JP4420117B2 - Heat exchanger tube for heat exchanger and heat exchanger using the same - Google Patents

Heat exchanger tube for heat exchanger and heat exchanger using the same Download PDF

Info

Publication number
JP4420117B2
JP4420117B2 JP2008016704A JP2008016704A JP4420117B2 JP 4420117 B2 JP4420117 B2 JP 4420117B2 JP 2008016704 A JP2008016704 A JP 2008016704A JP 2008016704 A JP2008016704 A JP 2008016704A JP 4420117 B2 JP4420117 B2 JP 4420117B2
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
corrugated
pipe
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008016704A
Other languages
Japanese (ja)
Other versions
JP2009174833A (en
Inventor
賢 堀口
守 法福
謙一 乾
寛規 北嶋
武 島田
健二 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008016704A priority Critical patent/JP4420117B2/en
Priority to CN2009100039119A priority patent/CN101498561B/en
Publication of JP2009174833A publication Critical patent/JP2009174833A/en
Application granted granted Critical
Publication of JP4420117B2 publication Critical patent/JP4420117B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex

Description

本発明は、熱交換器用伝熱管及びこれを用いた熱交換器に係り、特に、自然冷媒ヒートポンプ式給湯機の水−冷媒熱交換器用伝熱管及びこれを用いた熱交換器に関するものである。   The present invention relates to a heat exchanger tube for a heat exchanger and a heat exchanger using the same, and more particularly to a heat exchanger tube for a water-refrigerant heat exchanger of a natural refrigerant heat pump type water heater and a heat exchanger using the same.

従来からよく知られている自然冷媒ヒートポンプ式給湯機(以下、単に「ヒートポンプ給湯機」と称する場合もある)の熱交換器として、水が流通する外管と、冷媒が流通する内管との二重管からなる二重管式熱交換器がある。   As a heat exchanger of a natural refrigerant heat pump water heater (hereinafter sometimes simply referred to as “heat pump water heater”) that has been well known, an outer pipe through which water flows and an inner pipe through which refrigerant flows are used. There is a double-tube heat exchanger consisting of double tubes.

このような二重管式熱交換器の場合、冷媒が流通する内管に腐食による孔が開くと、水と冷媒が混ざり合ってしまうことから、水または冷媒の漏洩を検知して装置を停止するための漏洩検知部(漏洩検知溝を有する漏洩検知管)を設けることがしばしば行われている(漏洩検知管を設けることによって、実質的に三重管構造になる)。   In the case of such a double-pipe heat exchanger, if a hole due to corrosion opens in the inner pipe through which the refrigerant flows, water and the refrigerant will be mixed, so the leakage of water or refrigerant is detected and the device is stopped. In many cases, a leak detection unit (leakage detection pipe having a leak detection groove) is provided (a triple pipe structure is provided by providing a leak detection pipe).

一方、自然冷媒ヒートポンプ式給湯機は、夜間に時間をかけてお湯を沸かすものであり、水の流速が小さく、層流となるため、熱交換器としての性能を向上させるには、ボトルネックになる水管の伝熱性能の向上が不可欠となる。   On the other hand, natural refrigerant heat pump water heaters boil hot water at night, and the flow rate of water is small and the flow becomes laminar. Therefore, in order to improve the performance as a heat exchanger, it is a bottleneck. It is essential to improve the heat transfer performance of the water pipe.

伝熱性能の向上を目的とした熱交換器としては、コルゲート溝深さをHc、コルゲート外径をODとすると0.04≦Hc/ODであり、コルゲート溝と管軸Taとのなす角をねじれ角βcとするとβc≧40゜であるコルゲート管と、その外側に配置される外管とから構成される熱交換器がある(特許文献1を参照)。   The heat exchanger for the purpose of improving the heat transfer performance is 0.04 ≦ Hc / OD, where the corrugated groove depth is Hc and the corrugated outer diameter is OD, and the angle between the corrugated groove and the tube axis Ta is There is a heat exchanger composed of a corrugated tube with βc ≧ 40 ° when the twist angle βc is set, and an outer tube disposed outside the corrugated tube (see Patent Document 1).

特許文献1記載の熱交換器によれば、自然冷媒ヒートポンプ式給湯機のような水の流速が小さい使用形態においても熱交換器の伝熱性能を向上させ得る熱交換器用伝熱管及びこれを用いた熱交換器を得ることができる旨が記載されている。   According to the heat exchanger described in Patent Document 1, a heat exchanger tube for a heat exchanger that can improve the heat transfer performance of the heat exchanger even in a use form where the flow rate of water is small, such as a natural refrigerant heat pump type hot water heater, and the heat exchanger tube are used. It is described that a heat exchanger can be obtained.

また、管内面に管軸方向又は螺旋状の連続溝が形成され、かつ管軸を含む平面で切断した断面形状が波形である伝熱管がある(特許文献2を参照)。   Further, there is a heat transfer tube in which a continuous groove in the tube axis direction or a spiral shape is formed on the inner surface of the tube, and the cross-sectional shape cut by a plane including the tube axis is a waveform (see Patent Document 2).

特許文献2記載の伝熱管によれば、安定的かつ低コストに曲げ加工性の優れた内面溝付管が連続して製造できる旨が記載されている。   According to the heat transfer tube described in Patent Document 2, it is described that an internally grooved tube excellent in bending workability can be manufactured continuously at a low cost.

特開2007−218486号公報JP 2007-218486 A 特開昭61−125592号公報Japanese Patent Laid-Open No. 61-125592

特許文献1記載の伝熱管は、平滑管と同等重量で性能を平滑管比2倍以上に上げることができる。また、圧力損失を考慮したコルゲート形状を得ることができ、コルゲート管の外面形状として最適化されているが、できる限り重量をアップさせずに、これ以上の性能アップを達成するためには、コルゲート管の管内面形状の改良が必要である。   The heat transfer tube described in Patent Document 1 can increase the performance to a level equal to or greater than that of the smooth tube with the same weight as the smooth tube. In addition, a corrugated shape that takes pressure loss into consideration can be obtained and is optimized as the outer surface shape of the corrugated tube, but in order to achieve further performance improvement without increasing the weight as much as possible, the corrugated shape It is necessary to improve the inner surface shape of the tube.

特許文献2記載の伝熱管は、管内面に螺旋状の連続溝を設けたコルゲート管であり、特許文献1記載のコルゲート形状で製作すれば、特許文献1のコルゲート管以上の性能を達成させられる可能性がある。   The heat transfer tube described in Patent Document 2 is a corrugated tube in which a spiral continuous groove is provided on the inner surface of the tube. If the corrugated tube described in Patent Document 1 is manufactured, the performance of the heat transfer tube is higher than that of the corrugated tube described in Patent Document 1. there is a possibility.

しかし、本発明者等が検討した結果、コルゲート管に内面溝を単に形成しても、内面溝形状によっては逆にコルゲート管の性能よりも低下する場合があることがわかった。また性能アップ以上に重量アップする問題もあることがわかった。   However, as a result of studies by the present inventors, it has been found that even if the inner groove is simply formed in the corrugated pipe, the performance of the corrugated pipe may be lowered depending on the inner groove shape. It was also found that there was a problem that the weight increased more than the performance.

本発明の目的は、水−冷媒熱交換器の伝熱性能を向上させ得る熱交換器用伝熱管及びこれを用いた熱交換器を提供することにある。   The objective of this invention is providing the heat exchanger tube for heat exchangers which can improve the heat transfer performance of a water-refrigerant heat exchanger, and a heat exchanger using the same.

本発明は、上記目的を達成するため、熱交換器を構成する水管として使用されるコルゲート形状の伝熱管であって、前記コルゲート管内面には螺旋状の内面溝が形成されており、前記コルゲート形状のコルゲート溝深さをHc、コルゲート外径をODとすると、0.04≦Hc/OD≦0.1を満たし、さらに、前記内面溝のフィン高さをHf、管の最大内径をIDとすると、
0.022{30.7×(Hc/OD)+1.13}(-0.5)≦Hf/ID ≦0.037
を満たすことを特徴とする熱交換器用伝熱管を提供する。
In order to achieve the above object, the present invention is a corrugated heat transfer tube used as a water tube constituting a heat exchanger, wherein a corrugated inner surface groove is formed on the inner surface of the corrugated tube, When the corrugated groove depth of the shape is Hc and the corrugated outer diameter is OD, 0.04 ≦ Hc / OD ≦ 0.1 is satisfied, the fin height of the inner groove is Hf, and the maximum inner diameter of the tube is ID. Then
0.022 {30.7 × (Hc / OD) +1.13} (−0.5) ≦ Hf / ID ≦ 0.037
A heat exchanger tube for a heat exchanger characterized by satisfying

また本発明は、上記の熱交換器用伝熱管を備えた熱交換器を提供する。   Moreover, this invention provides the heat exchanger provided with said heat exchanger tube for heat exchangers.

本発明によれば、水−冷媒熱交換器の伝熱性能を向上させ得る熱交換器用伝熱管及びこれを用いた熱交換器を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat exchanger tube for heat exchangers which can improve the heat transfer performance of a water-refrigerant heat exchanger, and a heat exchanger using the same can be obtained.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

〔本発明の第1の実施の形態〕
(伝熱管の構成)
図1は、本発明の第1の実施の形態に係る熱交換器用伝熱管の構造を示す説明図であり、図1(a)は全体図を示し、図1(b)は図1(a)の部分拡大断面図、図1(c)は図1(a)の楕円Aの領域における拡大断面図を示す。
[First embodiment of the present invention]
(Configuration of heat transfer tube)
FIG. 1 is an explanatory view showing the structure of a heat exchanger tube for a heat exchanger according to a first embodiment of the present invention, FIG. 1 (a) shows an overall view, and FIG. 1 (b) shows FIG. ), And FIG. 1C is an enlarged cross-sectional view in the region of the ellipse A in FIG.

本実施の形態に係る伝熱管は、平滑管内面に螺旋状の連続溝を加工して内面溝2を形成した後、1条でコルゲート加工した内面溝付コルゲート管10であり、熱交換器(例えば、ヒートポンプ給湯機用の水−冷媒熱交換器)を構成する水管として使用されるものである。   The heat transfer tube according to the present embodiment is an internally grooved corrugated tube 10 that is corrugated with a single thread after processing a spiral continuous groove on the inner surface of a smooth tube to form an inner surface groove 2, and a heat exchanger ( For example, it is used as a water pipe constituting a water-refrigerant heat exchanger for a heat pump water heater.

すなわち、内面溝付コルゲート管10内を流れる水と、内面溝付コルゲート管10の外を流れる冷媒との間で熱交換が行われる。コルゲート管とは、一般にその内外面に波形のスパイラル構造を持った管をいう。   That is, heat exchange is performed between the water flowing in the inner grooved corrugated pipe 10 and the refrigerant flowing outside the inner grooved corrugated pipe 10. A corrugated tube generally refers to a tube having a corrugated spiral structure on its inner and outer surfaces.

本実施の形態に係る内面溝付コルゲート管10は、コルゲート形状のコルゲート溝1の深さをHc、コルゲート外径をODとすると、外径に対する凹凸の比を表すHc/ODが0.04≦Hc/ODを満たし、前記内面溝2のフィン高さをHf、端末平滑部肉厚Twとし、管の最大内径をID(=OD−2Tw)とすると、
0.022{30.7×(Hc/OD)+1.13}c≦Hf/ID≦0.037
を満たすことを特徴とする。(尚、詳細な検討や考察、それらに応じた数式の導出については、〔本発明の数式の上限について〕、〔本発明の数式の下限について〕を参照のこと。)
In the corrugated pipe 10 with an inner groove according to the present embodiment, when the depth of the corrugated corrugated groove 1 is Hc and the corrugated outer diameter is OD, Hc / OD representing the ratio of irregularities to the outer diameter is 0.04 ≦ When Hc / OD is satisfied, the fin height of the inner surface groove 2 is Hf, the terminal smooth portion thickness Tw, and the maximum inner diameter of the tube is ID (= OD-2Tw),
0.022 {30.7 × (Hc / OD) +1.13} c ≦ Hf / ID ≦ 0.037
It is characterized by satisfying. (Refer to [About the upper limit of the mathematical expression of the present invention] and [About the lower limit of the mathematical expression of the present invention] for detailed examination and consideration and derivation of the mathematical expressions corresponding to them.)

Hc/OD、Hf/IDを上記範囲にすることで、良好な伝熱性能が得られる。望ましくは、0.04≦Hc/OD≦0.1であり、より望ましくは0.04≦Hc/OD≦0.07を満たすのが好ましい。また、Hc/ODを上記範囲にすることで、低圧力損失とすることができる。   By setting Hc / OD and Hf / ID within the above ranges, good heat transfer performance can be obtained. Desirably, 0.04 ≦ Hc / OD ≦ 0.1, and more desirably 0.04 ≦ Hc / OD ≦ 0.07. Moreover, it can be set as a low pressure loss by making Hc / OD into the said range.

また、内面溝付コルゲート管10のコルゲート溝1と管軸Taとのなす角をねじれ角βcとすると、ねじれ角βcがとり得る値の範囲は0°<βc<90°となるが、ねじれ角βcは、40゜以上の高ねじれ形状とすることが望ましい。より望ましくは40°≦βc≦82°である。   Further, if the angle formed by the corrugated groove 1 of the corrugated pipe 10 with the inner surface groove and the pipe axis Ta is the twist angle βc, the range of values that the twist angle βc can take is 0 ° <βc <90 °. βc is preferably a high twist shape of 40 ° or more. More desirably, 40 ° ≦ βc ≦ 82 °.

これにより、凹凸を乗り越えた流体の乱流化を促進することができる。   Thereby, the turbulent flow of the fluid over the unevenness can be promoted.

内面溝付コルゲート管10の端末平滑部肉厚TwやコルゲートピッチPcは、特に限定されるものではないが、例えば、0.4mm≦Tw≦1.7mm、3mm≦Pc≦15mmのものを使用できる。   The terminal smooth portion thickness Tw and the corrugated pitch Pc of the corrugated pipe 10 with the inner surface groove are not particularly limited, but for example, 0.4 mm ≦ Tw ≦ 1.7 mm, 3 mm ≦ Pc ≦ 15 mm can be used. .

また、材質としては、特に限定されるものではないが、熱伝導率や機械的強度を勘案して銅や銅合金、またはアルミニウムやアルミニウム合金などが好ましく用いられる。   In addition, the material is not particularly limited, but copper, copper alloy, aluminum, aluminum alloy, or the like is preferably used in consideration of thermal conductivity and mechanical strength.

〔本発明の第2の実施の形態〕
(伝熱管の構成)
図2は、本発明の第2の実施の形態に係る熱交換器用伝熱管の構造を示す説明図である。
[Second Embodiment of the Present Invention]
(Configuration of heat transfer tube)
FIG. 2 is an explanatory view showing the structure of a heat exchanger tube for a heat exchanger according to a second embodiment of the present invention.

本実施の形態に係る内面溝付コルゲート管20は、第1の実施の形態に係る内面溝付コルゲート管10が1条で加工されたコルゲート管であるのに対し、3条で加工されたコルゲート管であり、熱交換器を構成する水管として使用されるものである。条数が多くなると、加工速度が上がるため、コスト的なメリットが大きい。   The corrugated pipe 20 with an inner groove according to the present embodiment is a corrugated pipe in which the inner grooved corrugated pipe 10 according to the first embodiment is processed with a single line, whereas the corrugated pipe is processed with three lines. It is a pipe and is used as a water pipe constituting a heat exchanger. As the number of strips increases, the processing speed increases, so there is a great cost advantage.

この図2の伝熱管においても、図1と同様に、コルゲート形状のコルゲート溝深さをHc、コルゲート外径をODとすると、外径に対する凹凸の比を表すHc/ODが0.04≦Hc/ODを満たし、前記内面溝のフィン高さをHf、端末平滑部肉厚Twとし、管の最大内径をID(=OD−2Tw)とすると、
0.022{30.7×(Hc/OD)+1.13}(-0.5)≦Hf/ID≦0.037
を満たすようにする。(尚、詳細な検討や考察、それらに応じた数式の導出については、〔本発明の数式の上限について〕、〔本発明の数式の下限について〕を参照のこと。)

In the heat transfer tube of FIG. 2 as well, as in FIG. 1, when the corrugated corrugated groove depth is Hc and the corrugated outer diameter is OD, Hc / OD representing the ratio of irregularities to the outer diameter is 0.04 ≦ Hc. / OD is satisfied, the fin height of the inner groove is Hf, the terminal smooth portion thickness Tw, and the maximum inner diameter of the tube is ID (= OD-2Tw).
0.022 {30.7 × (Hc / OD) +1.13} (−0.5) ≦ Hf / ID ≦ 0.037
To satisfy. (Refer to [About the upper limit of the mathematical expression of the present invention] and [About the lower limit of the mathematical expression of the present invention] for detailed examination and consideration and derivation of the mathematical expressions corresponding to them.)

ねじれ角βcは、3条加工の場合、1条加工よりねじれ角βcが小さくなる傾向にあるが、隣り合うコルゲート溝1の間隔、すなわちコルゲートピッチPcを小さくすることで、内面溝付管では製造困難な40°以上の高いねじれ角を実現できる。内面溝付管の内面溝のねじれ角は大きくすることが難しかった。   The twist angle βc tends to be smaller in the case of three-strip processing than in the single-strip processing, but the inner grooved tube is manufactured by reducing the interval between adjacent corrugated grooves 1, that is, the corrugated pitch Pc. A difficult twist angle of 40 ° or more can be realized. It was difficult to increase the twist angle of the inner groove of the inner grooved tube.

次に、上記コルゲート管を備えた熱交換器について説明する。   Next, the heat exchanger provided with the said corrugated pipe is demonstrated.

〔本発明の第3の実施の形態〕
(熱交換器の構成)
図3は、本発明の第3の実施の形態に係る熱交換器の構造を示す説明図である。
[Third embodiment of the present invention]
(Configuration of heat exchanger)
FIG. 3 is an explanatory view showing the structure of a heat exchanger according to the third embodiment of the present invention.

本実施の形態に係る熱交換器(二重管式熱交換器)100は、上述した本発明の実施の形態に係る伝熱管(例えば、内面溝付コルゲート管10)を内管として、その外側に外管11を備え、内面溝付コルゲート管10と外管11の間の環状路に冷媒が流れるように形成されている。   A heat exchanger (double-pipe heat exchanger) 100 according to the present embodiment uses the heat transfer tube (for example, corrugated tube 10 with an inner surface groove) according to the embodiment of the present invention as an inner tube, and the outside thereof. The outer tube 11 is provided, and the inner surface grooved corrugated tube 10 and the outer tube 11 are formed so that the refrigerant flows through the annular path.

〔本発明の第4の実施の形態〕
(熱交換器の構成)
図4は、本発明の第4の実施の形態に係る熱交換器の構造を示す説明図である。
[Fourth embodiment of the present invention]
(Configuration of heat exchanger)
FIG. 4 is an explanatory view showing the structure of a heat exchanger according to the fourth embodiment of the present invention.

本実施の形態に係る熱交換器(三重管式熱交換器)200は、上述した本発明の実施の形態に係る伝熱管(例えば、内面溝付コルゲート管10)を内管として、その外周に漏洩検知部(漏洩検知溝13)が形成されるように平滑管からなる漏洩検知管12が接して配置され、更に漏洩検知管12の外側に外管11が配置され、漏洩検知管12と外管11の間の環状路に冷媒が流れるように形成されている。   The heat exchanger (triple tube heat exchanger) 200 according to the present embodiment has the heat transfer tube (for example, corrugated tube 10 with an inner surface groove) according to the above-described embodiment as an inner tube, and the outer periphery thereof. A leak detection tube 12 made of a smooth tube is disposed so as to form a leak detection portion (leakage detection groove 13), and an outer tube 11 is disposed outside the leak detection tube 12, and the leak detection tube 12 and the outer It is formed so that the refrigerant flows through the annular path between the tubes 11.

〔本発明の第5,6の実施の形態〕
(熱交換器の構成)
図5は、本発明の第5の実施の形態に係る熱交換器の構造を示す説明図である。また、図6は、本発明の第6の実施の形態に係る熱交換器の構造を示す説明図である。
[Fifth and Sixth Embodiments of the Present Invention]
(Configuration of heat exchanger)
FIG. 5 is an explanatory view showing the structure of a heat exchanger according to the fifth embodiment of the present invention. Moreover, FIG. 6 is explanatory drawing which shows the structure of the heat exchanger which concerns on the 6th Embodiment of this invention.

図5,6に示した熱交換器300,400は、図3,4の熱交換器における外管をコルゲート形状に形成し、コルゲート外管21としたものであり、これにより可撓性を向上させることができる。   The heat exchangers 300 and 400 shown in FIGS. 5 and 6 are obtained by forming the outer tube in the heat exchanger of FIGS. 3 and 4 into a corrugated shape to form the corrugated outer tube 21, thereby improving flexibility. Can be made.

〔本発明の第7の実施の形態〕
(熱交換器の構成)
図7は、本発明の第7の実施の形態に係る熱交換器の構造を示す説明図である。
[Seventh embodiment of the present invention]
(Configuration of heat exchanger)
FIG. 7 is an explanatory view showing the structure of a heat exchanger according to the seventh embodiment of the present invention.

本実施の形態に係る熱交換器500は、上述した本発明の実施の形態に係る伝熱管(例えば、内面溝付コルゲート管10)のコルゲート溝に沿って、冷媒流通用の螺旋状伝熱管31が巻き付けられて構成される。なお、必要に応じて、コルゲート溝と螺旋状伝熱管31をろう付け等で固着する場合もある。   The heat exchanger 500 according to the present embodiment includes a spiral heat transfer tube 31 for circulating refrigerant along the corrugated groove of the heat transfer tube (for example, the corrugated tube 10 with an inner surface groove) according to the above-described embodiment of the present invention. Is wound around. If necessary, the corrugated groove and the helical heat transfer tube 31 may be fixed by brazing or the like.

熱交換器500では、内面溝付コルゲート管10内を流れる水と、内面溝付コルゲート管10の外周で接触する螺旋状伝熱管31内を流れる冷媒との間で熱交換が行われる。また、コルゲート溝1に沿って螺旋状伝熱管31を巻き付けることで、内面溝付コルゲート管10と螺旋状伝熱管31の有効接触面積(有効伝熱面積)を増大させることができる。   In the heat exchanger 500, heat exchange is performed between the water flowing in the inner grooved corrugated pipe 10 and the refrigerant flowing in the spiral heat transfer pipe 31 in contact with the outer periphery of the inner groove corrugated pipe 10. Further, by winding the helical heat transfer tube 31 along the corrugated groove 1, the effective contact area (effective heat transfer area) between the inner grooved corrugated tube 10 and the helical heat transfer tube 31 can be increased.

〔本発明のそのほかの実施の形態〕
本発明の実施の形態としては、上記の第1〜7の実施の形態のほか、種々の形態があり、例えば、以下の形態が挙げられる。
[Other Embodiments of the Present Invention]
As an embodiment of the present invention, there are various forms in addition to the above first to seventh embodiments, and examples include the following forms.

(1)1条と3条のコルゲート管について説明したが、2条、或いは4条以上であってもよい。1条〜3条のコルゲート管が、内面溝付管では困難な高いねじれ角を実現しやすいという点で望ましい。   (1) Although the first and third corrugated pipes have been described, the number may be two or four or more. 1 to 3 corrugated pipes are desirable in that it is easy to achieve a high twist angle, which is difficult with an internally grooved pipe.

〔数値限定の意義〕
図8は、レイノルズ数Reが1000のときの、内面溝が施されていないコルゲート管のHc/ODと伝熱性能の関係(平滑管に対する伝熱性能比)を示したものである。
[Significance of numerical limitation]
FIG. 8 shows the relationship between the Hc / OD and the heat transfer performance of the corrugated pipe without the inner groove when the Reynolds number Re is 1000 (heat transfer performance ratio with respect to the smooth pipe).

この図8におけるコルゲート管の外径は9.52mm、ピッチは8mm、条数は1条とした。   In FIG. 8, the corrugated tube has an outer diameter of 9.52 mm, a pitch of 8 mm, and a number of strips of one.

図8から明らかなように、Hc/ODが0.04未満になると、急激に伝熱性能が低下する。よって、0.04≦Hc/ODを満たすことが望ましい。   As is apparent from FIG. 8, when Hc / OD is less than 0.04, the heat transfer performance is drastically reduced. Therefore, it is desirable to satisfy 0.04 ≦ Hc / OD.

図9は、レイノルズ数Reが1000のときの、内面溝が施されていないコルゲート管のねじれ角βcと伝熱性能の関係(平滑管に対する伝熱性能比)を示したものである。この図9では、コルゲート管のHc/ODと条数は、0.1(=Hc/OD)、1条とした。   FIG. 9 shows the relationship between the twist angle βc of the corrugated pipe not provided with the inner groove and the heat transfer performance (heat transfer performance ratio to the smooth pipe) when the Reynolds number Re is 1000. In FIG. 9, the Hc / OD and the number of strips of the corrugated tube are 0.1 (= Hc / OD) and 1 strip.

図9から明らかなように、Hc/OD=0.1であれば、ねじれ角βcが小さくても(例えば、βc=35°)、伝熱性能は平滑管比1.5倍程度高くなるが、βc≧40°の高いねじれ角にすることで、伝熱性能を平滑管比2倍以上に向上させることができる。   As is clear from FIG. 9, if Hc / OD = 0.1, the heat transfer performance is about 1.5 times higher than the smooth tube ratio even if the twist angle βc is small (for example, βc = 35 °). , Βc ≧ 40 ° makes it possible to improve the heat transfer performance more than twice the smooth tube ratio by making the twist angle high.

図10は、レイノルズ数Reが1000のときの、コルゲート管のHc/ODと管摩擦係数の関係(平滑管に対する管摩擦係数比)を示したものである。   FIG. 10 shows the relationship between the Hc / OD of the corrugated pipe and the pipe friction coefficient (the pipe friction coefficient ratio with respect to the smooth pipe) when the Reynolds number Re is 1000.

ここで、管摩擦係数とは、ΔP=×L/de×(ρv2)/2の関係式で規定される無次元数であり、流路面積や流体の流速等の影響を相殺した圧力損失の指標と見なすことができる。 Here, the pipe friction coefficient is a dimensionless number f defined by the relational expression of ΔP = f × L / de × (ρv 2 ) / 2, and offsets the influence of the flow path area, fluid flow velocity, and the like. It can be regarded as an indicator of pressure loss.

なお、ΔPは伝熱管の圧力損失、Lは伝熱管長さ、deは伝熱管の相当直径(4×流路面積/濡れ縁長さ)、ρは流体の密度、vは流体の流速である。   ΔP is the pressure loss of the heat transfer tube, L is the heat transfer tube length, de is the equivalent diameter of the heat transfer tube (4 × channel area / wetting edge length), ρ is the fluid density, and v is the fluid flow velocity.

図10から明らかなように、Hc/ODが0.04未満になると、伝熱性能比と同様に管摩擦係数比も急激に減少し、乱流促進ができなくなることが判る。   As can be seen from FIG. 10, when Hc / OD is less than 0.04, the ratio of pipe friction coefficient decreases rapidly as well as the ratio of heat transfer performance, and turbulence cannot be promoted.

一方、Hc/ODが0.04以上になると、管摩擦係数比(すなわち、圧力損失)は増加し続ける。さらに、Hc/ODが0.1を超えると(0.1<(Hc/OD))、管摩擦係数比が伝熱性能比(図8参照)を超えてしまうことが判る(例えば、Hc/OD=0.11において、図8では伝熱性能比4.3に対し、図10では管摩擦係数比4.5となる)。   On the other hand, when the Hc / OD is 0.04 or more, the pipe friction coefficient ratio (that is, pressure loss) continues to increase. Furthermore, when Hc / OD exceeds 0.1 (0.1 <(Hc / OD)), it can be seen that the pipe friction coefficient ratio exceeds the heat transfer performance ratio (see FIG. 8) (for example, Hc / OD). At OD = 0.11, the heat transfer performance ratio is 4.3 in FIG. 8 and the pipe friction coefficient ratio is 4.5 in FIG.

従って、0.04≦Hc/OD≦0.1を満たすことが望ましく、低圧力損失で高性能なコルゲート管を提供できる。   Therefore, it is desirable to satisfy 0.04 ≦ Hc / OD ≦ 0.1, and a high-performance corrugated tube with low pressure loss can be provided.

図11〜14は、螺旋状の内面溝付管(参考例1〜3)、平滑管(比較例1)、内面平滑コルゲート管(比較例2)、内面溝付コルゲート管(比較例3,実施例1)の伝熱性能測定結果である。   FIGS. 11 to 14 show a spiral inner surface grooved tube (Reference Examples 1 to 3), a smooth tube (Comparative Example 1), an inner surface smooth corrugated tube (Comparative Example 2), and an inner surface grooved corrugated tube (Comparative Example 3, Implementation). It is a heat-transfer performance measurement result of Example 1).

仕様を表1に示した。   The specifications are shown in Table 1.

Figure 0004420117
Figure 0004420117

なお、比較例3は参考例3にコルゲート加工を施し、実施例1は参考例1にコルゲート加工を施したものである。   In Comparative Example 3, corrugation is applied to Reference Example 3, and in Example 1, corrugation is applied to Reference Example 1.

何れの伝熱管も、材質をリン脱酸銅とし、外径(OD)を9.52mmとした。   All the heat transfer tubes were made of phosphorous deoxidized copper and the outer diameter (OD) was 9.52 mm.

ここで、伝熱性能とは、流体の物性の影響を相殺するために、ヌセルト数Nuをプラントル数Prの0.4乗で除したものと定義する(Nu/Pr0.4、以下の実施例において同様)。同様に圧力損失も無次元数であるDarcyの管摩擦係数fで表す。 Here, the heat transfer performance is defined as the Nusselt number Nu divided by the 0.4th power of the Prandtl number Pr in order to offset the influence of the physical properties of the fluid (Nu / Pr 0.4 , in the following examples) The same). Similarly, the pressure loss is expressed by a Darcy tube friction coefficient f which is a dimensionless number.

図11は、参考例1〜3の螺旋状内面溝付管と比較例1の平滑管の伝熱性能測定結果である。図11(b)は図11(a)のレイノルズ数Re5000以下の領域拡大図である。   FIG. 11 shows the heat transfer performance measurement results of the spiral inner grooved tubes of Reference Examples 1 to 3 and the smooth tube of Comparative Example 1. FIG. 11B is an enlarged view of the region of Reynolds number Re5000 or less in FIG.

図11において、参考例3は、参考例1、2と異なり、遷移域(レイノルズ数Re:2300〜4000)で性能は上がっているが、層流域(レイノルズ数Re:2300以下)で平滑管(比較例1)と同等となる。   In FIG. 11, unlike Reference Examples 1 and 2, the performance of Reference Example 3 is improved in the transition region (Reynolds number Re: 2300 to 4000), but in the laminar flow region (Reynolds number Re: 2300 or less), the smooth tube ( It is equivalent to Comparative Example 1).

図12は、参考例1〜3,比較例1の圧力損失測定結果である。   FIG. 12 shows pressure loss measurement results of Reference Examples 1 to 3 and Comparative Example 1.

参考例3は層流域で急激に低下し、参考例1と逆転している。   Reference Example 3 rapidly decreases in the laminar basin and is reverse to Reference Example 1.

図11、図12より、遷移域で性能が向上するフィンの高い内面溝付管は、層流域では整流化作用があると言える。一方、参考例1や参考例2のようなフィンの低い内面溝付管は、平滑管と同様に層流域では、整流作用は働かないと言える。   From FIG. 11 and FIG. 12, it can be said that the inner grooved pipe having a high fin whose performance is improved in the transition region has a rectifying action in the laminar flow region. On the other hand, it can be said that the inner grooved pipes with low fins as in Reference Example 1 and Reference Example 2 do not have a rectifying action in a laminar flow region, like a smooth pipe.

図13は、平滑管(比較例1)、内面平滑コルゲート管(比較例2)、内面溝付コルゲート管(比較例3,実施例1)の伝熱性能測定結果である。   FIG. 13 shows the heat transfer performance measurement results of the smooth tube (Comparative Example 1), the inner surface smooth corrugated tube (Comparative Example 2), and the inner surface grooved corrugated tube (Comparative Example 3, Example 1).

図13(b)は図13(a)のレイノルズ数Re4000以下(遷移域〜層流域)の拡大図である。   FIG.13 (b) is an enlarged view of Reynolds number Re4000 or less (transition zone-laminar flow zone) of Fig.13 (a).

図14には圧力損失測定結果を示した。   FIG. 14 shows the pressure loss measurement results.

〔本発明の数式の上限について〕
図13(b)に示すように、比較例3の内面溝付コルゲート管(図11の参考例3にコルゲート加工したもの)は、比較例2の内面平滑コルゲート管より、層流域では却って性能が低下している。同様に、図14に示すように、圧力損失も、比較例3の内面溝付コルゲート管は、比較例2の内面平滑コルゲート管より層流域で低下している。
[Upper limit of numerical formula of the present invention]
As shown in FIG. 13 (b), the corrugated pipe with inner groove of Comparative Example 3 (corrugated to Reference Example 3 of FIG. 11) has a performance in the laminar flow area rather than the inner smooth corrugated pipe of Comparative Example 2. It is falling. Similarly, as shown in FIG. 14, the pressure loss is also lower in the laminar flow region in the inner grooved corrugated pipe of Comparative Example 3 than in the inner smooth corrugated pipe of Comparative Example 2.

これは、コルゲート形状による乱流効果で向上するはずの伝熱性能が、比較例3のフィンの高い内面溝による整流化作用により相殺され、コルゲート管の性能を低下させていると言える。   This can be said that the heat transfer performance that should be improved by the turbulent flow effect due to the corrugated shape is offset by the rectifying action by the high inner groove of the fin of Comparative Example 3, and the performance of the corrugated pipe is reduced.

一方、実施例1の内面溝付コルゲート管は、層流域では、コルゲート管の性能を低下させることなく比較例2の内面平滑コルゲート管と同等性能であり、遷移域〜乱流域では、比較例2の内面平滑コルゲート管以上の性能となる。この領域で比較例3と比べても、実施例1は性能優位性を示している。   On the other hand, the corrugated pipe with the inner surface groove of Example 1 has the same performance as the inner surface smooth corrugated pipe of Comparative Example 2 without degrading the performance of the corrugated pipe in the laminar flow region, and Comparative Example 2 in the transition region to the turbulent region. The performance is better than the inner smooth corrugated tube. Compared with Comparative Example 3 in this region, Example 1 shows superior performance.

また実施例1は、比較例2の内面平滑コルゲート管に比べ、重量アップは13%(表1)と最も小さく、レイノルズ数7000では、性能は30%以上アップしている。   Further, Example 1 has the smallest weight increase of 13% (Table 1) as compared with the inner surface smooth corrugated pipe of Comparative Example 2, and the performance is improved by 30% or more at the Reynolds number of 7000.

表2に、フィン高さHfを管の最大内径IDで除した値(Hf/ID)を示す。   Table 2 shows a value (Hf / ID) obtained by dividing the fin height Hf by the maximum inner diameter ID of the tube.

Figure 0004420117
Figure 0004420117

上述した説明及び表2より、内面溝付コルゲート管が層流域で整流化されるのを抑え、コルゲート形状による性能向上を低下させないためには、参考例2のHf/ID=0.037以下である必要がある。   From the above description and Table 2, in order to prevent the corrugated pipe with the inner groove from being rectified in the laminar flow region and not to lower the performance improvement due to the corrugated shape, the Hf / ID of Reference Example 2 is 0.037 or less. There must be.

〔本発明の数式の下限について〕
ところで、実施例1のコルゲート加工前である参考例1は、遷移域で平滑管より性能向上しないため、層流域で流れを整流化するほどにフィンは高くない。しかし、乱流域(レイノルズ数Re:4000以上)でも、高めのレイノルズ数でないと性能は上がらない。これは、フィンが低いため、乱流境界層に隠れてしまうためである。
[About the lower limit of the mathematical formula of the present invention]
By the way, since the reference example 1 before corrugating of Example 1 does not improve the performance of the smooth tube in the transition region, the fins are not so high as to rectify the flow in the laminar flow region. However, even in a turbulent region (Reynolds number Re: 4000 or more), the performance cannot be improved unless the Reynolds number is high. This is because the fins are low and hidden in the turbulent boundary layer.

乱流境界層は、管壁ごく近傍を層流で流れる粘性底層(または層流底層)と、層流と乱流の中間の層(遷移域)で構成される。フィン高さと粘性底層などの厚みを比較するため、管壁から管中心方向への距離yの無次元数y+を以下の数1ように定義する。 The turbulent boundary layer is composed of a viscous bottom layer (or a laminar bottom layer) that flows in the vicinity of the tube wall in a laminar flow, and a layer (transition zone) intermediate between the laminar and turbulent flows. To compare the thickness of such fin height and viscosity bottom layer, defined as the tube wall of the dimensionless number y + number 1 below the distance y in the tube center direction.

Figure 0004420117
Figure 0004420117

ここで、ρは、管内を流れる流体の密度(kg/m3)、μは、粘度(Pas)、u*は摩擦速度で、次式の数2で定まる。 Here, ρ is the density (kg / m 3 ) of the fluid flowing in the pipe, μ is the viscosity (Pas), u * is the friction speed, and is determined by the following equation (2).

Figure 0004420117
Figure 0004420117

一般に、粘性底層は0≦y+≦5の範囲である。 In general, the viscous bottom layer is in the range of 0 ≦ y + ≦ 5.

乱流域と遷移域の境界であるレイノルズ数4000において、参考例1〜3のフィン高さに相当するy+を計算した結果を表3に示す。なお、表3には表2で示したHf/IDも併記した。 Table 3 shows the result of calculating y + corresponding to the fin height in Reference Examples 1 to 3 at the Reynolds number of 4000, which is the boundary between the turbulent region and the transition region. In Table 3, Hf / ID shown in Table 2 is also shown.

Figure 0004420117
Figure 0004420117

図11より参考例2がレイノルズ数4000以上で性能アップしており、このときy+は粘性底層の2倍以上であることが、表3から分かる。 From FIG. 11, it can be seen from Table 3 that the performance of Reference Example 2 is improved at a Reynolds number of 4000 or more, and at this time y + is twice or more that of the viscous bottom layer.

図15に、乱流域でのレイノルズ数と、平滑管における粘性底層の厚み(y+=5のときのy)を、最大内径IDで除した値δ*の関係を示す。 FIG. 15 shows the relationship between the Reynolds number in the turbulent flow area and the value δ * obtained by dividing the thickness of the viscous bottom layer in the smooth tube (y when y + = 5) by the maximum inner diameter ID.

図11より、参考例1がレイノルズ数6000〜7000で性能がアップし始めており、図15からレイノルズ数6000〜7000における粘性底層の厚みは0.012となる。   From FIG. 11, the performance of Reference Example 1 starts to improve at Reynolds number of 6000 to 7000. From FIG. 15, the thickness of the viscous bottom layer at Reynolds number of 6000 to 7000 is 0.012.

表2より、参考例1のHf/IDは0.027で、参考例2と同じく粘性底層の厚み0.011の2倍以上のとき、性能がアップする。   From Table 2, the Hf / ID of Reference Example 1 is 0.027, and the performance is improved when the thickness is 0.01 times or more of the viscous bottom layer as in Reference Example 2.

式(1)より、粘性底層の厚み(y+=5のときのy)は、摩擦速度u*に反比例することが分かる。摩擦速度u*は管壁における摩擦応力τwに比例する。また、摩擦応力τwと、区間Lの圧力損失ΔP(=P1−P2)の関係は次式の数3の通りである。 From equation (1), it can be seen that the thickness of the viscous bottom layer (y when y + = 5) is inversely proportional to the friction velocity u * . The friction speed u * is proportional to the friction stress τw in the tube wall. Further, the relationship between the friction stress τw and the pressure loss ΔP (= P1−P2) in the section L is expressed by the following equation (3).

Figure 0004420117
Figure 0004420117

Darcy− Weisbachの式(数4)   Darcy-Weisbach equation (Equation 4)

Figure 0004420117
Figure 0004420117

を式(3)に代入すると、 Is substituted into equation (3),

Figure 0004420117
Figure 0004420117

数5となり、流体温度、流速が同じであれば、摩擦応力τwは管摩擦係数fに比例する。 If the fluid temperature and flow velocity are the same, the frictional stress τw is proportional to the pipe friction coefficient f.

平滑管の管摩擦係数fの値を1として、これの倍数kと粘性底層の厚み(y+=5のときのy)を最大内径IDで除した値δ*の関係を図16に示す。 FIG. 16 shows a relationship between a value δ * obtained by dividing the multiple k of the smooth pipe by the maximum inner diameter ID and the multiple k of this and the thickness of the viscous bottom layer (y when y + = 5).

ヒートポンプ給湯機のレイノルズ数範囲は、1000〜7000程度であり、乱流域においては4000〜7000となるので、レイノルズ数4000と7000の場合を示している。   The range of the Reynolds number of the heat pump water heater is about 1000 to 7000, and is 4000 to 7000 in the turbulent flow region, so the case of Reynolds numbers 4000 and 7000 is shown.

レイノルズ数4000及び7000の場合について、定式化すると
(レイノルズ数Re=4000の場合)
δ*=0.018k-0.5
∴2δ*=0.036k-0.5
(レイノルズ数Re=7000の場合)
δ*=0.011k-0.5
∴2δ*=0.022k-0.5
ここで、コルゲート管の圧力損失と平滑管比(図10)は、0.04<Hc/ODで直線的に増加するので、圧力損失比kとHc/ODの関係式は次の数6のようになる。
When the Reynolds number is 4000 and 7000, it is formulated (in the case of Reynolds number Re = 4000).
δ * = 0.018k -0.5
∴2δ * = 0.036k -0.5
(Reynolds number Re = 7000)
δ * = 0.011k -0.5
∴2δ * = 0.022k -0.5
Here, the pressure loss of the corrugated tube and the smooth tube ratio (FIG. 10) increase linearly when 0.04 <Hc / OD, so the relational expression between the pressure loss ratio k and Hc / OD is It becomes like this.

Figure 0004420117
Figure 0004420117

Hf/IDが粘性底層δ*の2倍以上のとき性能がアップするので、内面溝付コルゲート管において、性能アップできるHf/IDの下限値は、数7となる。 Since the performance is improved when Hf / ID is twice or more of the viscous bottom layer δ * , the lower limit value of Hf / ID that can improve the performance in the corrugated pipe with an inner groove is expressed by Equation 7.

Figure 0004420117
Figure 0004420117

望ましくは数8となる。   Desirably, Equation 8 is obtained.

Figure 0004420117
Figure 0004420117

以上まとめると、数9   In summary, the number 9

Figure 0004420117
Figure 0004420117

の場合、参考例1の内面溝付管のように、ヒートポンプ式給湯機のレイノルズ数範囲では性能アップできなくても、これを内面溝付コルゲート管とすることで、コルゲートの攪拌効果により粘性底層を薄くすることができ、ヒートポンプ式給湯機のレイノルズ数範囲で性能をアップすることが可能となる。   In this case, even if the performance cannot be improved in the Reynolds number range of the heat pump type hot water heater as in the case of the inner surface grooved tube of Reference Example 1, by making this an inner surface grooved corrugated tube, the viscous bottom layer is obtained by the corrugating stirring effect. And the performance can be improved in the Reynolds number range of the heat pump type water heater.

表4に、実施例2〜5の仕様及び内面平滑コルゲート管(比較例2)の伝熱性能を1としたときの比を示した。   Table 4 shows ratios when the specifications of Examples 2 to 5 and the heat transfer performance of the inner smooth corrugated pipe (Comparative Example 2) are set to 1.

Figure 0004420117
Figure 0004420117

実施例2,3は、Hc/ODの下限値(Hc/OD=0.04)となるように、実施例4,5は、Hc/ODの上限値(Hc/OD=0.1)となるように、さらに実施例2,4は、数9のHf/IDの下限値(0.014,0.011)となるように、実施例3,5は、Hf/IDの上限値(0.037)となるように内面溝付コルゲート管を製作した。   In Examples 4 and 5, the upper limit value of Hc / OD (Hc / OD = 0.1) is set so that Examples 2 and 3 have the lower limit value of Hc / OD (Hc / OD = 0.04). Thus, in Examples 2 and 4, Examples 3 and 5 have Hf / ID upper limit values (0 and 0, 0.014, 0.011). 0.037), an internally grooved corrugated tube was manufactured.

この実施例2〜5においての伝熱性能の評価は、比較例2の伝熱性能を1としたときの比で表しており、レイノルズ数1000では、比較例2と同等の伝熱性能が得られ、レイノルズ数が大きくなると伝熱性能は、比較例2より数割向上することがわかる。   The evaluation of the heat transfer performance in Examples 2 to 5 is expressed as a ratio when the heat transfer performance of Comparative Example 2 is set to 1. When the Reynolds number is 1000, the heat transfer performance equivalent to that of Comparative Example 2 is obtained. It can be seen that, as the Reynolds number increases, the heat transfer performance is improved by several percent compared to Comparative Example 2.

本発明の第1の実施の形態に係る伝熱管の構造を示す説明図であり、(a)は全体図を示し、(b)は(a)の部分拡大断面図、(c)は(a)の楕円Aの拡大断面図を示す。It is explanatory drawing which shows the structure of the heat exchanger tube which concerns on the 1st Embodiment of this invention, (a) shows a general view, (b) is the elements on larger scale of (a), (c) is (a ) Is an enlarged sectional view of an ellipse A. 本発明の第2の実施の形態に係る伝熱管の構造を示す説明図である。It is explanatory drawing which shows the structure of the heat exchanger tube which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る熱交換器の構造を示す説明図である。It is explanatory drawing which shows the structure of the heat exchanger which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る熱交換器の構造を示す説明図である。It is explanatory drawing which shows the structure of the heat exchanger which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る熱交換器の構造を示す説明図である。It is explanatory drawing which shows the structure of the heat exchanger which concerns on the 5th Embodiment of this invention. 本発明の第6の実施の形態に係る熱交換器の構造を示す説明図である。It is explanatory drawing which shows the structure of the heat exchanger which concerns on the 6th Embodiment of this invention. 本発明の第7の実施の形態に係る熱交換器の構造を示す説明図である。It is explanatory drawing which shows the structure of the heat exchanger which concerns on the 7th Embodiment of this invention. レイノルズ数Reが1000のときの、コルゲート管のHc/ODと伝熱性能の関係(平滑管に対する伝熱性能比)を示したものである。The relationship between the Hc / OD of the corrugated tube and the heat transfer performance (heat transfer performance ratio with respect to the smooth tube) when the Reynolds number Re is 1000 is shown. レイノルズ数Reが1000のときの、コルゲート管のねじれ角と伝熱性能の関係(平滑管に対する伝熱性能比)を示したものである。The relationship between the twist angle of the corrugated tube and the heat transfer performance when the Reynolds number Re is 1000 (heat transfer performance ratio with respect to the smooth tube) is shown. レイノルズ数Reが1000のときの、コルゲート管のHc/ODと管摩擦係数の関係(平滑管に対する管摩擦係数比)を示したものである。The relationship between the Hc / OD of the corrugated pipe and the pipe friction coefficient when the Reynolds number Re is 1000 (the pipe friction coefficient ratio with respect to the smooth pipe) is shown. 参考例1〜3の螺旋状内面溝付管と比較例1の平滑管の伝熱性能測定結果である。It is a heat-transfer performance measurement result of the spiral inner surface grooved tube of Reference Examples 1-3 and the smooth tube of Comparative Example 1. 参考例1〜3,比較例3の圧力損失測定結果である。It is a pressure loss measurement result of the reference examples 1-3 and the comparative example 3. FIG. 平滑管(比較例1)、内面平滑コルゲート管(比較例2)、内面溝付コルゲート管(比較例3,実施例1)の伝熱性能測定結果である。It is a heat-transfer performance measurement result of a smooth pipe (comparative example 1), an internal smooth corrugated pipe (comparative example 2), and an internal grooved corrugated pipe (comparative example 3, Example 1). 平滑管(比較例1)、内面平滑コルゲート管(比較例2)、内面溝付コルゲート管(比較例3,実施例1)の圧力損失測定結果である。It is a pressure-loss measurement result of a smooth pipe (comparative example 1), an internal smooth corrugated pipe (comparative example 2), and an internal grooved corrugated pipe (comparative example 3, Example 1). 乱流域でのレイノルズ数と、平滑管における粘性底層の厚み(y+=5のときのy)を最大内径IDで除した値δ*の関係を示したものである。The relationship between the Reynolds number in the turbulent flow region and the value δ * obtained by dividing the thickness of the viscous bottom layer in the smooth tube (y when y + = 5) by the maximum inner diameter ID is shown. 平滑管の管摩擦係数の倍数と粘性底層の厚み(y+=5のときのy)を最大内径IDで除した値δ*の関係を示したものである。This shows the relationship between a multiple of the tube friction coefficient of the smooth tube and the value δ * obtained by dividing the thickness of the viscous bottom layer (y when y + = 5) by the maximum inner diameter ID.

符号の説明Explanation of symbols

1 コルゲート溝
2 内面溝
10 内面溝付コルゲート管
1 Corrugated groove 2 Internal groove 10 Corrugated pipe with internal groove

Claims (3)

熱交換器を構成する水管として使用されるコルゲート形状の伝熱管であって、
前記コルゲート管内面には螺旋状の内面溝が形成されており、
前記コルゲート形状のコルゲート溝深さをHc、コルゲート外径をODとすると、
0.04≦Hc/OD≦0.1を満たし、さらに、
前記内面溝のフィン高さをHf、管の最大内径をIDとすると、
0.022{30.7×(Hc/OD)+1.13}(-0.5)≦Hf/ID ≦0.037
を満たすことを特徴とする熱交換器用伝熱管。
A corrugated heat transfer tube used as a water tube constituting a heat exchanger,
A spiral inner groove is formed on the inner surface of the corrugated tube,
When the corrugated groove depth of the corrugated shape is Hc and the corrugated outer diameter is OD,
0.04 ≦ Hc / OD ≦ 0.1 is satisfied, and
When the fin height of the inner surface groove is Hf and the maximum inner diameter of the tube is ID,
0.022 {30.7 × (Hc / OD) +1.13} (−0.5) ≦ Hf / ID ≦ 0.037
A heat exchanger tube for a heat exchanger characterized by satisfying
熱交換器を構成する水管として使用されるコルゲート形状の伝熱管であって、A corrugated heat transfer tube used as a water tube constituting a heat exchanger,
前記コルゲート管内面には螺旋状の内面溝が形成されており、A spiral inner groove is formed on the inner surface of the corrugated tube,
前記コルゲート形状のコルゲート溝深さをHc、コルゲート外径をODとすると、When the corrugated groove depth of the corrugated shape is Hc and the corrugated outer diameter is OD,
0.04≦Hc/OD≦0.1を満たし、さらに、0.04 ≦ Hc / OD ≦ 0.1 is satisfied, and
前記内面溝のフィン高さをHf、管の最大内径をIDとすると、When the fin height of the inner surface groove is Hf and the maximum inner diameter of the tube is ID,
0.036{30.7×(Hc/OD)+1.13}0.036 {30.7 × (Hc / OD) +1.13} (-0.5)(-0.5) ≦Hf/ID ≦0.037≦ Hf / ID ≦ 0.037
を満たすことを特徴とする熱交換器用伝熱管。A heat exchanger tube for a heat exchanger characterized by satisfying
請求項1又は2のいずれか記載の熱交換器用伝熱管を備えたことを特徴とする熱交換器。   A heat exchanger comprising the heat exchanger tube for a heat exchanger according to claim 1.
JP2008016704A 2008-01-28 2008-01-28 Heat exchanger tube for heat exchanger and heat exchanger using the same Expired - Fee Related JP4420117B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008016704A JP4420117B2 (en) 2008-01-28 2008-01-28 Heat exchanger tube for heat exchanger and heat exchanger using the same
CN2009100039119A CN101498561B (en) 2008-01-28 2009-01-23 Heat conduction pipe for heat exchanger and heat exchanger with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016704A JP4420117B2 (en) 2008-01-28 2008-01-28 Heat exchanger tube for heat exchanger and heat exchanger using the same

Publications (2)

Publication Number Publication Date
JP2009174833A JP2009174833A (en) 2009-08-06
JP4420117B2 true JP4420117B2 (en) 2010-02-24

Family

ID=40945739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016704A Expired - Fee Related JP4420117B2 (en) 2008-01-28 2008-01-28 Heat exchanger tube for heat exchanger and heat exchanger using the same

Country Status (2)

Country Link
JP (1) JP4420117B2 (en)
CN (1) CN101498561B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701757B (en) * 2009-10-31 2011-06-01 苏州吉来冷冻空调设备配件有限公司 Shell-tube evaporator
JP2011208824A (en) * 2010-03-29 2011-10-20 Furukawa Electric Co Ltd:The Heat exchanger and heat transfer tube
KR101155811B1 (en) * 2010-04-05 2012-06-12 엘지전자 주식회사 Plate heat exchanger and air conditioner including the same
JP5642462B2 (en) * 2010-09-08 2014-12-17 株式会社Uacj銅管 Heat exchanger tube for heat exchanger and heat exchanger using the same
JP2012077917A (en) * 2010-09-30 2012-04-19 Hitachi Cable Ltd Inner grooved corrugated tube, and heat exchanger
JP5404589B2 (en) * 2010-12-09 2014-02-05 三菱電機株式会社 Twisted tube heat exchanger
FR3016689B1 (en) * 2014-01-20 2016-01-15 Vallourec Heat Exchanger Tubes IMPROVED TUBE FOR THERMAL EXCHANGER
CN106796090A (en) * 2014-09-12 2017-05-31 特灵国际有限公司 Turbulator in reinforced pipe
US10480872B2 (en) 2014-09-12 2019-11-19 Trane International Inc. Turbulators in enhanced tubes
JP6823906B1 (en) * 2019-12-13 2021-02-03 株式会社Uacj Double tube for heat exchanger

Also Published As

Publication number Publication date
CN101498561B (en) 2010-08-18
JP2009174833A (en) 2009-08-06
CN101498561A (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP4420117B2 (en) Heat exchanger tube for heat exchanger and heat exchanger using the same
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
Uttarwar et al. Augmentation of laminar flow heat transfer in tubes by means of wire coil inserts
Pan et al. New insights to implement heat transfer intensification for shell and tube heat exchangers
JP4942773B2 (en) Heat transfer pipe for hot water supply
JPWO2008029639A1 (en) Corrugated heat transfer tube for hot water supply
JP2012077917A (en) Inner grooved corrugated tube, and heat exchanger
JP5642462B2 (en) Heat exchanger tube for heat exchanger and heat exchanger using the same
CN201173728Y (en) Seamless inner thread heat transfer tube
Pardhi et al. Performance improvement of double pipe heat exchanger by using turbulator
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP5289088B2 (en) Heat exchanger and heat transfer tube
Shah Extended surface heat transfer
Hasim et al. Compound heat transfer enhancement by a combination of a helically ribbed tube with twisted tape inserts
JP2005009833A (en) Double pipe type heat exchanger
RU2502931C2 (en) Double-pipe heat exchanger
JP2010112565A (en) Heat exchanger
CN204115547U (en) Heat exchanging tube for condensator
JP5431210B2 (en) Heat transfer tube and heat exchanger
JP6223298B2 (en) Heat transfer tube for single-phase flow in tube
RU112752U1 (en) HEAT EXCHANGE PIPE
JP2011252626A (en) Heat transfer tube for double-tube heat exchanger
KR20150026937A (en) Heat transfer tube single-phase flow
CN111023883A (en) Heat exchange tube and heat exchanger that heat exchange efficiency is high
JP2011012909A (en) Heat transfer tube and heat exchanger

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees