is defined as the crest depth Dd (mm), and the next crest from the crest top The length to the top of the head is defined as the pitch P (mm) of the waveform shape. The ratio (d / Dd) of the outer diameter d (mm) of the raw tube to the depth Dd (mm) of the valley is 15 to 23, and the outer diameter d (mm) of the raw tube and the pitch P (mm ) Ratio (d / P) is preferably in the range of 2.5 to 5.5. More preferably, d / Dd is 17 to 21.5 and d / P is 2.5 to 4.
 素管外径d/山谷深さDdが15より小さい場合、素管外径に相対する山谷深さが大きくなることにより、曲げ加工時の歪みがいくつかの波部に分散されて座屈し難くなり、施工性は向上する。しかしながら、波型形状に起因するカルマン渦の周波数とフレキシブル管の気柱共鳴周波数が一致して流体騒音が発生しやすくなる。また、素管外径d/山谷深さDdが23を超える場合、相対的に山谷深さが小さくなることにより、流体騒音は抑制される。しかしながら、施工時の曲げ加工性が劣化する。
 また、素管外径d/ピッチPが2.5よりも小さい場合、相対的に山谷深さが小さくなり、流体騒音は抑制される。しかしながら、施工時の曲げ加工性が劣化する。また、素管外径d/ピッチPが5.5を超える場合、相対的に山谷深さが大きくなり、施工性は向上する。しかしながら、流体騒音が発生しやすくなる。
When the outer diameter d / mountain depth Dd is smaller than 15, the depth of the valley corresponding to the outer diameter of the pipe increases, so that distortion during bending is dispersed in several wave portions and is not easily buckled. As a result, workability is improved. However, the frequency of the Karman vortex resulting from the corrugated shape matches the air column resonance frequency of the flexible tube, and fluid noise is likely to occur. Further, when the outer diameter d of the raw tube / the depth Dd of the valley exceeds 23, the fluid noise is suppressed by relatively decreasing the depth of the valley. However, bending workability during construction deteriorates.
In addition, when the outer diameter d / pitch P is less than 2.5, the depth of the valley is relatively small, and fluid noise is suppressed. However, bending workability during construction deteriorates. Moreover, when the raw pipe outer diameter d / pitch P exceeds 5.5, the depth of the valley is relatively increased, and the workability is improved. However, fluid noise tends to occur.
 上述した波形形状の規定に関しては、後述の実施例において検討を行っている。後述する表2で示す実施例のデータを基に、施工時曲げ加工性、および流体騒音発生について整理した結果を図3に示している。 The above-mentioned definition of the waveform shape is studied in the examples described later. FIG. 3 shows the results of arranging the bending workability during construction and the generation of fluid noise based on the data of Examples shown in Table 2 described later.
 本発明の一態様において、「素管」とは、一般的に、鋼帯または鋼板を用いて電気抵抗溶接またはアーク溶接によって製造された管をいい、本発明の一態様においては、引き抜き管を含む。そして、「素管部」とは、可撓部を設けていない箇所を示す。
 素管部12の場所は、特に限定されず、可撓部20の両側あるいは片側に配置されていても良いし、複数の素管部12と複数の可撓部20とが交互に配置されていても良い。
In one embodiment of the present invention, the “element tube” generally refers to a tube manufactured by electric resistance welding or arc welding using a steel strip or a steel plate, and in one embodiment of the present invention, a drawn tube is used. Including. The “element tube portion” indicates a portion where no flexible portion is provided.
The location of the raw tube portion 12 is not particularly limited, and may be arranged on both sides or one side of the flexible portion 20, and the plurality of raw tube portions 12 and the plurality of flexible portions 20 are alternately arranged. May be.
 素管外径dは、特に規定されない。しかし、例えば、家庭用エアコン接続配管では、冷媒液用配管の素管外径は6.35mmであり、冷媒ガス用配管の素管外径は9.52mmである。これら2種類の素管外径の配管が一般的に使用されている。業務用大型エアコンの場合、冷媒液用配管としては、素管外径が9.52mmの配管や4分管が使用されている。また、冷媒ガス用配管としては、4分管や、素管外径が15.88mm、19.05mmの配管等が使用されている。また、その他、空調用として、素管外径が20mmを超える配管も使用されることがある。
 従って、本発明においては、素管外径dは6~30mmの範囲で適宜決定することが好ましい。
The raw tube outer diameter d is not particularly defined. However, for example, in a home air conditioner connection pipe, the outer diameter of the raw pipe of the refrigerant liquid pipe is 6.35 mm, and the outer diameter of the raw pipe of the refrigerant gas pipe is 9.52 mm. These two types of pipes having an outer diameter of the raw pipe are generally used. In the case of large commercial air conditioners, pipes with an outer diameter of 9.52 mm or quadrants are used as refrigerant liquid pipes. Further, as the piping for the refrigerant gas, a quadrant, a pipe having an outer diameter of 15.88 mm, 19.05 mm, or the like is used. In addition, pipes having an outer diameter of more than 20 mm may be used for air conditioning.
Therefore, in the present invention, it is preferable to appropriately determine the outer diameter d of the raw tube within a range of 6 to 30 mm.
 本発明の一態様において、フレキシブル管10の素材となるステンレス鋼の板厚は、0.2~0.4mmである。ステンレス鋼の板厚が0.2mmよりも薄い場合、フレキシブル管としての強度が低下する。さらに、フレア加工時に所定の拡管率まで加工することができず、フレア加工先端部(フレア加工部)において括れ(割れ)が発生する。さらに、市場での入手性を考慮して、ステンレス鋼の板厚の下限を0.2mmとする。また、ステンレス鋼の板厚が0.4mmを超えると、施工現場での曲げ加工性が著しく低下する。
 従って、素材となるステンレス鋼の板厚を0.2~0.4mmとする。
In one embodiment of the present invention, the thickness of the stainless steel used as the material for the flexible tube 10 is 0.2 to 0.4 mm. When the stainless steel plate thickness is thinner than 0.2 mm, the strength as a flexible tube is lowered. Furthermore, it cannot process to a predetermined pipe expansion ratio at the time of flare processing, and the flared processing tip portion (flared processing portion) is constricted (cracked). Furthermore, considering the availability in the market, the lower limit of the thickness of the stainless steel is 0.2 mm. Further, if the thickness of the stainless steel exceeds 0.4 mm, the bending workability at the construction site is remarkably lowered.
Therefore, the thickness of the stainless steel material is 0.2 to 0.4 mm.
 本発明の一態様において用いられるステンレス鋼の組成は、特に限定されない。例えば、JISに規定されたものとして、オーステナイト系ステンレス鋼であれば、SUS304、304L、316、316L等を使用できる。また、フェライト系ステンレス鋼であれば、SUS430、SUS430J1L、SUS430LX、SUS436L、SUS436J1L、SUS444等を使用できる。フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼のように多量のNiを含有していないため、安価である。また、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼と比較して、加工硬化が小さいため、施工性に優れる。 The composition of the stainless steel used in one embodiment of the present invention is not particularly limited. For example, as defined in JIS, SUS304, 304L, 316, 316L, etc. can be used if it is an austenitic stainless steel. For ferritic stainless steel, SUS430, SUS430J1L, SUS430LX, SUS436L, SUS436J1L, SUS444, or the like can be used. Ferritic stainless steel is inexpensive because it does not contain a large amount of Ni unlike austenitic stainless steel. In addition, ferritic stainless steel is superior in workability because it has less work hardening than austenitic stainless steel.
 本発明の一態様においては、フレキシブル管の製造方法は、特に限定されない。例えば、板厚0.2~0.4mmのステンレス鋼板を用いて、既存の方法により、溶接管や引き抜き管として素管を作製し、次いで前記素管に刃状の金型を押しつけて波形形状を形成する方法が挙げられる。また、例えば、凹凸ロールを用いて、ステンレス鋼板に波形を形成し、次いで波形成形された鋼板を巻きながら溶接してフレキシブル管を作製する方法等が挙げられる。 In one embodiment of the present invention, the method for manufacturing the flexible tube is not particularly limited. For example, a stainless steel plate having a thickness of 0.2 to 0.4 mm is used to produce a raw pipe as a welded pipe or a drawn pipe by an existing method, and then a corrugated shape is formed by pressing a blade-shaped mold against the raw pipe. The method of forming is mentioned. In addition, for example, a method of forming a flexible tube by forming a corrugation on a stainless steel plate using an uneven roll, and then welding the corrugated steel plate while winding it may be mentioned.
 本発明の一態様によれば、可撓部20の波形形状が、素管外径d/山谷深さDd:15~23、かつ、素管外径d/山部から山部のピッチP:2.5~5.5を満たすとき、施工時の曲げ加工性と、冷媒ガスの流れに起因する流体騒音の抑制の両方を実現することが可能となる。
 また、本発明の一態様のステンレス鋼製フレキシブル管は、両端または片端に素管部を有することによって、フレア加工が容易になる。このため、施工現場で接続のためのフレア加工を行って、室内外機や配管同士を接続することが可能となる。特に、複数の可撓部と複数の素管部とが交互に配置された長尺のフレキシブル管の場合、施工現場で必要とする長さに応じて任意の位置で素管部を切断し、端部に素管部を有するフレキシブル管を得ることができる。
According to one aspect of the present invention, the corrugated shape of the flexible portion 20 has a tube outer diameter d / mountain valley depth Dd: 15 to 23, and a tube outer diameter d / peak to peak pitch P: When satisfying 2.5 to 5.5, it is possible to realize both bending workability during construction and suppression of fluid noise caused by the flow of refrigerant gas.
In addition, the stainless steel flexible pipe of one embodiment of the present invention has the raw pipe portions at both ends or one end, thereby facilitating flaring. For this reason, it becomes possible to connect the indoor and outdoor units and the pipes by performing flare processing for connection at the construction site. In particular, in the case of a long flexible pipe in which a plurality of flexible parts and a plurality of raw pipe parts are alternately arranged, the raw pipe part is cut at an arbitrary position according to the length required at the construction site, A flexible tube having an element tube at the end can be obtained.
 図1に示すフレキシブル管10の一例では、可撓部20は、それぞれ独立した山部22と谷部24とが一定のピッチで並んでいるもの(ワンピッチ型)であるが、これには限定されない。例えば、周面部に山部と谷部とが螺旋状に形成されていても良い。また、フレキシブル管10を実際に配管として使用する場合、通常の家庭用エアコンでは、接続配管として4~5m程度の長さが必要である。また、ビルやクレーンなどの配管であれば、10mを超え、場合によっては100m近くにまでなることが少なくない。こうした状況において、運搬のしやすさ等を考慮すると、図2に示すフレキシブル管40の一例のように、全体がコイル状に巻き取られたコイル形状(パイプ・イン・コイル)であることが好ましい。このような構成とすることによって、フレキシブル管の長さが長くなればなるほど、従来の銅管に比べて軽量化が図られる。このため、任意の長さのフレキシブル管の持ち運びが可能となり、施工時の持ち運び性や取り扱いを含めた施工性が良好になる。なお、図2に示す一例では、可撓部20と素管部12が同じ位置で巻き取られている。しかし、可撓部と素管部の長さを変えることにより、または巻き取るコイル径を変えることにより、可撓部と素管部の位置がずれても良い。 In the example of the flexible tube 10 shown in FIG. 1, the flexible portion 20 is one in which the independent crests 22 and troughs 24 are arranged at a constant pitch (one pitch type), but is not limited thereto. . For example, a peak portion and a valley portion may be formed in a spiral shape on the peripheral surface portion. Further, when the flexible pipe 10 is actually used as a pipe, an ordinary home air conditioner requires a length of about 4 to 5 m as a connection pipe. Moreover, if it is piping, such as a building and a crane, it will exceed 10 m and it may become close to 100 m depending on the case. In consideration of the ease of transportation and the like in this situation, it is preferable that the whole is a coil shape (pipe-in-coil) wound up in a coil shape as in the example of the flexible tube 40 shown in FIG. . By setting it as such a structure, weight reduction is achieved compared with the conventional copper pipe, so that the length of a flexible pipe becomes long. For this reason, it is possible to carry a flexible pipe having an arbitrary length, and the workability including workability and handling during construction is improved. In the example shown in FIG. 2, the flexible portion 20 and the raw tube portion 12 are wound up at the same position. However, the positions of the flexible portion and the raw tube portion may be shifted by changing the lengths of the flexible portion and the raw tube portion, or by changing the coil diameter to be wound.
 図1に示すフレキシブル管10の一例では、端部にフレア加工部14が設けられている。しかし、このフレア加工部が設けられておらず、素管部12がフレキシブル管10の端部に配置されていても良いし、あるいは可撓部20が端部に配置されていても良い。また、フレア加工部14、素管部12あるいは可撓部20は、フレキシブル管10の両端に設けられても良いし、片端のみに設けられても良い。
 フレキシブル管10の端部の両方または片方にフレア加工部14を有する場合には、施工現場でフレア加工することなく即座に接続することが可能となる。
In the example of the flexible tube 10 shown in FIG. 1, a flared portion 14 is provided at the end. However, this flared portion may not be provided, and the raw tube portion 12 may be disposed at the end portion of the flexible tube 10, or the flexible portion 20 may be disposed at the end portion. Moreover, the flare processing part 14, the raw pipe part 12, or the flexible part 20 may be provided at both ends of the flexible pipe 10, or may be provided only at one end.
When the flared portion 14 is provided on both or one end of the flexible tube 10, it is possible to immediately connect without flaring at the construction site.
 以上説明したように、本発明の一態様に係るステンレス鋼製フレキシブル管によれば、上記したように素材板厚と波型形状を規定することにより、例えば、エアコン、特に、業務用のエアコン室内外機の接続配管や空調機器用の配管の軽量化が可能となる。また、施工時の曲げ加工が可能となり、さらに、冷媒ガスの流れによる流体騒音が抑制できる。このため、産業上の効果は極めて高い。 As described above, according to the stainless steel flexible tube according to one aspect of the present invention, by defining the material plate thickness and the corrugated shape as described above, for example, an air conditioner, in particular, a commercial air conditioner room It is possible to reduce the weight of connecting pipes for external units and piping for air conditioning equipment. In addition, bending during construction is possible, and further, fluid noise due to the flow of refrigerant gas can be suppressed. For this reason, the industrial effect is extremely high.
 以下、本発明の一態様に係るステンレス鋼製フレキシブル管の実施例を挙げ、本発明の一態様をより具体的に説明する。しかし、本発明の一態様は、以下の実施例に限定されず、前述した趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, examples of the stainless steel flexible pipe according to one aspect of the present invention will be given, and one aspect of the present invention will be described more specifically. However, one embodiment of the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range that can be adapted to the above-described purpose. Included in the range.
[フレキシブル管の製造]
 まず、表1に示す成分を有し、表2に示す板厚の鋼板を用いて、9.52mmφ,15.88mmφ,又は19.05mmφのTIG溶接管を製造した。なお、鋼種Aは、SUS430LXであり、鋼種Bは、SUS304である。
 次いで、上記TIG溶接管を用いて、表2の記載の従い、長さ170mmの可撓部と長さ30mmの素管部とが交互に複数配置され、全長が4mの長尺フレキシブル管を製造した。そして、運搬のためにフレキシブル管をコイル状に巻いて、コイル径が約1mのフレキシブル管パイプ・イン・コイルとした。
 そして、このフレキシブル管パイプ・イン・コイルについて、波形形状部(可撓部)で挟まれた素管部を切断することにより、両端に素管部を有し中央部に波形形状の可撓部を有するフレキシブル管を約1mの長さで切り出した。次いで、切り出したフレキシブル管を用いて、曲げ加工性と流体騒音の発生の有無について、後述する手順で評価した。
[Manufacture of flexible pipes]
First, using a steel plate having the components shown in Table 1 and the thickness shown in Table 2, a 9.52 mmφ, 15.88 mmφ, or 19.05 mmφ TIG welded pipe was manufactured. Steel type A is SUS430LX, and steel type B is SUS304.
Next, using the TIG welded pipe, according to the description in Table 2, a flexible part having a length of 170 mm and a plurality of raw pipe parts having a length of 30 mm are alternately arranged to produce a long flexible pipe having a total length of 4 m. did. Then, the flexible tube was wound into a coil shape for transportation, and a flexible tube pipe-in-coil having a coil diameter of about 1 m was obtained.
And about this flexible pipe pipe-in-coil, the raw pipe part pinched | interposed by the waveform-shaped part (flexible part) is cut | disconnected, it has a raw-tube part in both ends, and a corrugated flexible part in the center part A flexible tube having a length of about 1 m was cut out. Subsequently, using the cut-out flexible tube, bending workability and the presence or absence of generation of fluid noise were evaluated by the procedure described later.
[評価試験]
 上記手順で得られたフレキシブル管について、以下に説明する手順で評価を行った。
 なお、製造された全てのフレキシブル管を実際のエアコンに接続して、流体騒音の発生の有無を評価することは困難である。このため、以下に説明する流体騒音の発生の有無の評価は、簡易評価として実施した。そして、いくつかのフレキシブル管パイプ・イン・コイルについて、同様の条件でさらに1巻製造し、エアコン試験に供試した。これにより、実際の機器での異音の発生の有無を確認した。
[Evaluation test]
The flexible tube obtained by the above procedure was evaluated according to the procedure described below.
In addition, it is difficult to connect all the manufactured flexible pipes to an actual air conditioner and evaluate the occurrence of fluid noise. For this reason, the evaluation of the presence or absence of occurrence of fluid noise described below was performed as a simple evaluation. Then, several additional flexible pipes, pipes and coils were manufactured under the same conditions, and tested for air conditioning. This confirmed the presence or absence of abnormal noise in actual equipment.
<曲げ加工性>
(試験方法)
 曲げ加工性については、実際のエアコンの施工を想定し、フレキシブル管に対して、曲げRが300mmのベンダーを用いて90度曲げを行うことによって評価した。
<Bending workability>
(Test method)
The bending workability was evaluated by bending the flexible pipe 90 degrees using a bender with a bending R of 300 mm, assuming actual air conditioner construction.
(評価基準)
 上記試験方法により、曲げ加工時に坐屈や扁平が発生しないものを合格とし、坐屈や扁平が発生したものを不合格とした。結果を表2に示した。
(Evaluation criteria)
According to the above test method, the case where buckling or flattening did not occur during the bending process was accepted, and the case where buckling or flattening occurred was rejected. The results are shown in Table 2.
<流体騒音の発生の有無>
(試験方法)
 全てのフレキシブル管を実際のエアコンに接続して評価することは困難である。このため、フレキシブル管の一端にゴムホースをつないだ。そして、ガスボンベからゴムホースを介してフレキシブル管に、空気を1気圧で5L/minの流量で流すことによって、評価した。
<Existence of fluid noise>
(Test method)
It is difficult to evaluate all flexible pipes connected to an actual air conditioner. For this reason, a rubber hose was connected to one end of the flexible tube. Then, evaluation was performed by flowing air from a gas cylinder through a rubber hose to a flexible pipe at a flow rate of 5 L / min at 1 atm.
(評価基準)
 フレキシブル管の内部に、空気を1気圧で5L/minの流量で流しながら、フレキシブル管のゴムホースを接続していない他端から50cm離れた位置で、騒音計を用いて流体騒音を計測した。一般に、流体騒音が発生しない場合の騒音レベルは50dB未満であり、50dB以上になると、流体異音が発生している。また、60dB以上になると、耳障りな笛吹き音のような流体異音となる。そこで、計測値が50dB未満である場合を合格とし、計測値が50dB以上である場合を不合格とした。
(Evaluation criteria)
While flowing air at a flow rate of 5 L / min at 1 atm inside the flexible tube, fluid noise was measured using a noise meter at a position 50 cm away from the other end where the rubber hose of the flexible tube was not connected. Generally, the noise level when no fluid noise is generated is less than 50 dB, and when the noise level is 50 dB or more, abnormal fluid noise is generated. Moreover, when it becomes 60 dB or more, it becomes a fluid abnormal sound like a whistling sound which is annoying. Therefore, the case where the measured value is less than 50 dB is regarded as acceptable, and the case where the measured value is equal to or greater than 50 dB is regarded as unacceptable.
<エアコン接続試験>
(試験方法)
 上記流体騒音試験で合格であったフレキシブル管と、不合格であったフレキシブル管の一部について、実際にエアコンにつないで評価した。
<Air conditioner connection test>
(Test method)
The flexible pipes that passed the fluid noise test and some of the flexible pipes that failed were actually connected to an air conditioner and evaluated.
(評価基準)
 フレキシブル管パイプ・イン・コイルをエアコンに接続した。そして、エアコン室内外機の配管から1m離れた位置に騒音計を固定して異音発生有無を測定した。上記の流体騒音の発生の有無の試験方法と同様に、計測値が50dB未満である場合を合格とし、計測値が50dB以上である場合を不合格とした。
(Evaluation criteria)
A flexible pipe pipe-in-coil was connected to the air conditioner. And the noise meter was fixed to the position 1m away from the piping of the air conditioner indoor / outdoor unit, and the presence or absence of abnormal noise was measured. Similarly to the above test method for the presence or absence of occurrence of fluid noise, the case where the measured value was less than 50 dB was accepted, and the case where the measured value was 50 dB or more was rejected.
 表1にフレキシブル管の素材鋼種(成分組成)を示すとともに、表2に評価結果の一覧を示す。 Table 1 shows the material grade (component composition) of the flexible pipe, and Table 2 shows a list of evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価結果]
 表2に示すように、曲げ加工性については、板厚が本実施形態の規定範囲の0.2~0.4mmである実施例1~7では、90度曲げを実施できた。一方、板厚が本実施形態の規定範囲を外れる比較例1や、波形形状が本実施形態の規定範囲を外れる比較例2、3は、非常に硬く、このため、曲げることが困難であり、途中で座屈した。このことから、比較例1~3のフレキシブル管は、人手で曲げ加工を行うようなエアコン室内外機の接続配管などの用途への適用が極めて困難であることが明らかとなった。
[Evaluation results]
As shown in Table 2, with respect to bending workability, in Examples 1 to 7 where the plate thickness was 0.2 to 0.4 mm, which is the specified range of the present embodiment, 90-degree bending could be performed. On the other hand, Comparative Example 1 in which the plate thickness is out of the specified range of the present embodiment and Comparative Examples 2 and 3 in which the waveform shape is out of the specified range of the present embodiment are very hard and therefore difficult to bend, I buckled along the way. From this, it has been clarified that the flexible pipes of Comparative Examples 1 to 3 are extremely difficult to be applied to uses such as connection pipes of air conditioner indoor and outdoor units that are bent manually.
 流体騒音については、板厚および波形形状が本実施形態の規定範囲である実施例1~7では、内部に空気を流しても、笛吹音のような異音は発生しないことが確認できた。しかしながら、波形形状が本実施形態の規定範囲を外れる比較例4、5、6では、笛吹音のような異音が発生した。このことから、比較例4~6のフレキシブル管は、エアコン接続配管などへの適用が極めて困難であることが明らかとなった。 Regarding fluid noise, it was confirmed that in Examples 1 to 7 where the plate thickness and the waveform shape were within the specified range of the present embodiment, no abnormal noise such as whistling noise was generated even when air was flown inside. However, in Comparative Examples 4, 5, and 6 in which the waveform shape deviated from the specified range of the present embodiment, an abnormal noise such as a whistling sound was generated. From this, it has been clarified that the flexible pipes of Comparative Examples 4 to 6 are extremely difficult to be applied to an air conditioner connection pipe or the like.
 次に、上述の流体騒音試験に合格した実施例3、5、6と、不合格であった比較例5のフレキシブル管を実際のエアコンに接続して、異音発生の有無を評価した。この結果、実施例3、5、6では異音の発生はなかった。これに対して、比較例5では笛吹音のような異音が発生した。このように上記流体騒音の試験結果と同様の結果が確認できた。 Next, the flexible pipes of Examples 3, 5, and 6 that passed the above fluid noise test and Comparative Example 5 that failed were connected to an actual air conditioner, and the presence or absence of abnormal noise was evaluated. As a result, no abnormal noise was generated in Examples 3, 5, and 6. In contrast, in Comparative Example 5, an abnormal noise such as a whistling sound was generated. Thus, the same result as the fluid noise test result was confirmed.
 また、上述したように、表2に示す実施例及び比較例のデータについて、施工時の曲げ加工性および流体異音の発生の結果を整理して、図3のグラフに示す。図3のグラフ中における「○(合格)」、「×(不合格)」のプロット位置において、左側が曲げ加工性の評価結果であり、右側が流体騒音の発生の評価結果である。
 図3のグラフから明らかなように、本実施形態で規定する波形形状とされた実施例(本実施形態で規定する範囲内)のフレキシブル管は、施行時の曲げ加工性、および流体騒音の発生の評価が、何れも合格(○)であり、これら各特性に優れている。
In addition, as described above, the results of the bending workability during construction and the occurrence of abnormal fluid noise are arranged in the graph of FIG. 3 for the data of the examples and comparative examples shown in Table 2. In the graph of FIG. 3, the left side is an evaluation result of bending workability and the right side is an evaluation result of occurrence of fluid noise at the plot positions of “◯ (passed)” and “× (failed)”.
As is apparent from the graph of FIG. 3, the flexible pipe of the example (within the range specified in the present embodiment) having the waveform shape defined in the present embodiment is capable of bending workability and generation of fluid noise. Each of the evaluations is a pass (◯), and these properties are excellent.
 以上説明した実施例の結果より、本発明の一態様のステンレス鋼製フレキシブル管が、経済的に優れ、施工時の曲げ加工性が改善されるとともに、冷媒ガスの流れに起因すると推定される流体騒音の発生を防止できることが明らかとなった。 From the results of the examples described above, the stainless steel flexible pipe of one aspect of the present invention is economically excellent, the bending workability during construction is improved, and the fluid is estimated to be caused by the flow of the refrigerant gas It became clear that the generation of noise could be prevented.
 本発明の一態様のステンレス鋼製のフレキシブル管によれば、施工時の曲げ性に優れ、かつ流体騒音が抑制される。また、従来の銅管に比べて、軽量化が図られ、かつ施工性を大幅に改善できる。このため、本発明の一態様のステンレス鋼製のフレキシブル管は、例えば、エアコン接続配管として利用でき、産業上の利用価値は極めて大きい。 According to the flexible tube made of stainless steel according to one aspect of the present invention, it is excellent in bendability during construction and fluid noise is suppressed. Further, the weight can be reduced and the workability can be greatly improved as compared with the conventional copper pipe. For this reason, the flexible pipe made of stainless steel of one embodiment of the present invention can be used as, for example, an air conditioner connection pipe, and the industrial utility value is extremely large.
10…ステンレス鋼製フレキシブル管(フレキシブル管)、12…素管部、14…フレア加工部、20…可撓部、22…山部、24…谷部、40…コイル状に巻き取られたフレキシブル管、d…素管外径、Dd…山谷深さ、P…山部から山部のピッチ(山部頭頂部と山部頭頂部とからなるピッチ)、dt…フレア加工後の外径、Dw…山部から谷部のピッチ(山部頭頂部と谷部底部とからなるピッチ) DESCRIPTION OF SYMBOLS 10 ... Stainless steel flexible pipe (flexible pipe), 12 ... Elementary pipe part, 14 ... Flare processing part, 20 ... Flexible part, 22 ... Mountain part, 24 ... Valley part, 40 ... Flexible wound by coil shape Pipe, d ... element pipe outer diameter, Dd ... mountain valley depth, P ... peak-to-peak pitch (pitch consisting of peak-top and peak-top), dt ... outer diameter after flaring, Dw ... Pitch from mountain to valley (pitch consisting of mountain top and valley bottom)

Claims (5)

  1.  素材板厚が0.2~0.4mm以下の金属ステンレス鋼からなり、
     波形形状が形成された可撓部を有し、
     素管外径d(mm)としたときに、前記波形形状が、素管外径d/山谷深さDd:15~23であり、かつ、素管外径d/山部から山部のピッチp:2.5~5.5を満たすことを特徴とするステンレス鋼製フレキシブル管。
    It is made of metal stainless steel with a thickness of 0.2 to 0.4 mm or less.
    Having a flexible part with a corrugated shape;
    When the outer diameter d (mm) of the raw tube is set, the corrugated shape is the outer diameter of the raw tube d / depth of the valley Dd: 15 to 23, and the outer diameter of the raw tube d / pitch from the peak portion to the peak portion. p: A stainless steel flexible tube characterized by satisfying 2.5 to 5.5.
  2.  両端または片端に素管部を有していることを特徴とする請求項1に記載のステンレス鋼製フレキシブル管。 The stainless steel flexible pipe according to claim 1, wherein the pipe has a pipe section at both ends or one end.
  3.  前記素管部と、前記波形形状とされた可撓部とが、交互にそれぞれ複数箇所配置されていることを特徴とする請求項2に記載のステンレス鋼製フレキシブル管。 The stainless steel flexible tube according to claim 2, wherein the raw tube portion and the flexible portion having the corrugated shape are alternately arranged at a plurality of locations.
  4.  前記フレキシブル管の全体が、螺旋状に旋回したコイル形状であることを特徴とする請求項1~3のいずれかに記載のステンレス鋼製フレキシブル管。 The stainless steel flexible tube according to any one of claims 1 to 3, wherein the entire flexible tube has a coil shape spirally swirled.
  5.  両端または片端に素管部を有し、さらに、前記素管部の両方または片方にフレア加工部を有することを特徴とする請求項1~4のいずれかに記載のステンレス鋼製フレキシブル管。 The stainless steel flexible pipe according to any one of claims 1 to 4, further comprising a raw pipe portion at both ends or one end, and further having a flared portion on both or one side of the raw pipe portion.
PCT/JP2010/068567 2009-11-05 2010-10-21 Stainless steel flexible pipe WO2011055636A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800482343A CN102667288A (en) 2009-11-05 2010-10-21 Stainless steel flexible pipe
KR1020127010506A KR101380091B1 (en) 2009-11-05 2010-10-21 Stainless steel flexible pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-253978 2009-11-05
JP2009253978A JP5719107B2 (en) 2009-11-05 2009-11-05 Stainless steel flexible tube

Publications (1)

Publication Number Publication Date
WO2011055636A1 true WO2011055636A1 (en) 2011-05-12

Family

ID=43969876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068567 WO2011055636A1 (en) 2009-11-05 2010-10-21 Stainless steel flexible pipe

Country Status (5)

Country Link
JP (1) JP5719107B2 (en)
KR (1) KR101380091B1 (en)
CN (1) CN102667288A (en)
TW (1) TWI524952B (en)
WO (1) WO2011055636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874868B1 (en) * 2015-05-15 2016-03-02 Jfeエンジニアリング株式会社 Buckled corrugated steel pipe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312525B1 (en) * 2016-10-20 2020-10-21 LG Electronics Inc. Air conditioner
KR102296771B1 (en) * 2017-03-31 2021-09-02 엘지전자 주식회사 Indoor unit for air conditioner
CN111331000B (en) * 2018-12-18 2022-09-09 浙江盾安禾田金属有限公司 Manufacturing method of air conditioner connecting pipe and air conditioner connecting pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200614U (en) * 1981-06-15 1982-12-20
JP2009185351A (en) * 2008-02-07 2009-08-20 Nippon Steel & Sumikin Stainless Steel Corp Flexible tube made of ferritic stainless steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047540A (en) * 1996-08-03 1998-02-20 Showa Rasenkan Seisakusho:Kk Unit piping method and stainless steel pipe for piping
JPH10122440A (en) * 1996-10-16 1998-05-15 Nisshin Steel Co Ltd Corrugated stainless steel pipe
JP2006064126A (en) * 2004-08-30 2006-03-09 Yokohama Rubber Co Ltd:The Flexible tube
CN2924230Y (en) * 2006-07-12 2007-07-18 航天晨光股份有限公司 Low-flow-resistance noise-eliminating corrugated pipe
CN2937739Y (en) * 2006-07-21 2007-08-22 泰州市博特机械制造有限公司 Non-welding joint metal hose
KR100809741B1 (en) * 2007-03-12 2008-03-06 삼성광주전자 주식회사 Flexible hose and vacuum cleaner having the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200614U (en) * 1981-06-15 1982-12-20
JP2009185351A (en) * 2008-02-07 2009-08-20 Nippon Steel & Sumikin Stainless Steel Corp Flexible tube made of ferritic stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874868B1 (en) * 2015-05-15 2016-03-02 Jfeエンジニアリング株式会社 Buckled corrugated steel pipe
WO2016185523A1 (en) * 2015-05-15 2016-11-24 Jfeエンジニアリング株式会社 Buckling waveform steel pipe
US9869410B2 (en) 2015-05-15 2018-01-16 Jfe Engineering Corporation Buckling pattern steel pipe

Also Published As

Publication number Publication date
KR101380091B1 (en) 2014-04-01
JP5719107B2 (en) 2015-05-13
TWI524952B (en) 2016-03-11
KR20120082008A (en) 2012-07-20
CN102667288A (en) 2012-09-12
TW201130579A (en) 2011-09-16
JP2011099496A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP6172950B2 (en) Double tube for heat exchanger
JP5184122B2 (en) Ferritic stainless steel flexible tube
WO2011055636A1 (en) Stainless steel flexible pipe
JP4420117B2 (en) Heat exchanger tube for heat exchanger and heat exchanger using the same
WO2015169231A1 (en) Bended heat exchanger
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
WO2011162170A1 (en) Double tube for heat exchanger
JP5709733B2 (en) Double pipe
JP2012077917A (en) Inner grooved corrugated tube, and heat exchanger
JP2015010757A (en) Triple-tube type heat exchanger
JP4947162B2 (en) Heat exchanger
JP2005009832A (en) Double pipe type heat exchanger
JP2006234355A (en) Heat exchanger
JP6207833B2 (en) Heat exchanger
CN215597557U (en) Air conditioner refrigerant pipe and air conditioning system
JP2010112565A (en) Heat exchanger
JP2012007773A (en) Heat exchanger
CN210218957U (en) Spiral corrugated copper-aluminum connecting pipe
CN216789474U (en) Novel stainless steel corrugated connecting pipe
CN218328417U (en) Copper pipe for manufacturing air conditioner condenser
JP2008281263A (en) Heat exchanger
CN2924230Y (en) Low-flow-resistance noise-eliminating corrugated pipe
CN213809290U (en) Air conditioner pipe convenient to buckle
CN211821209U (en) Connecting pipe
WO2021189673A1 (en) Connecting pipe assembly and air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048234.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127010506

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828196

Country of ref document: EP

Kind code of ref document: A1