JPWO2008029639A1 - Corrugated heat transfer tube for hot water supply - Google Patents

Corrugated heat transfer tube for hot water supply Download PDF

Info

Publication number
JPWO2008029639A1
JPWO2008029639A1 JP2008533094A JP2008533094A JPWO2008029639A1 JP WO2008029639 A1 JPWO2008029639 A1 JP WO2008029639A1 JP 2008533094 A JP2008533094 A JP 2008533094A JP 2008533094 A JP2008533094 A JP 2008533094A JP WO2008029639 A1 JPWO2008029639 A1 JP WO2008029639A1
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
corrugated
hot water
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008533094A
Other languages
Japanese (ja)
Other versions
JP4768029B2 (en
Inventor
志信 李
志信 李
継安 孟
継安 孟
沼田 光春
光春 沼田
一成 笠井
一成 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Daikin Industries Ltd
Original Assignee
Tsinghua University
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Daikin Industries Ltd filed Critical Tsinghua University
Publication of JPWO2008029639A1 publication Critical patent/JPWO2008029639A1/en
Application granted granted Critical
Publication of JP4768029B2 publication Critical patent/JP4768029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

本発明は、内部と外部との熱交換を行う給湯用コルゲート伝熱管に関するものである。コルゲート伝熱管の内部を流れる流体のレイノルズ数(Re)が7000未満の区間に位置する部分の内面の少なくとも一部に、高さH1が0.5mm〜1.5mmの複数の突起が設けられ、突起の高さH1が内径Dの0.05〜0.15倍、または突起の高さH1がコルゲート溝の深さ(Hm)の1〜3倍である。その結果、簡単な構造で、低レイノルズ数域において伝熱性能の向上を図るとともに、管内の圧力損失が小さい。The present invention relates to a corrugated heat transfer tube for hot water supply that performs heat exchange between the inside and the outside. A plurality of protrusions having a height H1 of 0.5 mm to 1.5 mm are provided on at least a part of the inner surface of the portion located in a section where the Reynolds number (Re) of the fluid flowing inside the corrugated heat transfer tube is less than 7000, The height H1 of the protrusion is 0.05 to 0.15 times the inner diameter D, or the height H1 of the protrusion is 1 to 3 times the depth (Hm) of the corrugated groove. As a result, the heat transfer performance is improved in a low Reynolds number region with a simple structure, and the pressure loss in the pipe is small.

Description

本発明は、給湯器技術、特に管内を流れる流体のレイノルズ数Reが7000未満の給湯用コルゲート伝熱管に関する。   The present invention relates to hot water heater technology, and more particularly to a hot water corrugated heat transfer tube having a Reynolds number Re of a fluid flowing in the tube of less than 7000.

空気調和装置、給湯器などに用いられる熱交換装置においては、管内に水などの流体が流れるとともに管内外の温度差によって熱交換を行う伝熱管が設けられている。そして、伝熱管の伝熱性能を向上させるため、管内面に溝が形成された溝付管が使われることがある。また、伝熱管の内面に突起を設けて伝熱性能を向上させる技術も提案されている。
このように、伝熱管内部に突起を設けると、伝熱管の伝熱面積が大きくなるとともに、突起により流体が撹拌されることで、伝熱面における熱伝達率が増大され、伝熱性能が向上する。しかし、伝熱管内部に突起を設けると、突起によって管摩擦係数が増大し、管内の流れの圧力損失が大きくなる。そこで、伝熱管内部に高さが0.45mm〜0.6mmの突起を設けて、冷媒との熱伝達を促進しつつ圧力損失を抑える技術が提案されている(特許文献1)。また、伝熱管にコルゲート管を採用することで、伝熱能力の向上を図る技術も提案されている(特許文献2)。
特公平6−70556 特開平2002−228370
In a heat exchange device used for an air conditioner, a water heater, or the like, a heat transfer tube is provided in which a fluid such as water flows in the tube and heat exchange is performed by a temperature difference between the inside and outside of the tube. In order to improve the heat transfer performance of the heat transfer tube, a grooved tube having a groove formed on the inner surface of the tube may be used. In addition, a technique for improving the heat transfer performance by providing a protrusion on the inner surface of the heat transfer tube has been proposed.
As described above, when the protrusion is provided inside the heat transfer tube, the heat transfer area of the heat transfer tube is increased, and the fluid is agitated by the protrusion, thereby increasing the heat transfer rate on the heat transfer surface and improving the heat transfer performance. To do. However, if a protrusion is provided inside the heat transfer tube, the protrusion increases the coefficient of friction of the tube and increases the pressure loss of the flow in the tube. Thus, a technique has been proposed in which a protrusion having a height of 0.45 mm to 0.6 mm is provided inside the heat transfer tube to suppress pressure loss while promoting heat transfer with the refrigerant (Patent Document 1). Moreover, the technique which aims at the improvement of heat-transfer capability by employ | adopting a corrugated pipe as a heat-transfer pipe is proposed (patent document 2).
JP 6-70556 JP 2002-228370 A

しかし、伝熱管内の流体の流速が非常に低く、管内における流体の流れが層流域から乱流域への遷移領域である場合、特許文献1で開示された高さ0.45mm〜0.6mmの突起を設けても伝熱性能の向上は小さい。
例えば、図1に示すヒートポンプ式給湯器においては、電気代の安い夜間電力を効率的に利用するため、長い時間をかけて水を約10℃から約90℃まで一過式で沸かす。ここでは、製品のコンパクト化と高効率を確保するため、伝熱管内を流れる水の流量を非常に小さい値(例えば、0.8L/min)に設定している。このように管内の水流量が小さい伝熱管においては、伝熱管の内径を小さくすることで管内の流速を高め、伝熱性能を向上させる方法を採用している。しかし、この場合でも管内の水流量が小さいため、管内における水の流れは、流入口付近では層流域から乱流域への遷移領域(Re=1500〜3000)、流出口付近でも乱流初期(Re=7000)程度である。また、水の流入口付近の低温区間では、熱伝導率も小さいため、効率的な熱交換が期待できない。
However, when the flow velocity of the fluid in the heat transfer tube is very low and the fluid flow in the tube is a transition region from the laminar flow region to the turbulent flow region, the height of 0.45 mm to 0.6 mm disclosed in Patent Document 1 Even if the protrusion is provided, the improvement in heat transfer performance is small.
For example, in the heat pump type water heater shown in FIG. 1, water is boiled in a transient manner from about 10 ° C. to about 90 ° C. over a long period of time in order to efficiently use night electricity with a low electricity bill. Here, in order to ensure compactness and high efficiency of the product, the flow rate of water flowing in the heat transfer tube is set to a very small value (for example, 0.8 L / min). Thus, in the heat transfer tube with a small water flow rate in the tube, a method of increasing the flow rate in the tube and reducing the heat transfer performance by reducing the inner diameter of the heat transfer tube is adopted. However, even in this case, since the water flow rate in the pipe is small, the flow of water in the pipe is the transition region from the laminar flow region to the turbulent flow region (Re = 1500 to 3000) near the inlet, and the initial turbulent flow (Re = 7000). In addition, in the low temperature section near the water inlet, the heat conductivity is small, so that efficient heat exchange cannot be expected.

また、伝熱管内の流体の流速が非常に低く、管内における流体の流れが層流域から乱流域への遷移領域である場合、コルゲート管のみによる伝熱性能の向上は小さい。さらに、コルゲート管は管壁の境界において強い乱流を発生させるため、コルゲート溝の深さによっては、管摩擦係数が平滑管よりかなり増大し、管内の流れの圧力損失が大きくなる。
本発明の目的は、上記背景技術の問題点を克服し、簡単な構造で、低レイノルズ数域において伝熱性能の向上を図るとともに、管内の圧力損失が小さい給湯用コルゲート伝熱管を提供することにある。
Further, when the flow velocity of the fluid in the heat transfer tube is very low and the flow of the fluid in the tube is a transition region from the laminar flow region to the turbulent flow region, the improvement in heat transfer performance by the corrugated tube alone is small. Further, since the corrugated tube generates strong turbulent flow at the boundary of the tube wall, depending on the depth of the corrugated groove, the tube friction coefficient is considerably increased as compared with the smooth tube, and the pressure loss of the flow in the tube is increased.
An object of the present invention is to provide a corrugated heat transfer tube for hot water supply that overcomes the problems of the background art described above, has a simple structure, improves heat transfer performance in a low Reynolds number region, and has low pressure loss in the tube. It is in.

第1発明に係る給湯用コルゲート伝熱管は、内部と外部との熱交換を行う給湯用コルゲート伝熱管であって、内部を流れる流体のレイノルズ数Reが7000未満の区間に位置する部分の内面の少なくとも一部に、高さH1が0.5mm〜1.5mmである複数の突起が設けられている。
伝熱管としてコルゲート管を採用すると、コルゲート溝により乱流を発生させ、伝熱性能の向上効果を得ることができる。一方、層流域及び層流域から乱流域への遷移が発生する低レイノルズ数の区間において、コルゲート管のみによる伝熱性能の向上効果を得るためには、コルゲート溝の深さを高くする必要があり、それにより管摩擦係数が高くなり、管内の圧力損失が大きくなる。
そこで、層流域及び層流域から乱流域への遷移が発生する低レイノルズ数の区間、すなわちレイノルズ数Reが7000未満の区間に位置する部分の内面に、管内に向けて突出する高さが0.5mm〜1.5mmの複数の突起を設けた。その結果、コルゲート管及び管内に設けた突起による熱伝達率の向上が図られるとともに、コルゲート溝の深さを抑え、且つ突起が管内の圧力損失に与える影響が小さく、給湯用コルゲート伝熱管全体の性能が向上する。
The corrugated heat transfer tube for hot water supply according to the first invention is a hot water corrugated heat transfer tube for exchanging heat between the inside and the outside, and is provided on the inner surface of the portion located in a section where the Reynolds number Re of the fluid flowing inside is less than 7000 A plurality of protrusions having a height H1 of 0.5 mm to 1.5 mm are provided at least partially.
When a corrugated tube is employed as the heat transfer tube, a turbulent flow is generated by the corrugated groove, and an effect of improving the heat transfer performance can be obtained. On the other hand, in the low Reynolds number section where the transition from the laminar flow region and the laminar flow region to the turbulent flow region occurs, it is necessary to increase the depth of the corrugated groove in order to obtain the effect of improving the heat transfer performance using only the corrugated tube. This increases the coefficient of friction of the tube and increases the pressure loss in the tube.
Therefore, the height protruding toward the inside of the pipe is 0. 0 on the inner surface of the laminar flow area and the low Reynolds number section where the transition from the laminar flow area to the turbulent flow area occurs, that is, the section where the Reynolds number Re is less than 7000. A plurality of protrusions of 5 mm to 1.5 mm were provided. As a result, the heat transfer coefficient is improved by the corrugated pipe and the protrusion provided in the pipe, the depth of the corrugated groove is suppressed, and the influence of the protrusion on the pressure loss in the pipe is small. Performance is improved.

第2発明に係る給湯用コルゲート伝熱管は、内部と外部との熱交換を行う給湯用コルゲート伝熱管であって、内部を流れる流体のレイノルズ数Reが7000未満の区間に位置する部分の内面の少なくとも一部に、高さH1が内径Dの0.05〜0.15倍である複数の突起が設けられている。
管内に突起が設けられた場合、管摩擦係数は、レイノルズ数Re及び相対粗度の関数となる。ここでは、管内突起による管摩擦係数への影響を表すため、管内に設けた突起の高さと管内径との比(すなわち相対粗度)を用いている。層流域から乱流域への遷移が発生する低レイノルズ数の区間において、管内壁面の相対粗度を所定範囲内にすることにより、伝熱効果の向上を図るとともに圧力損失による影響を最小限に抑えることができる。
そこで、層流域及び層流域から乱流域への遷移が発生する低レイノルズ数の区間、すなわちレイノルズ数Reが7000未満の区間に位置する部分の内面に、高さH1が内径Dの0.05〜0.15倍である複数の突起を設けた。その結果、管内に設けた突起による熱伝達率の向上が図られるとともに、突起が管内の圧力損失に与える影響が抑えられ、給湯用コルゲート伝熱管全体の性能が向上する。
A hot water corrugated heat transfer tube according to the second aspect of the present invention is a hot water corrugated heat transfer tube that exchanges heat between the inside and the outside, and is provided on the inner surface of a portion located in a section where the Reynolds number Re of the fluid flowing inside is less than 7000. A plurality of protrusions whose height H1 is 0.05 to 0.15 times the inner diameter D are provided at least in part.
When protrusions are provided in the pipe, the pipe friction coefficient is a function of the Reynolds number Re and the relative roughness. Here, in order to express the influence of the projections in the pipe on the pipe friction coefficient, the ratio between the height of the projection provided in the pipe and the inner diameter of the pipe (that is, relative roughness) is used. In a section with a low Reynolds number where a transition from a laminar flow region to a turbulent flow region occurs, the relative roughness of the inner wall surface of the pipe is kept within a specified range, thereby improving the heat transfer effect and minimizing the effect of pressure loss. be able to.
Therefore, on the inner surface of the laminar flow area and the low Reynolds number section where the transition from the laminar flow area to the turbulent flow area occurs, that is, in the section where the Reynolds number Re is less than 7000, the height H1 is 0.05 to A plurality of projections having a size of 0.15 were provided. As a result, the heat transfer rate is improved by the protrusion provided in the pipe, and the influence of the protrusion on the pressure loss in the pipe is suppressed, and the performance of the entire hot water corrugated heat transfer pipe is improved.

第3発明に係る給湯用コルゲート伝熱管は、給湯用熱交換器に用いられ、内部と外部との熱交換を行う伝熱管であって、内部を流れる流体のレイノルズ数(Re)が7000未満の区間に位置する部分の内面の少なくとも一部に、高さ(H1)がコルゲート溝の深さ(Hm)の1〜3倍である複数の突起が設けられている。
コルゲート溝が設けられている伝熱管内に突起を設けた場合、突起の高さ(H1)とコルゲート溝の深さ(Hm)による伝熱効果の向上を図るとともに圧力損失による影響を最小限に抑える必要がある。レイノルズ数(Re)が7000未満の低レイノルズ数の区間において、複数の突起の高さ(H1)がコルゲート溝の深さ(Hm)の1〜3倍である場合、コルゲート管及び管内に設けた突起による熱伝達率の向上が図られるとともに、コルゲート溝の深さを抑え、且つ突起が管内の圧力損失に与える影響が小さく、給湯用コルゲート伝熱管全体の性能が向上することができる。
A hot water corrugated heat transfer tube according to a third aspect of the present invention is a heat transfer tube that is used in a hot water heat exchanger and performs heat exchange between the inside and the outside, and the Reynolds number (Re) of the fluid flowing inside is less than 7000. A plurality of protrusions whose height (H1) is 1 to 3 times the depth (Hm) of the corrugated groove are provided on at least a part of the inner surface of the portion located in the section.
When a protrusion is provided in the heat transfer tube provided with the corrugated groove, the heat transfer effect is improved by the height (H1) of the protrusion and the depth (Hm) of the corrugated groove and the influence of pressure loss is minimized. It is necessary to suppress. When the Reynolds number (Re) is less than 7000 and the height (H1) of the plurality of protrusions is 1 to 3 times the depth (Hm) of the corrugated groove, the corrugated tube and the tube are provided. The heat transfer coefficient can be improved by the protrusion, the depth of the corrugated groove can be suppressed, and the influence of the protrusion on the pressure loss in the pipe can be reduced, and the performance of the entire corrugated heat transfer pipe for hot water supply can be improved.

第4発明に係る給湯用コルゲート伝熱管は、給湯用熱交換器に用いられ、内部と外部との熱交換を行う伝熱管であって、内部を流れる流体のレイノルズ数(Re)が7000未満の区間に位置する部分の内面の少なくとも一部に複数の突起が設けられており、
複数の突起のピッチ(P1)とコルゲートのピッチ(Pm)とは異なる値である。
突起とコルゲート溝とが重なる位置に設けられた場合、管内の摩擦係数が高くなり、管内の圧力損失が急激に高くなる恐れがある。ここでは、突起のピッチ(P1)とコルゲートのピッチ(Pm)とは異なる値にすることで、突起がコルゲート溝と重ならない位置に設けられることとなり、管内における圧力損失の急増を抑えることができる。
A hot water corrugated heat transfer tube according to a fourth aspect of the present invention is a heat transfer tube that is used in a hot water heat exchanger and performs heat exchange between the inside and the outside, and the Reynolds number (Re) of the fluid flowing inside is less than 7000. A plurality of protrusions are provided on at least a part of the inner surface of the portion located in the section,
The pitch (P1) of the plurality of protrusions and the pitch (Pm) of the corrugation are different values.
When the protrusion and the corrugated groove are provided at the overlapping position, the coefficient of friction in the pipe increases, and the pressure loss in the pipe may increase rapidly. Here, by setting the pitch (P1) of the projection and the pitch (Pm) of the corrugation to be different from each other, the projection is provided at a position where it does not overlap with the corrugated groove, and a rapid increase in pressure loss in the pipe can be suppressed. .

第5発明に係る給湯用コルゲート伝熱管は、給湯用熱交換器に用いられ、内部と外部との熱交換を行う伝熱管であって、内部を流れる流体である水が流入する流入口の近傍に位置する部分の内面に、高さH1が0.5mm〜1.5mmである複数の突起が設けられている。
給湯用熱交換器に用いられる伝熱管の流入口付近の水の流れは、層流域および/または層流域から乱流域への遷移領域に該当する。一方、伝熱管の流入口付近では水温が低く、熱伝達率も低い。そこで、本発明では、少なくとも水の流入口近傍に位置する部分の内面に、高さが0.5mm〜1.5mmの複数の突起を設けて、管内に設けた突起による熱伝達率の向上を図っている。また、突起による熱伝達率の向上が図られるとともに、突起が管内の圧力損失に与える影響が小さく、給湯用コルゲート伝熱管全体の性能が向上する。
A corrugated heat transfer tube for hot water supply according to a fifth aspect of the present invention is a heat transfer tube that is used in a heat exchanger for hot water supply and performs heat exchange between the inside and the outside, in the vicinity of an inlet into which water that is a fluid flowing inside flows A plurality of protrusions having a height H1 of 0.5 mm to 1.5 mm are provided on the inner surface of the portion located at.
The flow of water near the inlet of the heat transfer tube used in the heat exchanger for hot water supply corresponds to a laminar flow region and / or a transition region from a laminar flow region to a turbulent flow region. On the other hand, near the inlet of the heat transfer tube, the water temperature is low and the heat transfer coefficient is also low. Therefore, in the present invention, a plurality of protrusions having a height of 0.5 mm to 1.5 mm are provided at least on the inner surface of the portion located in the vicinity of the water inlet, and the heat transfer coefficient is improved by the protrusions provided in the pipe. I am trying. Further, the heat transfer coefficient is improved by the protrusions, and the influence of the protrusions on the pressure loss in the pipe is small, so that the performance of the hot water corrugated heat transfer pipe as a whole is improved.

第6発明に係る給湯用コルゲート伝熱管は、給湯用熱交換器に用いられ、内部と外部との熱交換を行う伝熱管であって、内部を流れる流体である水が流入する流体流入口の近傍に位置する部分の内面に、高さH1が内径Dの0.05〜0.15倍である複数の突起が設けられている。
給湯用熱交換器においては、伝熱管の流入口付近の水の流れは、層流域および/または層流域から乱流域への遷移領域に該当する。また、伝熱管の流入口付近では水温が低く、熱伝達率も低い。そこで、この給湯用熱交換器において、少なくとも水の流入口近傍に位置する伝熱管の内面に、高さが伝熱管内径の0.05〜0.15倍である複数の突起を設けている。その結果、管内に設けた突起による熱伝達率の向上が図られるとともに、突起が管内の圧力損失に与える影響が抑えられ、給湯用コルゲート伝熱管全体の性能が向上する。
A corrugated heat transfer tube for hot water supply according to a sixth aspect of the present invention is a heat transfer tube used for a heat exchanger for hot water supply to exchange heat between the inside and the outside, and is a fluid inlet into which water, which is a fluid flowing inside, flows. A plurality of protrusions whose height H1 is 0.05 to 0.15 times the inner diameter D are provided on the inner surface of the portion located in the vicinity.
In the hot water supply heat exchanger, the flow of water near the inlet of the heat transfer tube corresponds to a laminar flow region and / or a transition region from a laminar flow region to a turbulent flow region. In addition, the water temperature is low near the inlet of the heat transfer tube, and the heat transfer coefficient is also low. Therefore, in this heat exchanger for hot water supply, a plurality of protrusions whose height is 0.05 to 0.15 times the inner diameter of the heat transfer tube are provided at least on the inner surface of the heat transfer tube located in the vicinity of the water inlet. As a result, the heat transfer rate is improved by the protrusion provided in the pipe, and the influence of the protrusion on the pressure loss in the pipe is suppressed, and the performance of the entire hot water corrugated heat transfer pipe is improved.

第7発明に係る給湯用コルゲート伝熱管は、給湯用熱交換器に用いられ、内部と外部との熱交換を行う伝熱管であって、内部を流れる流体である水が流入する流体入口の近傍に位置する部分の内面に、高さ(H1)がコルゲート溝の深さ(Hm)の1〜3倍である複数の突起が設けられている。
伝熱管の流入口付近の水の流れは、層流域および/または層流域から乱流域への遷移領域に該当する。また、伝熱管の流入口付近では水温が低く、熱伝達率も低い。ここでは、コルゲート溝が設けられている伝熱管内に突起を設け、熱伝達率の向上を図っている。しかし、コルゲート溝が設けられている伝熱管内に突起を設けた場合、突起の高さ(H1)とコルゲート溝の深さ(Hm)による伝熱効果の向上を図るとともに圧力損失による影響を最小限に抑える必要がある。レイノルズ数(Re)が7000未満の低レイノルズ数の区間において、複数の突起の高さ(H1)がコルゲート溝の深さ(Hm)の1〜3倍である場合、コルゲート管及び管内に設けた突起による熱伝達率の向上が図られるとともに、コルゲート溝の深さを抑え、且つ突起が管内の圧力損失に与える影響が小さく、給湯用コルゲート伝熱管全体の性能が向上することができる。
A corrugated heat transfer tube for hot water supply according to a seventh aspect of the present invention is a heat transfer tube that is used in a heat exchanger for hot water supply and performs heat exchange between the inside and the outside, in the vicinity of a fluid inlet into which water that is a fluid flowing inside flows A plurality of protrusions whose height (H1) is 1 to 3 times the depth (Hm) of the corrugated groove are provided on the inner surface of the portion located at.
The flow of water near the inlet of the heat transfer tube corresponds to a laminar flow region and / or a transition region from a laminar flow region to a turbulent flow region. In addition, the water temperature is low near the inlet of the heat transfer tube, and the heat transfer coefficient is also low. Here, a protrusion is provided in the heat transfer tube provided with the corrugated groove to improve the heat transfer rate. However, when the protrusion is provided in the heat transfer tube provided with the corrugated groove, the heat transfer effect is improved by the height (H1) of the protrusion and the depth (Hm) of the corrugated groove and the influence of pressure loss is minimized. It is necessary to limit to the limit. When the Reynolds number (Re) is less than 7000 and the height (H1) of the plurality of protrusions is 1 to 3 times the depth (Hm) of the corrugated groove, the corrugated tube and the tube are provided. The heat transfer coefficient can be improved by the protrusion, the depth of the corrugated groove can be suppressed, and the influence of the protrusion on the pressure loss in the pipe can be reduced, and the performance of the entire corrugated heat transfer pipe for hot water supply can be improved.

第8発明に係る給湯用コルゲート伝熱管は、給湯用熱交換器に用いられ、内部と外部との熱交換を行う伝熱管であって、内部を流れる流体である水が流入する流入口の近傍に位置する部分の内面に複数の突起が設けられており、複数の突起のピッチ(P1)とコルゲートのピッチ(P2)とは異なる値である。
伝熱管の流入口付近の水の流れは、層流域および/または層流域から乱流域への遷移領域に該当する。また、伝熱管の流入口付近では水温が低く、熱伝達率も低い。ここでは、コルゲート溝が設けられている伝熱管内に突起を設け、熱伝達率の向上を図っている。しかし、突起とコルゲート溝とが重なる位置に設けられた場合、管内の摩擦係数が高くなり、管内の圧力損失が急激に高くなる恐れがある。そこで、突起のピッチ(P1)とコルゲートのピッチ(P2)とは異なる値にすることで、突起がコルゲート溝と重ならない位置に設けられることとなり、管内における圧力損失の急増を抑えることができる。
A hot water corrugated heat transfer tube according to an eighth aspect of the present invention is a heat transfer tube that is used in a heat exchanger for hot water supply and performs heat exchange between the inside and the outside, in the vicinity of an inlet into which water, which is a fluid flowing inside, flows. A plurality of protrusions are provided on the inner surface of the portion located at, and the pitch (P1) of the plurality of protrusions is different from the pitch (P2) of the corrugation.
The flow of water near the inlet of the heat transfer tube corresponds to a laminar flow region and / or a transition region from a laminar flow region to a turbulent flow region. In addition, the water temperature is low near the inlet of the heat transfer tube, and the heat transfer coefficient is also low. Here, a protrusion is provided in the heat transfer tube provided with the corrugated groove to improve the heat transfer rate. However, if the protrusion and the corrugated groove are provided at a position where they overlap, the coefficient of friction in the pipe increases, and the pressure loss in the pipe may increase rapidly. Therefore, by setting the pitch (P1) of the projections and the pitch (P2) of the corrugations to be different values, the projections are provided at positions where they do not overlap with the corrugated grooves, and a rapid increase in pressure loss in the pipe can be suppressed.

第9発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、内部を流れる流体の流速が0.1m/s〜0.6m/sである。なお、給湯用コルゲート伝熱管の内部を流れる流体の流速が0.2m/s〜0.4m/sであることが好ましい。ここで、管内の流体の流速が0.1m/s未満である場合、コルゲート伝熱管の熱伝達率が極めて低い。一方、管内の流体の流速が0.6m/sを超えると、コルゲート管内の摩擦係数が大きくなり、管内の圧力損失が大きくなる。そこで、内部を流れる流体の流速範囲を0.1m/s〜0.6m/sとする。その結果、コルゲート溝と管内に設けた突起による熱伝達率の向上が図られるとともに、突起が管内の圧力損失に与える影響が抑えられ、給湯用コルゲート伝熱管全体の性能が向上する。   A corrugated heat transfer tube for hot water supply according to a ninth aspect of the invention is the corrugated heat transfer tube for hot water supply according to any one of the first to eighth aspects of the invention, wherein the flow velocity of the fluid flowing inside is 0.1 m / s to 0.6 m / s. It is. In addition, it is preferable that the flow velocity of the fluid which flows through the inside of the corrugated heat transfer tube for hot water supply is 0.2 m / s to 0.4 m / s. Here, when the flow velocity of the fluid in the pipe is less than 0.1 m / s, the heat transfer coefficient of the corrugated heat transfer pipe is extremely low. On the other hand, when the flow velocity of the fluid in the pipe exceeds 0.6 m / s, the friction coefficient in the corrugated pipe increases and the pressure loss in the pipe increases. Therefore, the flow velocity range of the fluid flowing inside is set to 0.1 m / s to 0.6 m / s. As a result, the heat transfer coefficient is improved by the corrugated groove and the protrusion provided in the pipe, and the influence of the protrusion on the pressure loss in the pipe is suppressed, so that the performance of the hot water corrugated heat transfer pipe as a whole is improved.

第10発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、突起の任意の高さにおける断面形状は、円形、楕円形もしくは近似円形のような滑らかな曲線で構成されている。
コルゲート管内突起による管内流体の圧力損失への影響要素として、コルゲート溝の高さ、管内流体のレイノルズ数、速度、突起の高さなどのほか、突起の形状が挙げられる。突起の形状が鋭角状である場合、角を曲がる流れにより剥離渦が生じ、流体の圧力損失が高くなる。
そこで、突起の任意の高さにおける断面形状が、円形、楕円形もしくは近似円形のような滑らかな曲線で構成されているようにしている。すなわち、突起の外周面が滑らかな曲面で形成されているため、突起の形状が鋭角状であるものに比べて剥離渦の発生を抑えることができ、管内流体の圧力損失による影響が抑えられ、コルゲート伝熱管全体の性能が向上する。
A corrugated heat transfer tube for hot water supply according to a tenth aspect of the present invention is the corrugated heat transfer tube for hot water supply according to any one of the first to eighth aspects, wherein the cross-sectional shape at an arbitrary height of the protrusion is circular, elliptical or approximate circular It consists of a smooth curve like
Factors affecting the pressure loss of the fluid in the pipe due to the corrugated pipe protrusion include the height of the corrugated groove, the Reynolds number of the fluid in the pipe, the speed, the height of the protrusion, and the shape of the protrusion. When the shape of the protrusion is an acute angle, a separation vortex is generated by the flow that turns the corner, and the pressure loss of the fluid increases.
Therefore, the cross-sectional shape at an arbitrary height of the protrusion is configured by a smooth curve such as a circle, an ellipse, or an approximate circle. That is, since the outer peripheral surface of the projection is formed with a smooth curved surface, the generation of the separation vortex can be suppressed as compared with the projection having an acute shape, and the influence of the pressure loss of the fluid in the pipe can be suppressed, The performance of the entire corrugated heat transfer tube is improved.

第11発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、流体が流出する流体流出口の近傍に位置する区間には、突起が設けられていない。
コルゲート伝熱管の流体流出口部では、流体の温度が高く、例えば流体が水である場合、コルゲート管内面にスケールが付着するおそれがある。このような区間に突起を設けると、突起によりスケールの付着が促進されるおそれがある。そこで、流体の温度が高い流体流出口近傍に位置する区間には、突起が設けられていない管、例えば平滑管を使用することにより、スケールの発生を抑える。
A corrugated heat transfer tube for hot water supply according to an eleventh aspect of the present invention is the corrugated heat transfer tube for hot water supply according to any one of the first to eighth aspects of the present invention, wherein a protrusion is formed in a section located near the fluid outlet where the fluid flows out. Not provided.
At the fluid outlet of the corrugated heat transfer tube, the temperature of the fluid is high. For example, when the fluid is water, there is a possibility that the scale adheres to the inner surface of the corrugated tube. If a projection is provided in such a section, there is a possibility that adhesion of the scale is promoted by the projection. Therefore, in a section located near the fluid outlet where the temperature of the fluid is high, generation of scale is suppressed by using a pipe having no protrusion, for example, a smooth pipe.

第12発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、突起の高さH1よりも溝深さの浅い溝が管内面に形成されている。
低レイノルズ数域においては、コルゲート伝熱管内面に設けられた突起のうち、小さい突起より大きい突起の方が熱伝達率の向上に貢献する。そこで、コルゲート伝熱管内に溝付き管の溝の深さより高い突起を設けることで伝熱効果の向上を図る。一方、高レイノルズ数域においては、突起の高さより深さの浅い溝の方が熱伝達率の向上に貢献する。そこで、高レイノルズ域においては、突起の高さより溝深さの浅い溝が内面に形成されている溝付き管を採用することにより、コルゲート伝熱伝熱管の伝熱性能がさらに向上する。
A corrugated heat transfer tube for hot water supply according to a twelfth aspect of the present invention is the corrugated heat transfer tube for hot water supply according to any of the first to eighth aspects, wherein a groove having a groove depth shallower than the height H1 of the protrusion is formed on the inner surface of the tube. Has been.
In the low Reynolds number region, among the protrusions provided on the inner surface of the corrugated heat transfer tube, the protrusion larger than the small protrusion contributes to the improvement of the heat transfer coefficient. Therefore, the heat transfer effect is improved by providing a protrusion higher than the groove depth of the grooved tube in the corrugated heat transfer tube. On the other hand, in the high Reynolds number region, the shallower groove than the protrusion height contributes to the improvement of the heat transfer coefficient. Therefore, in the high Reynolds region, the heat transfer performance of the corrugated heat transfer tube is further improved by employing a grooved tube in which a groove having a groove depth shallower than the height of the protrusion is formed on the inner surface.

第13発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、複数の突起は、管軸方向に平行して設けられている。
管軸方向に突起を設けることにより、伝熱促進が連続しておこなえる。また、流体の流れは管軸方向に直線的に流れるため、圧力損失の増加が小さく、伝熱管全体の性能が向上する。
A corrugated heat transfer tube for hot water supply according to a thirteenth aspect of the present invention is the corrugated heat transfer tube for hot water supply according to any one of the first to eighth aspects of the present invention, wherein the plurality of protrusions are provided in parallel to the tube axis direction.
By providing protrusions in the tube axis direction, heat transfer can be continuously promoted. Further, since the fluid flow linearly flows in the tube axis direction, the increase in pressure loss is small, and the performance of the entire heat transfer tube is improved.

第14発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、複数の突起は、螺旋状に設けられている。
螺旋状に突起を設けることにより、管内の流体の流れに旋回が発生し、流体の通過長さが長くなり、伝熱性能がさらに向上する。
A corrugated heat transfer tube for hot water supply according to a fourteenth aspect of the present invention is the corrugated heat transfer tube for hot water supply according to any one of the first to eighth aspects, wherein the plurality of protrusions are provided in a spiral shape.
By providing the protrusions in a spiral shape, swirling occurs in the flow of the fluid in the pipe, the passage length of the fluid is increased, and the heat transfer performance is further improved.

第15発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、複数の突起は、伝熱管の径方向の対向する位置で一対となるように設けられている。
径方向の対向する位置で一対となるように突起を設けることにより、突起付近の断面積が減少し、流体の混合が促進され、伝熱性能がさらに向上される。
A corrugated heat transfer tube for hot water supply according to a fifteenth aspect of the present invention is the corrugated heat transfer tube for hot water supply according to any one of the first to eighth aspects of the invention, wherein the plurality of protrusions are paired at positions facing each other in the radial direction of the heat transfer tube. It is provided as follows.
By providing the protrusions so as to form a pair at opposite positions in the radial direction, the cross-sectional area in the vicinity of the protrusions is reduced, fluid mixing is promoted, and heat transfer performance is further improved.

第16発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、複数の突起のピッチP1と伝熱管内径Dとの比は0.5〜10である。
突起のピッチP1と伝熱管内径Dとの比が0.5以下の場合、伝熱促進効果は得られるが、上流側において突起の影響により圧力損失が大きくなる。また、突起のピッチP1と伝熱管内径Dとの比が10以上の場合、伝熱促進効果が小さくなる。
そこで、突起のピッチP1と伝熱管内径Dとの比を0.5〜10にすることで、伝熱促進効果を維持しつつ、圧力損失の増加が小さく、伝熱管全体の性能が向上する。
A hot water corrugated heat transfer tube according to a sixteenth aspect of the present invention is the hot water corrugated heat transfer tube according to any one of the first to eighth aspects, wherein the ratio of the pitch P1 of the plurality of protrusions to the heat transfer tube inner diameter D is 0.5. -10.
When the ratio between the pitch P1 of the protrusions and the inner diameter D of the heat transfer tube is 0.5 or less, a heat transfer promotion effect can be obtained, but pressure loss increases due to the protrusions on the upstream side. Further, when the ratio between the pitch P1 of the protrusions and the heat transfer tube inner diameter D is 10 or more, the heat transfer promotion effect is reduced.
Therefore, by setting the ratio of the pitch P1 of the protrusions to the heat transfer tube inner diameter D to be 0.5 to 10, while maintaining the heat transfer promotion effect, the increase in pressure loss is small and the performance of the entire heat transfer tube is improved.

第17発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、複数の突起間には、高さ(H2)が0.5mm未満の小突起が設けられている。
低レイノルズ数域においては、小さい突起より大きい突起の方が熱伝達率の向上に貢献するが、高レイノルズ数域においては、大きい突起より小さい突起(小突起)の方が熱伝達率の向上に貢献する。ここでは、大きな突起の間に小さな突起を設けることにより、レイノルズ数が低い区間では大きな突起により伝熱性能が向上され、レイノルズ数が高い区間では小さな突起による伝熱性能の向上の相乗効果が図られることにより、熱交換器全体の性能が向上する。
A hot water corrugated heat transfer tube according to a seventeenth aspect of the present invention is the hot water corrugated heat transfer tube according to any one of the first to eighth aspects of the invention, wherein the height (H2) is less than 0.5 mm between the plurality of protrusions. Small protrusions are provided.
In the low Reynolds number region, the protrusion larger than the small protrusion contributes to the improvement of the heat transfer coefficient. However, in the high Reynolds number area, the protrusion smaller than the large protrusion (small protrusion) improves the heat transfer coefficient. To contribute. Here, by providing small protrusions between large protrusions, heat transfer performance is improved by large protrusions in sections where the Reynolds number is low, and in a section where the Reynolds number is high, there is a synergistic effect of improving heat transfer performance by small protrusions. As a result, the performance of the entire heat exchanger is improved.

第18発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、伝熱管の内面には、突起が設けられていない平滑部が存在する。
突起のない平滑部において、伝熱管内の断面積は最大となる。すなわち、突起を設けている部分と突起を設けていない部分との間の内面形状の変化が最大となり、伝熱性能が向上する。一方、伝熱管内面に平滑部が存在しない場合は、伝熱管の内径が減少したものと同じ効果となり、流体の流速が速くなること伝熱促進効果は得られるが、管内の圧力損失も大きくなる。
A corrugated heat transfer tube for hot water supply according to an eighteenth aspect of the present invention is the corrugated heat transfer tube for hot water supply according to any one of the first to eighth aspects of the present invention, wherein a smooth portion having no protrusions is present on the inner surface of the heat transfer tube. .
In the smooth part having no protrusion, the cross-sectional area in the heat transfer tube is maximized. That is, the change in the inner surface shape between the portion where the protrusion is provided and the portion where the protrusion is not provided is maximized, and the heat transfer performance is improved. On the other hand, when there is no smooth portion on the inner surface of the heat transfer tube, the effect is the same as that in which the inner diameter of the heat transfer tube is reduced, and the fluid flow rate is increased, and the heat transfer acceleration effect is obtained, but the pressure loss in the tube also increases. .

第19発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、突起は外部から力を加えることにより形成されるものであり、直線部には形成され、曲げ部には形成されない。
外部から力を加えることにより伝熱管の内面に突起を形成させる場合、外面が凹むとともに対応する内面において管内に向け突起が形成されることが多い。また、一般的に、伝熱管に直線部と曲げ部を有している。曲げ部には、直線部における圧力損失に加えて曲げによる付加的な圧力損失が存在する。ここで、曲げ部の内面にさらに突起を設けると、曲げ部における圧力損失がさらに増大されるおそれがある。また、曲げ作業過程で伝熱管外面の凹んだ部位に大きな変形が発生し、破損などが発生するおそれがある。そこで、直線部には突起を設け、曲げ部には突起を設けていない。
A corrugated heat transfer tube for hot water supply according to a nineteenth aspect of the present invention is the corrugated heat transfer tube for hot water supply according to any one of the first to eighth aspects of the present invention, wherein the protrusion is formed by applying a force from the outside, and the straight portion Is not formed in the bent portion.
When a protrusion is formed on the inner surface of the heat transfer tube by applying a force from the outside, the outer surface is often recessed and a protrusion is formed on the corresponding inner surface toward the tube. In general, the heat transfer tube has a straight portion and a bent portion. In addition to the pressure loss at the straight portion, the bending portion has an additional pressure loss due to bending. Here, if a protrusion is further provided on the inner surface of the bent portion, the pressure loss at the bent portion may be further increased. In addition, a large deformation may occur in the recessed portion of the outer surface of the heat transfer tube during the bending work process, which may cause damage. Therefore, a protrusion is provided on the straight portion, and no protrusion is provided on the bent portion.

第20発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、突起は外部から力を加えることにより形成されるものであり、曲げ部においては、曲げられている面と交差する区間には形成されていない。
伝熱管の曲げ部において、曲げられている面と交差する部分の変形量がいちばん大きい。そこで、伝熱管の曲げ部において、曲げられている面と交差する区間には突起を設けていない。例えば、伝熱管が水平面で曲げられている場合、曲げ部における水平面と交差する区間には突起を設けない。
A corrugated heat transfer tube for hot water supply according to a twentieth aspect of the present invention is the corrugated heat transfer tube for hot water supply according to any one of the first to eighth aspects of the present invention, wherein the protrusion is formed by applying a force from the outside, and the bent portion Is not formed in the section intersecting with the bent surface.
In the bent portion of the heat transfer tube, the amount of deformation at the portion intersecting the bent surface is the largest. Therefore, no protrusion is provided in a section intersecting the bent surface in the bent portion of the heat transfer tube. For example, when the heat transfer tube is bent in a horizontal plane, no protrusion is provided in a section that intersects the horizontal plane in the bent portion.

第21発明に係る給湯用コルゲート伝熱管は、第1発明から第8発明のいずれかに記載の給湯用コルゲート伝熱管において、外部には流体に熱を供給する第2流体を流すための第2伝熱管が配置されており、外面には第2伝熱管が接触しており、突起は外面を凹ませることによって内面に形成されるものであって、第2伝熱管との接触部分以外の場所に形成されている。
ここでは、突起は外面を凹ませることによって内面に形成されるものであるため、内面に突起が形成された部位に対応する外面には凹みが形成されている。第2伝熱管と接触する部分に突起が形成される。すなわち外面に凹みが形成されると、伝熱管と第2伝熱管との接触が悪くなり、第2伝熱管からの伝熱効果が低下する。そこで、第2伝熱管との接触区間には突起を設けないようにすることで、第2伝熱管からの伝熱効果の低下を防ぐことができる。
A corrugated heat transfer tube for hot water supply according to a twenty-first invention is the corrugated heat transfer tube for hot water supply according to any one of the first to eighth inventions, wherein a second fluid for supplying a second fluid for supplying heat to the fluid flows to the outside. The heat transfer tube is arranged, the second heat transfer tube is in contact with the outer surface, and the protrusion is formed on the inner surface by denting the outer surface, and the place other than the contact portion with the second heat transfer tube Is formed.
Here, since the protrusion is formed on the inner surface by denting the outer surface, the outer surface corresponding to the portion where the protrusion is formed on the inner surface is formed with a recess. A protrusion is formed in a portion that contacts the second heat transfer tube. That is, when a dent is formed in the outer surface, the contact between the heat transfer tube and the second heat transfer tube is deteriorated, and the heat transfer effect from the second heat transfer tube is reduced. Therefore, by not providing a protrusion in the contact section with the second heat transfer tube, it is possible to prevent a decrease in the heat transfer effect from the second heat transfer tube.

ヒートポンプ給湯器の模式図Schematic diagram of heat pump water heater 水熱交換器の概略図。Schematic of a water heat exchanger. コルゲート伝熱管の平面図。The top view of a corrugated heat exchanger tube. コルゲート伝熱管の管内流れのレイノルズ数を表すグラフ。The graph showing the Reynolds number of the pipe | tube flow of a corrugated heat exchanger tube. (a)コルゲート伝熱管の断面斜視図。(A) The cross-sectional perspective view of a corrugated heat exchanger tube.

(b)図5(a)のA−A矢視断面図。
(c)図5(b)のB−B矢視断面図。
実験1の結果を示すグラフ図。 実験2の結果を示すグラフ図。 実験3の結果を示すグラフ図。 実験4の結果グラフ図。 実施例1に係るコルゲート伝熱管の平面図。 実施例2に係るコルゲート伝熱管の平面図。 (a)実施例3に係るコルゲート伝熱管の平面図。
(B) AA arrow sectional drawing of Fig.5 (a).
(C) BB arrow sectional drawing of FIG.5 (b).
The graph which shows the result of the experiment 1. FIG. The graph which shows the result of the experiment 2. FIG. The graph which shows the result of the experiment 3. FIG. The graph of the result of Experiment 4. The top view of the corrugated heat exchanger tube which concerns on Example 1. FIG. The top view of the corrugated heat exchanger tube which concerns on Example 2. FIG. (A) The top view of the corrugated heat exchanger tube which concerns on Example 3. FIG.

(b)実施例3に係るコルゲート伝熱管の斜視図。
実施例4に係るコルゲート伝熱管の平面図。 実施例5に係るコルゲート伝熱管の平面図。 (a)実施例5に係るコルゲート伝熱管の平面図。 (b)実施例5に係るコルゲート伝熱管の斜視図。 実施例6に係るコルゲート伝熱管の平面図。 実施例7に係るコルゲート伝熱管の平面図。 実施例8に係るコルゲート伝熱管の平面図。 実施例9に係るコルゲート伝熱管の平面図。 (a)実施例10に係るコルゲート伝熱管の平面図。
(B) The perspective view of the corrugated heat exchanger tube which concerns on Example 3. FIG.
The top view of the corrugated heat exchanger tube which concerns on Example 4. FIG. The top view of the corrugated heat exchanger tube which concerns on Example 5. FIG. (A) The top view of the corrugated heat exchanger tube which concerns on Example 5. FIG. (B) The perspective view of the corrugated heat exchanger tube which concerns on Example 5. FIG. The top view of the corrugated heat exchanger tube which concerns on Example 6. FIG. The top view of the corrugated heat exchanger tube which concerns on Example 7. FIG. The top view of the corrugated heat exchanger tube which concerns on Example 8. FIG. The top view of the corrugated heat exchanger tube which concerns on Example 9. FIG. (A) The top view of the corrugated heat exchanger tube which concerns on Example 10. FIG.

(b)実施例10に係るコルゲート伝熱管の斜視図。
実施例11に係るコルゲート伝熱管の平面図。 (a)コルゲート伝熱管の斜視図。 (b)ハイフィン伝熱管の斜視図。 (c)花柄伝熱管の斜視図。
(B) The perspective view of the corrugated heat exchanger tube which concerns on Example 10. FIG.
The top view of the corrugated heat exchanger tube which concerns on Example 11. FIG. (A) The perspective view of a corrugated heat exchanger tube. (B) The perspective view of a high fin heat exchanger tube. (C) Perspective view of a floral pattern heat transfer tube.

符号の説明Explanation of symbols

1 貯湯ユニット
100 ヒートポンプ給湯器
2 ヒートポンプユニット
30 水熱交換器
311 水流入口
312 水流出口
313,413,513,613 突起
315 小突起
316,416,516,616 コルゲート溝
644 溝
DESCRIPTION OF SYMBOLS 1 Hot water storage unit 100 Heat pump water heater 2 Heat pump unit 30 Water heat exchanger 311 Water inlet 312 Water outlet 313,413,513,613 Projection 315 Small protrusion 316,416,516,616 Corrugated groove 644 Groove

本発明に係る給湯用コルゲート伝熱管について、添付図及び実施例に基づいて説明する。
図1は、本発明の給湯用コルゲート伝熱管を採用したヒートポンプ式給湯機の模式図である。ここで、ヒートポンプ式給湯機は、貯湯ユニット1とヒートポンプユニット2とを備えている。貯湯ユニット1は、水道管11と、貯湯タンク12と、水循環用ポンプ13と、給水管3と、水熱交換器30を構成するコルゲート伝熱管31と、温湯管16と、混合弁17と、給湯管18とが順に連結されている。ここでは、給水管11から貯湯タンク12に水道水が供給される。貯湯タンク12の底部から温度の低い水が水循環用ポンプ13より水熱交換器30のコルゲート伝熱管31に供給され加熱される。加熱された温湯は、貯湯タンク12の上部に流入される。温湯管16を経て貯湯タンク12の上部から出湯される高温の温湯は、混合弁17により混合水管19の冷水と混合される。この混合弁17により給湯の温度が調節され、給湯管18によりユーザに供給される。
A hot water corrugated heat transfer tube according to the present invention will be described with reference to the accompanying drawings and examples.
FIG. 1 is a schematic diagram of a heat pump type hot water heater employing the hot water corrugated heat transfer tube of the present invention. Here, the heat pump water heater includes a hot water storage unit 1 and a heat pump unit 2. The hot water storage unit 1 includes a water pipe 11, a hot water storage tank 12, a water circulation pump 13, a water supply pipe 3, a corrugated heat transfer pipe 31 constituting the water heat exchanger 30, a hot water pipe 16, a mixing valve 17, The hot water supply pipe 18 is connected in order. Here, tap water is supplied from the water supply pipe 11 to the hot water storage tank 12. Water having a low temperature is supplied from the bottom of the hot water storage tank 12 to the corrugated heat transfer pipe 31 of the water heat exchanger 30 from the water circulation pump 13 and heated. The heated hot water flows into the upper part of the hot water storage tank 12. Hot hot water discharged from the upper part of the hot water storage tank 12 through the hot water pipe 16 is mixed with cold water in the mixed water pipe 19 by the mixing valve 17. The temperature of the hot water supply is adjusted by the mixing valve 17 and supplied to the user through the hot water supply pipe 18.

次に、ヒートポンプユニット2は冷媒循環回路を備え、この冷媒循環回路は、圧縮機21と、水熱交換器30と、膨張弁23と、空気熱交換器24とを、冷媒管32により順に接続して構成される。冷媒は圧縮機21により高圧に圧縮された後、水熱交換器30に送られる。水熱交換器30において熱交換された冷媒は、膨張弁23を通過し、空気熱交換器24へ供給される。冷媒は、周囲からの熱を吸収して圧縮機21に還流される。
図2は、ヒートポンプ給湯機における水熱交換器30の概略図である。図2に示すように、水熱交換器30は、コルゲート伝熱管31と冷媒管32とによって構成されている。コルゲート伝熱管31は、同一平面上において長円形状となるように渦巻き形状に形成され、水通路Wを形成している。冷媒管32は、伝熱管31の外周に螺旋状に巻き付けられ、冷媒通路Rを形成している。そして、コルゲート伝熱管31における渦巻きの外周側を水流入口311、コルゲート伝熱管31における渦巻きの中心側を水流出口312としている。水熱交換器30において、冷媒管32内の冷媒は、冷媒流入口322においてA22方向から流入し放熱する。その後、冷媒流出口321においてA21方向から流出する。水流入口311においてA11方向から供給された水道水はこの熱により加熱され、温湯となって水流出口312においてA12方向に流出する。
Next, the heat pump unit 2 includes a refrigerant circulation circuit, and the refrigerant circulation circuit connects the compressor 21, the water heat exchanger 30, the expansion valve 23, and the air heat exchanger 24 through the refrigerant pipe 32 in order. Configured. The refrigerant is compressed to a high pressure by the compressor 21 and then sent to the water heat exchanger 30. The refrigerant heat-exchanged in the water heat exchanger 30 passes through the expansion valve 23 and is supplied to the air heat exchanger 24. The refrigerant absorbs heat from the surroundings and is returned to the compressor 21.
FIG. 2 is a schematic view of the water heat exchanger 30 in the heat pump water heater. As shown in FIG. 2, the water heat exchanger 30 includes a corrugated heat transfer tube 31 and a refrigerant tube 32. The corrugated heat transfer tube 31 is formed in a spiral shape so as to have an oval shape on the same plane, and forms a water passage W. The refrigerant tube 32 is spirally wound around the outer periphery of the heat transfer tube 31 to form a refrigerant passage R. The outer periphery of the spiral in the corrugated heat transfer tube 31 is the water inlet 311, and the center of the spiral in the corrugated heat transfer tube 31 is the water outlet 312. In the water heat exchanger 30, the refrigerant in the refrigerant pipe 32 flows in from the A22 direction at the refrigerant inlet 322 and radiates heat. Thereafter, the refrigerant flows out from the A21 direction at the refrigerant outlet 321. The tap water supplied from the A11 direction at the water inflow port 311 is heated by this heat, becomes hot water, and flows out in the A12 direction at the water outlet 312.

次に、コルゲート伝熱管31について説明する。図3に示すように、コルゲート伝熱管31の管内面には、コルゲート316が形成され、高さがH1の複数の突起313が、管軸方向において上下対称に設けられている。図3においては、紙面方向から見て上方に設けられた突起313のみが表示されている。本実施例では、伝熱管31の水流入口311における水温は約10℃、水流出口312における水温は約90℃と設定されている。ここで、コルゲート伝熱管における水の流量は約0.8L/minである。また、コルゲート伝熱管の外径が8mm〜14mm(内径が6mm〜12mm)であることが好ましい。
コルゲート伝熱管31の管内流のレイノルズ数Reを、図4に表している。図4で示すように、コルゲート伝熱管31の水流入口311におけるレイノルズ数Reは約2000であり、管内の流れは層流域である。水の流れが進むにつれ、流入口311から流入された水は、図2に示す冷媒管32との熱交換を行い水温が高くなる。水温上昇により、水の粘性係数が小さくなり、レイノルズ数Reは段々大きくなる。図4において、水流出口312におけるレイノルズ数Reは約7000であって、管内流は層流から乱流への遷移領域に位置する。ここで、コルゲート伝熱管31の管内面に設けられた複数の突起313が、伝熱性能の向上に与える影響及び圧力損失に与える影響を調べるため、以下の実験を行った。
Next, the corrugated heat transfer tube 31 will be described. As shown in FIG. 3, a corrugate 316 is formed on the inner surface of the corrugated heat transfer tube 31, and a plurality of protrusions 313 having a height of H1 are provided vertically symmetrically in the tube axis direction. In FIG. 3, only the protrusions 313 provided above as viewed from the paper surface direction are displayed. In this embodiment, the water temperature at the water inlet 311 of the heat transfer tube 31 is set to about 10 ° C., and the water temperature at the water outlet 312 is set to about 90 ° C. Here, the flow rate of water in the corrugated heat transfer tube is about 0.8 L / min. Moreover, it is preferable that the outer diameter of a corrugated heat exchanger tube is 8 mm-14 mm (inner diameter is 6 mm-12 mm).
The Reynolds number Re of the in-pipe flow of the corrugated heat transfer tube 31 is shown in FIG. As shown in FIG. 4, the Reynolds number Re at the water inlet 311 of the corrugated heat transfer tube 31 is about 2000, and the flow in the tube is a laminar flow region. As the water flow proceeds, the water flowing in from the inlet 311 exchanges heat with the refrigerant pipe 32 shown in FIG. As the water temperature rises, the viscosity coefficient of water decreases and the Reynolds number Re increases gradually. In FIG. 4, the Reynolds number Re at the water outlet 312 is about 7000, and the pipe flow is located in the transition region from laminar flow to turbulent flow. Here, the following experiment was conducted in order to investigate the influence of the plurality of protrusions 313 provided on the inner surface of the corrugated heat transfer tube 31 on the heat transfer performance and the pressure loss.

(1)実験1
図5(a)はコルゲート伝熱管31の断面斜視図である。実験1においては、内径Dが8mmの管内面に、深さがHmのコルゲート316に、高さがH1の突起を上下対称に設けている。図5(b)は、図5(a)のA−A矢視断面図であり、図5(c)は、図5(b)のB−B矢視断面図である。図5(a)及び図5(b)から分るように、突起313は伝熱管の外面を凹ませることによって内面に形成されるようになっている。また、図5(c)から分るように、突起313の横断面図の形状は楕円形になるように形成されている。ここで、コルゲート伝熱管31の内面には、突起が設けられていない平面部31aが存在する。
図6(a)は、管内の流れが層流域及び層流域から乱流域への遷移が発生する低レイノルズ数の区間の各レイノルズ数Reにおいて、突起を設けていないコルゲート管を採用した場合と、コルゲートの深さHm+突起の高さH1が1.2mmの場合の伝熱性能を表したものである。ここで、横軸はレイノルズ数Reの値を表している。縦軸は、突起313を設けたコルゲート伝熱管及び突起を設けていないコルゲート伝熱管のヌセルト数Nuと平滑管のNuoの比(Nu/Nuo)を表している。ここで、ヌセルト数は、固体壁から流体への熱の伝わりやすさの指標としての熱伝達率値を無次元化したものであり、その値が大きいほど、固体壁から流体へ熱が伝わりやすくなる。従って、Nu/Nuoの値が大きいほど、突起及びコルゲートによる伝熱管の伝熱性能の向上が大きい。実線は突起313を設けたコルゲート伝熱管、点線は突起を設けていないコルゲート伝熱管である場合の実験結果を表わしている。図6(a)から分るように、突起を設けていないコルゲート伝熱管の伝熱性能はレイノルズ数と関係なく平滑管の3倍ぐらいである。一方、突起の高さH1が1.2mmの突起313を設けたコルゲート伝熱管の場合、レイノルズ数Reが4000以下の状態で、管内に設けた突起313による伝熱性能の向上は明らかである。一方、レイノルズ数Reが4000以上の場合、管内に設けた突起313による伝熱性能の向上は緩やかである。
(1) Experiment 1
FIG. 5A is a cross-sectional perspective view of the corrugated heat transfer tube 31. In Experiment 1, a corrugation 316 having a depth of Hm and a protrusion having a height of H1 are provided vertically symmetrically on the inner surface of a tube having an inner diameter D of 8 mm. 5B is a cross-sectional view taken along the line AA in FIG. 5A, and FIG. 5C is a cross-sectional view taken along the line BB in FIG. 5B. As can be seen from FIGS. 5A and 5B, the protrusion 313 is formed on the inner surface by denting the outer surface of the heat transfer tube. Further, as can be seen from FIG. 5C, the shape of the cross-sectional view of the protrusion 313 is formed to be elliptical. Here, on the inner surface of the corrugated heat transfer tube 31, there is a flat portion 31a on which no protrusion is provided.
FIG. 6 (a) shows a case where a corrugated pipe without projections is adopted in each Reynolds number Re in a low Reynolds number section where the flow in the pipe undergoes a transition from a laminar flow region and a laminar flow region to a turbulent flow region. This shows the heat transfer performance when the corrugation depth Hm + projection height H1 is 1.2 mm. Here, the horizontal axis represents the value of the Reynolds number Re. The vertical axis represents the ratio (Nu / Nuo) between the Nusselt number Nu of the corrugated heat transfer tube with the protrusion 313 and the corrugated heat transfer tube without the protrusion and the smooth tube Nuo. Here, the Nusselt number is a dimensionless heat transfer coefficient value as an index of heat transfer from the solid wall to the fluid. The larger the value, the easier the heat is transferred from the solid wall to the fluid. Become. Therefore, the larger the value of Nu / Nuo, the greater the improvement in the heat transfer performance of the heat transfer tube by the protrusions and corrugates. The solid line represents the experimental result when the corrugated heat transfer tube provided with the protrusion 313 and the dotted line represents the corrugated heat transfer tube without the protrusion. As can be seen from FIG. 6 (a), the heat transfer performance of the corrugated heat transfer tube provided with no protrusion is about three times that of the smooth tube regardless of the Reynolds number. On the other hand, in the case of a corrugated heat transfer tube provided with a protrusion 313 having a protrusion height H1 of 1.2 mm, the heat transfer performance is clearly improved by the protrusion 313 provided in the tube when the Reynolds number Re is 4000 or less. On the other hand, when the Reynolds number Re is 4000 or more, the improvement in heat transfer performance by the protrusions 313 provided in the pipe is moderate.

図6(b)は、管内の流れが、層流域及び層流域から乱流域への遷移が発生する低レイノルズ数の区間の各レイノルズ数Reにおいて、突起を設けていないコルゲート管を採用した場合と、コルゲートの深さHm+突起の高さH1が1.2mmの場合のコルゲート伝熱管31を採用した場合の管内圧力損失の推移を表したものである。ここで、横軸はレイノルズ数Reの値を表している。縦軸は、突起313を設けたコルゲート伝熱管及び突起を設けていないコルゲート管のファニングの摩擦係数fと平滑管のファニングの摩擦係数foとの比(f/fo)を表している。ここで、ファニングの摩擦係数は、管内流れの圧力損失を表す無次元数であり、その値が大きいほど、管内流れの圧力損失は大きくなる。したがって、f/foの値が大きいほど、管内の水圧損失は大きくなる。実線は突起313を設けたコルゲート伝熱管、点線は突起を設けていないコルゲート伝熱管である場合の実験結果を表わしている。図6(b)から分るように、レイノルズ数Reが7000以下である場合、管内面に設けた突起313による管内圧力損失の増加部分は、ほぼ一定している。   FIG. 6 (b) shows a case where a corrugated pipe without projections is employed in each Reynolds number Re in a laminar flow region and a low Reynolds number section where a transition from a laminar flow region to a turbulent flow region occurs. 6 shows the transition of the pressure loss in the tube when the corrugated heat transfer tube 31 is employed when the corrugation depth Hm + the projection height H1 is 1.2 mm. Here, the horizontal axis represents the value of the Reynolds number Re. The vertical axis represents the ratio (f / fo) between the fanning friction coefficient f of the corrugated heat transfer tube provided with the protrusion 313 and the corrugated pipe not provided with the protrusion and the fanning friction coefficient fo of the smooth tube. Here, the friction coefficient of fanning is a dimensionless number representing the pressure loss of the pipe flow, and the larger the value, the larger the pressure loss of the pipe flow. Therefore, the greater the value of f / fo, the greater the water pressure loss in the pipe. The solid line represents the experimental result when the corrugated heat transfer tube provided with the protrusion 313 and the dotted line represents the corrugated heat transfer tube without the protrusion. As can be seen from FIG. 6B, when the Reynolds number Re is 7000 or less, the increased portion of the in-tube pressure loss due to the protrusion 313 provided on the inner surface of the tube is substantially constant.

(2)実験2
実験2においては、突起313の高さH1が伝熱性能及び管内流れの圧力損失に与える影響を調べるため、管内面に設けた突起313の高さH1を変更させながら実験を行った。図7(a)は、内径Dが8mmのコルゲート伝熱管に、高さH1が異なる突起を、管軸方向のピッチPが15mmになるように上下対称に設けた場合の伝熱性能を表したものである。ここで、横軸は突起313の高さH1の値を表している。縦軸は、突起313を設けたコルゲート伝熱管31のヌセルト数Nuと突起を設けていない平滑管のヌセルト数Nuoとの比(Nu/Nuo)を表している。実線はレイノルズ数Reが4000である場合、点線はレイノルズ数Reが2000である場合の実験結果を表わしている。図7(a)から分るように、レイノルズ数Reが4000及び2000の場合ともに、突起313の高さH1が高くなるほど伝熱性能は向上する。
(2) Experiment 2
In Experiment 2, in order to investigate the effect of the height H1 of the protrusion 313 on the heat transfer performance and the pressure loss of the flow in the pipe, the experiment was performed while changing the height H1 of the protrusion 313 provided on the inner surface of the pipe. FIG. 7A shows the heat transfer performance when a corrugated heat transfer tube having an inner diameter D of 8 mm is provided with protrusions having different heights H1 symmetrically so that the pitch P in the tube axis direction is 15 mm. Is. Here, the horizontal axis represents the value of the height H1 of the protrusion 313. The vertical axis represents the ratio (Nu / Nuo) between the Nusselt number Nu of the corrugated heat transfer tube 31 provided with the projection 313 and the Nusselt number Nuo of the smooth tube not provided with the projection. The solid line represents the experimental result when the Reynolds number Re is 4000, and the dotted line represents the experimental result when the Reynolds number Re is 2000. As can be seen from FIG. 7A, the heat transfer performance improves as the height H1 of the protrusion 313 increases in both cases where the Reynolds number Re is 4000 and 2000.

図7(b)は、管内圧力損失の推移を表したものである。ここで、横軸は突起313の高さH1の値を表している。縦軸は、突起313を設けたコルゲート伝熱管31のファニングの摩擦係数fと突起を設けていない平滑管のファニングの摩擦係数foとの比(f/fo)を表している。実線はレイノルズ数Reが4000である場合、点線はレイノルズ数Reが2000である場合の実験結果を表わしている。図7(b)から分るように、レイノルズ数Reが4000及び2000の場合ともに、突起313の高さH1が高くなるほど管内圧力損失は大きくなる。特に、H1が1.0以上の場合、管内圧力損失の増加が顕著になっている。
図7(c)は、内径Dが8mmのコルゲート伝熱管に、高さH1が異なる突起を15mm(管軸方向)ピッチで上下対称に設けた場合の伝熱管全体の性能を表したものである。すなわち、伝熱性能の向上と圧力損失の抑制を総合的に考慮した性能を表す。ここで、横軸は突起の高さの値を表している。縦軸は、突起を設けたコルゲート伝熱管のヌセルト数Nuと突起を設けていない平滑管のヌセルト数Nuoとの比(Nu/Nuo)を、突起を設けた伝熱管のファニングの摩擦係数fと突起を設けていない平滑管のファニングの摩擦係数foとの比(f/fo)で割った値を表している。上述したように、Nu/Nuoの値が大きいほど伝熱性能が向上され、f/foの値が大きいほど管内の水圧損は大きくなる。したがって、Nu/Nuoの値をf/foの値で割った値が大きいほど、伝熱性能の向上が図れるとともに、突起が管内の圧力損失に与える影響が抑えられ、伝熱管全体の性能が向上したこととなる。
FIG. 7B shows the transition of the pressure loss in the pipe. Here, the horizontal axis represents the value of the height H1 of the protrusion 313. The vertical axis represents the ratio (f / fo) between the fanning friction coefficient f of the corrugated heat transfer tube 31 provided with the projection 313 and the fanning friction coefficient fo of the smooth tube not provided with the projection. The solid line represents the experimental result when the Reynolds number Re is 4000, and the dotted line represents the experimental result when the Reynolds number Re is 2000. As can be seen from FIG. 7B, in both the Reynolds number Re of 4000 and 2000, the pressure loss in the pipe increases as the height H1 of the protrusion 313 increases. In particular, when H1 is 1.0 or more, the increase in the pressure loss in the tube is remarkable.
FIG. 7C shows the performance of the entire heat transfer tube when the corrugated heat transfer tube having an inner diameter D of 8 mm is provided with protrusions having different heights H1 vertically symmetrical at a pitch of 15 mm (tube axis direction). . That is, it represents performance that comprehensively considers improvement in heat transfer performance and suppression of pressure loss. Here, the horizontal axis represents the height value of the protrusion. The vertical axis represents the ratio (Nu / Nuo) between the Nusselt number Nu of the corrugated heat transfer tube provided with the protrusion and the Nusselt number Nuo of the smooth tube not provided with the protrusion, and the friction coefficient f of the fanning of the heat transfer tube provided with the protrusion. It represents the value divided by the ratio (f / fo) to the friction coefficient fo of the fanning of a smooth tube without projections. As described above, the heat transfer performance is improved as the value of Nu / Nuo is increased, and the water pressure loss in the pipe is increased as the value of f / fo is increased. Therefore, as the value obtained by dividing the Nu / Nuo value by the f / fo value is larger, the heat transfer performance can be improved, and the influence of the protrusion on the pressure loss in the pipe can be suppressed, and the performance of the entire heat transfer pipe is improved. It will be done.

図7(c)において、実線はレイノルズ数Reが4000である場合、点線はレイノルズ数Reが2000である場合の実験結果を表わしている。図7(c)から分るように、レイノルズ数Reが2000で、伝熱管内に設けられた突起の高さが0.79mmである場合、Nu/Nuoの値をf/foの値で割った値が一番大きく、突起の高さが2.0mmを超えるとその値は顕著に小さくなる。すなわち、低レイノルズ数区間では、突起の高さが0.5mm〜1.5mmの範囲内である場合、伝熱管全体の性能向上が図れる。特に、突起の高さが0.5mm〜0.79mmの範囲内であることが好ましい。
(3)実験3
実験3においては、突起313の高さH1をそのまま指標とするのではなく、相対粗度(H1/D)を指標としている。この相対粗度(H1/D)が伝熱性能及び管内流れの圧力損失に与える影響を調べるため、相対粗度(H1/D)を変更させながら実験を行った。図8(a)は、レイノルズ数Reが2000である状態及び4000である状態で、相対粗度(H1/D)が異なる場合のコルゲート伝熱管の伝熱性能を表したものである。ここで、横軸は相対粗度(H1/D)の値を表している。縦軸は、突起313を設けたコルゲート伝熱管31のヌセルト数Nuと突起を設けていない平滑管のヌセルト数Nuoとの比(Nu/Nuo)を表している。図8(a)から分るように、突起の相対粗度(H1/D)の値が大きいほど伝熱性能は向上する。また、図8(a)の点線から分るように、レイノルズ数2000の状態では、相対粗度(H1/D)の値が0.1以下では突起による伝熱性能の向上は小さい。
In FIG. 7C, the solid line represents the experimental result when the Reynolds number Re is 4000, and the dotted line represents the experimental result when the Reynolds number Re is 2000. As can be seen from FIG. 7C, when the Reynolds number Re is 2000 and the height of the protrusion provided in the heat transfer tube is 0.79 mm, the value of Nu / Nuo is divided by the value of f / fo. When the height of the protrusion exceeds 2.0 mm, the value is significantly reduced. That is, in the low Reynolds number section, when the height of the protrusion is in the range of 0.5 mm to 1.5 mm, the performance of the entire heat transfer tube can be improved. In particular, the height of the protrusion is preferably in the range of 0.5 mm to 0.79 mm.
(3) Experiment 3
In Experiment 3, the height H1 of the protrusion 313 is not used as an index, but the relative roughness (H1 / D) is used as an index. In order to investigate the influence of this relative roughness (H1 / D) on the heat transfer performance and the pressure loss of the flow in the pipe, an experiment was conducted while changing the relative roughness (H1 / D). FIG. 8A shows the heat transfer performance of the corrugated heat transfer tube when the relative roughness (H1 / D) is different in a state where the Reynolds number Re is 2000 and a state where the Reynolds number Re is 4000. Here, the horizontal axis represents the value of relative roughness (H1 / D). The vertical axis represents the ratio (Nu / Nuo) between the Nusselt number Nu of the corrugated heat transfer tube 31 provided with the projection 313 and the Nusselt number Nuo of the smooth tube not provided with the projection. As can be seen from FIG. 8A, the heat transfer performance improves as the value of the relative roughness (H1 / D) of the protrusion increases. Further, as can be seen from the dotted line in FIG. 8A, in the state where the Reynolds number is 2000, when the value of the relative roughness (H1 / D) is 0.1 or less, the improvement of the heat transfer performance by the protrusion is small.

図8(b)は、管内圧力損失の推移を表したものである。ここで、横軸は相対粗度(H1/D)の値を表している。縦軸は、突起313を設けたコルゲート伝熱管31のファニングの摩擦係数fと突起を設けていない平滑管のファニングの摩擦係数foとの比(f/fo)を表している。実線はレイノルズ数Reが4000である場合、点線はレイノルズ数Reが2000である場合の実験結果を表わしている。図8(b)から分るように、レイノルズ数Reが4000及び2000の場合ともに、突起313の高さH1/Dが高くなるほど管内圧力損失は大きくなる。特に、H1/Dが0.12以上の場合、管内圧力損失の増加が顕著になっている。
図8(c)は、突起の相対粗度(H1/D)が異なる場合のコルゲート伝達管全体の性能を表したものである。ここで、横軸は相対粗度(H1/D)の値を表している。縦軸は、突起を設けた伝熱管のヌセルト数Nuと突起を設けていない平滑管のヌセルト数Nuoとの比(Nu/Nuo)を、突起を設けたコルゲート伝熱管のファニングの摩擦係数fと突起を設けていない平滑管のファニングの摩擦係数foとの比(f/fo)で割った値を表している。上述したように、Nu/Nuoの値が大きいほど伝熱性能が向上され、f/foの値が大きいほど管内の水圧損は大きくなる。したがって、Nu/Nuoの値をf/foの値で割った値が大きいほど、熱伝達率の向上を図るとともに、突起が管内の圧力損失に与える影響を抑え、コルゲート伝熱管全体の性能が向上したこととなる。図8(c)から分るように、レイノルズ数Reが2000の場合、コルゲート伝熱管内に設けられた突起の相対粗度(H1/D)が0.1である場合、Nu/Nuoの値をf/foの値で割った値が一番大きく、突起の相対粗度(H1/D)が0.20を超えるとその値は顕著に小さくなる。すなわち、低レイノルズ数Reの区間では、突起の相対粗度(H1/D)が0.05〜0.15の範囲内である場合は、伝熱管全体の性能向上が図れる。特に、突起の相対粗度(H1/D)が0.05〜0.15の範囲内であることが好ましい。
FIG. 8B shows the transition of the pressure loss in the pipe. Here, the horizontal axis represents the value of relative roughness (H1 / D). The vertical axis represents the ratio (f / fo) between the fanning friction coefficient f of the corrugated heat transfer tube 31 provided with the projection 313 and the fanning friction coefficient fo of the smooth tube not provided with the projection. The solid line represents the experimental result when the Reynolds number Re is 4000, and the dotted line represents the experimental result when the Reynolds number Re is 2000. As can be seen from FIG. 8B, in both the Reynolds number Re of 4000 and 2000, the in-tube pressure loss increases as the height H1 / D of the protrusion 313 increases. In particular, when H1 / D is 0.12 or more, the increase in pressure loss in the tube is remarkable.
FIG. 8C shows the performance of the entire corrugated transmission tube when the relative roughness (H1 / D) of the protrusions is different. Here, the horizontal axis represents the value of relative roughness (H1 / D). The vertical axis shows the ratio (Nu / Nuo) between the Nusselt number Nu of the heat transfer tube provided with the projection and the Nusselt number Nuo of the smooth tube not provided with the projection, and the friction coefficient f of the fanning of the corrugated heat transfer tube provided with the projection. It represents the value divided by the ratio (f / fo) to the friction coefficient fo of the fanning of a smooth tube without projections. As described above, the heat transfer performance is improved as the value of Nu / Nuo is increased, and the water pressure loss in the pipe is increased as the value of f / fo is increased. Therefore, the larger the value obtained by dividing the Nu / Nuo value by the f / fo value, the more the heat transfer coefficient is improved and the influence of the protrusions on the pressure loss in the tube is suppressed, and the performance of the entire corrugated heat transfer tube is improved. It will be done. As can be seen from FIG. 8C, when the Reynolds number Re is 2000, when the relative roughness (H1 / D) of the protrusion provided in the corrugated heat transfer tube is 0.1, the value of Nu / Nuo Is the largest value divided by the value of f / fo, and when the relative roughness (H1 / D) of the protrusion exceeds 0.20, the value becomes remarkably small. That is, in the section of the low Reynolds number Re, when the relative roughness (H1 / D) of the protrusion is in the range of 0.05 to 0.15, the performance of the entire heat transfer tube can be improved. In particular, the relative roughness (H1 / D) of the protrusion is preferably in the range of 0.05 to 0.15.

(4)実験4
実験4においては、突起313の高さH1の指標だけでなく、突起313の高さH1とコルゲート溝の深さHmとの比(H1/Hm)を指標としている。この相対高さ(H1/Hm)が伝熱性能及び管内流れの圧力損失に与える影響を調べるため、相対高さ(H1/Hm)を変更させながら実験を行った。図9(a)は、レイノルズ数Reが2000である状態及び4000である状態で、相対高さ(H1/Hm)が異なる場合の伝熱性能を表したものである。ここで、横軸は相対高さ(H1/Hm)の値を表している。縦軸は、突起313を設けたコルゲート伝熱管31のヌセルト数Nuと突起を設けていない平滑管のヌセルト数Nuoとの比(Nu/Nuo)を表している。図9(a)から分るように、突起の相対高さ(H1/Hm)の値が大きいほど伝熱性能は向上する。また、図9(a)の点線から分るように、レイノルズ数2000の状態では、相対粗度(H1/Hm)の値が0.5以下では突起による伝熱性能の向上は小さい。
(4) Experiment 4
In Experiment 4, not only the index of the height H1 of the protrusion 313 but also the ratio (H1 / Hm) between the height H1 of the protrusion 313 and the depth Hm of the corrugated groove is used as an index. In order to investigate the influence of the relative height (H1 / Hm) on the heat transfer performance and the pressure loss of the flow in the pipe, an experiment was conducted while changing the relative height (H1 / Hm). FIG. 9A shows the heat transfer performance when the Reynolds number Re is 2000 and 4000 and the relative heights (H1 / Hm) are different. Here, the horizontal axis represents the value of the relative height (H1 / Hm). The vertical axis represents the ratio (Nu / Nuo) between the Nusselt number Nu of the corrugated heat transfer tube 31 provided with the projection 313 and the Nusselt number Nuo of the smooth tube not provided with the projection. As can be seen from FIG. 9A, the heat transfer performance improves as the value of the relative height (H1 / Hm) of the protrusion increases. Further, as can be seen from the dotted line in FIG. 9A, in the state where the Reynolds number is 2000, when the value of the relative roughness (H1 / Hm) is 0.5 or less, the improvement of the heat transfer performance by the protrusion is small.

図9(b)は、管内圧力損失の推移を表したものである。ここで、横軸は相対高さ(H1/Hm)の値を表している。縦軸は、突起313を設けたコルゲート伝熱管31のファニングの摩擦係数fと突起を設けていない平滑管のファニングの摩擦係数foとの比(f/fo)を表している。実線はレイノルズ数Reが4000である場合、点線はレイノルズ数Reが2000である場合の実験結果を表わしている。図8(b)から分るように、レイノルズ数Reが2000の場合、突起313の高さ相対高さ(H1/Hm)が高くなるほど管内圧力損失は大きくなる。特に、H1/Hmが1.8以上の場合、管内圧力損失の増加が顕著になっている。
図9(c)は、突起の相対高さ(H1/Hm)が異なる場合の伝達管全体の性能を表したものである。ここで、横軸は相対高さ(H1/Hm)の値を表している。縦軸は、突起を設けた伝熱管のヌセルト数Nuと突起を設けていない平滑管のヌセルト数Nuoとの比(Nu/Nuo)を、突起を設けた伝熱管のファニングの摩擦係数fと突起を設けていない平滑管のファニングの摩擦係数foとの比(f/fo)で割った値を表している。図9(c)から分るように、レイノルズ数Reが2000で、伝熱管内に設けられた突起の相対高さ(H1/Hm)が1.8である場合、Nu/Nuoの値をf/foの値で割った値が一番大きく、突起の相対高さ(H1/Hm)が3.0を超えるとその値は顕著に小さくなる。すなわち、低レイノルズ数Reの区間では、突起の相対高さ(H1/Hm)が1.0〜3.0の範囲内である場合は、伝熱管全体の性能向上が図れる。特に、突起の相対高さ(H1/Hm)が1.0〜2.0の範囲内であることが好ましい。
FIG. 9B shows the transition of the pressure loss in the pipe. Here, the horizontal axis represents the value of the relative height (H1 / Hm). The vertical axis represents the ratio (f / fo) between the fanning friction coefficient f of the corrugated heat transfer tube 31 provided with the projection 313 and the fanning friction coefficient fo of the smooth tube not provided with the projection. The solid line represents the experimental result when the Reynolds number Re is 4000, and the dotted line represents the experimental result when the Reynolds number Re is 2000. As can be seen from FIG. 8B, when the Reynolds number Re is 2000, the pressure loss in the pipe increases as the height relative height (H1 / Hm) of the protrusion 313 increases. In particular, when H1 / Hm is 1.8 or more, the increase in pressure loss in the tube is remarkable.
FIG. 9C shows the performance of the entire transmission tube when the relative heights (H1 / Hm) of the protrusions are different. Here, the horizontal axis represents the value of the relative height (H1 / Hm). The vertical axis shows the ratio (Nu / Nuo) between the Nusselt number Nu of the heat transfer tube with projections and the Nusselt number Nuo of the smooth tube without projections, and the friction coefficient f of the fanning of the heat transfer tubes with projections and the projections. Represents the value divided by the ratio (f / fo) to the friction coefficient fo of the fanning of the smooth tube not provided with. As can be seen from FIG. 9C, when the Reynolds number Re is 2000 and the relative height (H1 / Hm) of the projection provided in the heat transfer tube is 1.8, the value of Nu / Nuo is f. The value divided by the value of / fo is the largest, and when the relative height (H1 / Hm) of the protrusion exceeds 3.0, the value becomes remarkably small. That is, when the relative height (H1 / Hm) of the protrusions is in the range of 1.0 to 3.0 in the section of the low Reynolds number Re, the performance of the entire heat transfer tube can be improved. In particular, the relative height (H1 / Hm) of the protrusions is preferably in the range of 1.0 to 2.0.

本発明に係る給湯用コルゲート伝熱管の異なる構造については、下記の実施例でさらに説明する(下記の実施例における内径D、コルゲート溝の深さHm、突起の高さH1,H2、ピッチ及び溝の深さなどの値は単に例示したものであり、実施例において特許請求の範囲に記載された各パラメータの数値範囲及び上記各実験で用いた値を用いることも可能である。)
<実施例1>
図10では、実施例1で使用したコルゲート伝熱管41の構造を示している。図10(a)で示すように、内径Dが8mmの平滑管に、溝の深さHmが0.5mm、管軸方向のピッチPmが10mmのコルゲート溝416が形成されている。図10(b)で示すように、高さH1が1mmの突起43を、管軸方向のピッチPが15mmになるように上下対称に設けている。ここでは、複数の突起のピッチ(P1)とコルゲートのピッチ(Pm)の値が異なる値にすることで、突起413がコルゲート溝416と重ならない位置に設けられることとなり、管内における圧力損失の急増を抑えることができる。
Different structures of the corrugated heat transfer tube for hot water supply according to the present invention will be further described in the following embodiments (inner diameter D, corrugated groove depth Hm, protrusion heights H1, H2, pitch and groove in the following embodiments) The values such as the depth are merely examples, and the numerical ranges of the respective parameters described in the claims in the examples and the values used in the above experiments can also be used.)
<Example 1>
FIG. 10 shows the structure of the corrugated heat transfer tube 41 used in the first embodiment. As shown in FIG. 10A, a corrugated groove 416 having a groove depth Hm of 0.5 mm and a tube axis direction pitch Pm of 10 mm is formed in a smooth tube having an inner diameter D of 8 mm. As shown in FIG. 10B, the protrusions 43 having a height H1 of 1 mm are provided vertically symmetrically so that the pitch P in the tube axis direction is 15 mm. Here, by setting different values for the pitch (P1) of the plurality of protrusions and the pitch (Pm) of the corrugation, the protrusion 413 is provided at a position where it does not overlap the corrugated groove 416, and the pressure loss in the pipe increases rapidly. Can be suppressed.

<実施例2>
実施例2のコルゲート伝熱管51では、図11で示すように、コルゲート溝516が設けられており、高さH1が1.0mmの突起513の間には、高さH2が0.3mmの小突起515を設けている。低レイノルズ数域においては、小さい突起より大きい突起の方が熱伝達率の向上に貢献するが、高レイノルズ数域においては、大きい突起より小さい突起の方が熱伝達率の向上に貢献する。そこで、高さH1が1.0mmの突起513の間に、高さH2が0.3mmの小突起515を設けることにより、レイノルズ数が低い区間ではコルゲート溝516と突起513により伝熱性能が向上され、レイノルズ数が高い区間ではコルゲート溝516と小突起515による伝熱性能の向上の相乗効果が図られることにより、熱交換器全体の性能が向上する。
<Example 2>
In the corrugated heat transfer tube 51 of the second embodiment, as shown in FIG. 11, a corrugated groove 516 is provided, and a height H2 is a small 0.3 mm between the protrusions 513 having a height H1 of 1.0 mm. A protrusion 515 is provided. In the low Reynolds number region, the protrusion larger than the small protrusion contributes to the improvement of the heat transfer coefficient. However, in the high Reynolds number area, the protrusion smaller than the large protrusion contributes to the improvement of the heat transfer coefficient. Therefore, by providing a small protrusion 515 having a height H2 of 0.3 mm between the protrusions 513 having a height H1 of 1.0 mm, the heat transfer performance is improved by the corrugated grooves 516 and the protrusions 513 in a section where the Reynolds number is low. In the section where the Reynolds number is high, the synergistic effect of improving the heat transfer performance by the corrugated grooves 516 and the small protrusions 515 is achieved, thereby improving the performance of the entire heat exchanger.

<実施例3>
図12に示すように、実施例3で採用したコルゲート伝熱管61は、管内面上螺旋C1に沿って突起613を設けている。図12(a)は、コルゲート伝熱管61の平面図であり、図12(b)はコルゲート伝熱管61の斜視図である。ここで、突起613の高さH1は1.0mm、円周方向のピッチP1は6mm、管軸方向のピッチP2は6mmである。
<実施例4>
図13に示すように、実施例4で採用したコルゲート伝熱管63は、深さが0.5mmのコルゲート溝636が設けられた伝熱管に、突起633が設けられている区間63aと、突起が設けられていない区間63bを有する。ここで、突起が設けられていない区間63bは、水の流出口632近傍に位置する区間である。伝熱管63の流出口632近傍では、流体である水の温度が高く、管壁にスケールが付着するおそれがある。このような区間に突起部を設けた場合、スケールの付着が促進される場合がある。そこで、水温が高い水流出口632近傍に位置する区間63bには、突起を設けらないことにより、スケールの発生が抑えられる。
<Example 3>
As shown in FIG. 12, the corrugated heat transfer tube 61 employed in Example 3 is provided with a protrusion 613 along the spiral C1 on the inner surface of the tube. FIG. 12A is a plan view of the corrugated heat transfer tube 61, and FIG. 12B is a perspective view of the corrugated heat transfer tube 61. Here, the height H1 of the protrusion 613 is 1.0 mm, the pitch P1 in the circumferential direction is 6 mm, and the pitch P2 in the tube axis direction is 6 mm.
<Example 4>
As shown in FIG. 13, the corrugated heat transfer tube 63 employed in Example 4 has a section 63a in which a protrusion 633 is provided in a heat transfer tube in which a corrugated groove 636 having a depth of 0.5 mm is provided, and the protrusion is The section 63b is not provided. Here, the section 63 b where no protrusion is provided is a section located in the vicinity of the water outlet 632. In the vicinity of the outlet 632 of the heat transfer tube 63, the temperature of water, which is a fluid, is high, and there is a possibility that the scale adheres to the tube wall. When a projection is provided in such a section, scale adhesion may be promoted. Therefore, the generation of scale can be suppressed by providing no projections in the section 63b located near the water outlet 632 having a high water temperature.

<実施例5>
図14に示すように、実施例5で採用したコルゲート伝熱管64は、深さが0.5mmのコルゲート溝646と深さと0.2mmの溝644とが設けられた溝付き管に、高さH1が1.0mmの突起643を、管軸方向のピッチPが15mmになるように上下対称に設けている。ここで、コルゲート溝646は実線、溝644は細い実線で表わしている。ここでは、溝644が設けられている管に突起643を設けることで、コルゲート溝646、溝644と突起643による伝熱管全体の相乗効果が計られる。
<実施例6>
図15に示すように、実施例6で採用したコルゲート伝熱管65は、区間65a、区間65bより構成されている。水流出口652の近傍に位置する区間65bには突起を設けていないコルゲート伝熱管を採用し、その他の区間65aには、深さが0.5mmのコルゲート溝656と深さが0.2mmの溝654が設けられた溝付き管に高さが1.0mmの突起653を設けている。コルゲート溝656は実線、溝654は細い実線で表わしている。コルゲート溝656、溝654と突起653による伝熱管全体の相乗効果が計られるとともに、水温が高い水流出口652近傍に位置する区間65bにおけるスケールの発生が抑えられる。
<Example 5>
As shown in FIG. 14, the corrugated heat transfer tube 64 employed in Example 5 has a height of a grooved tube provided with a corrugated groove 646 having a depth of 0.5 mm and a groove 644 having a depth of 0.2 mm. The protrusions 643 with H1 of 1.0 mm are provided vertically symmetrically so that the pitch P in the tube axis direction is 15 mm. Here, the corrugated groove 646 is represented by a solid line, and the groove 644 is represented by a thin solid line. Here, by providing the protrusion 643 on the pipe in which the groove 644 is provided, the synergistic effect of the entire heat transfer tube by the corrugated groove 646, the groove 644, and the protrusion 643 is measured.
<Example 6>
As shown in FIG. 15, the corrugated heat transfer tube 65 employed in the sixth embodiment is composed of a section 65a and a section 65b. A corrugated heat transfer tube having no protrusion is employed in the section 65b located in the vicinity of the water outlet 652, and a corrugated groove 656 having a depth of 0.5 mm and a groove having a depth of 0.2 mm are used in the other section 65a. The grooved tube provided with 654 is provided with a protrusion 653 having a height of 1.0 mm. The corrugated groove 656 is represented by a solid line, and the groove 654 is represented by a thin solid line. The synergistic effect of the entire heat transfer tube by the corrugated groove 656, the groove 654, and the protrusion 653 is measured, and the generation of scale in the section 65b located near the water outlet 652 where the water temperature is high is suppressed.

<実施例7>
図16に示すように、実施例7で採用したコルゲート伝熱管66は、区間66a、区間66b,区間66cの3区間から構成されている。水流入口661から管内のレイノルズ数Reが4000までの区間66aには、深さが0.5mmのコルゲート溝666と深さが0.2mmの溝664が設けられた溝付き管に高さが1.0mmの突起663を設けたものを採用し、水流出口662の近傍に位置する区間66cには深さが0.5mmのコルゲート溝666付きのコルゲート管を採用し、区間66aと区間66cとの間には深さが0.5mmのコルゲート溝と664の深さが0.2mmの溝付き管66bを採用している。ここで、コルゲート溝666は実線、溝664は細い実線で表わしている。ここでは、レイノルズ数が低い区間では突起663と溝664とコルゲート溝666とにより伝熱性能が向上され、レイノルズ数が高い区間では溝664とコルゲート溝666による伝熱性能の向上の相乗効果が図られることにより、熱交換器全体の性能が向上する。また、水温が高い水流出口662近傍に位置する区間66cにおいてはコルゲート溝666によるスケールの発生が抑えられる。
<Example 7>
As shown in FIG. 16, the corrugated heat transfer tube 66 employed in the seventh embodiment includes three sections, a section 66a, a section 66b, and a section 66c. In the section 66a from the water inlet 661 to the Reynolds number Re of 4000 in the pipe, the height of the grooved pipe provided with the corrugated groove 666 having a depth of 0.5 mm and the groove 664 having a depth of 0.2 mm is 1. A corrugated pipe with a corrugated groove 666 having a depth of 0.5 mm is used for the section 66c located near the water outlet 662, and a section provided with a 0.0mm projection 663 is used. A corrugated groove having a depth of 0.5 mm and a grooved tube 66b having a depth of 664 of 0.2 mm are employed between them. Here, the corrugated groove 666 is represented by a solid line, and the groove 664 is represented by a thin solid line. Here, in the section where the Reynolds number is low, the heat transfer performance is improved by the protrusion 663, the groove 664, and the corrugated groove 666, and in the section where the Reynolds number is high, the synergistic effect of improving the heat transfer performance by the groove 664 and the corrugated groove 666 is shown. As a result, the performance of the entire heat exchanger is improved. Further, in the section 66c located near the water outlet 662 where the water temperature is high, the generation of scale due to the corrugated groove 666 is suppressed.

<実施例8>
図17に示すように、実施例8で採用した伝熱管67は、区間67a、区間67b,区間67cの3区間から構成されている。水流入口671から管内のレイノルズ数Reが4000までの区間67aには、深さが0.5mmのコルゲート溝666と高さが1.0mmの突起673を設けたものを採用し、水流出口672の近傍に位置する区間67cには深さが0.5mmのコルゲート溝676を有するコルゲート伝熱管を採用し、区間67aと区間67cとの間には深さが0.5mmのコルゲート溝676と、溝674の深さが0.2mmの溝付き管67bを採用している。ここで、コルゲート溝676は実線、溝674は細い実線で表わしている。ここでは、レイノルズ数が低い区間ではコルゲート溝676と突起673により伝熱性能が向上され、レイノルズ数が高い区間ではコルゲート溝676と溝674による伝熱性能の向上の相乗効果が図られることにより、熱交換器全体の性能が向上する。また、水温が高い水流出口672近傍に位置する区間67cにおいてはコルゲート溝676によりスケールの発生が抑えられる。
<Example 8>
As shown in FIG. 17, the heat transfer tube 67 employed in Example 8 is composed of three sections, a section 67a, a section 67b, and a section 67c. In the section 67a from the water inlet 671 to the Reynolds number Re in the pipe of 4000, a corrugated groove 666 having a depth of 0.5 mm and a protrusion 673 having a height of 1.0 mm are used. A corrugated heat transfer tube having a corrugated groove 676 having a depth of 0.5 mm is adopted for the section 67c located in the vicinity, and a corrugated groove 676 having a depth of 0.5 mm is provided between the section 67a and the section 67c. A grooved tube 67b having a depth of 674 of 0.2 mm is employed. Here, the corrugated groove 676 is represented by a solid line, and the groove 674 is represented by a thin solid line. Here, in the section where the Reynolds number is low, the heat transfer performance is improved by the corrugated groove 676 and the protrusion 673, and in the section where the Reynolds number is high, a synergistic effect of improving the heat transfer performance by the corrugated groove 676 and the groove 674 is achieved. The overall performance of the heat exchanger is improved. Further, in the section 67 c located near the water outlet 672 where the water temperature is high, the generation of scale is suppressed by the corrugated groove 676.

<実施例9>
図18に示すように、実施例9で採用したコルゲート伝熱管68は、直線部684には突起683を設けているが、曲げ部B1〜B7(点線部分)には突起を設けていない。曲げ部B1〜B7の内面に突起を設けることによる管内圧力損失の増大を回避し、また曲げ作業過程における大きな変形、破損などの発生を回避できる。
<実施例10>
図19(a)は、実施例10で採用したコルゲート伝熱管69の平面図を示したものであり、図19(b)は、伝熱管69の斜視図を示したものである。ここで、直線部694には突起693が設けられているが、曲げ部C−Cにおいて、曲げられている面S1と交差する区間695には突起を設けていない。
<Example 9>
As shown in FIG. 18, in the corrugated heat transfer tube 68 employed in Example 9, the straight portion 684 is provided with the protrusion 683, but the bent portions B1 to B7 (dotted line portions) are not provided with the protrusion. It is possible to avoid an increase in in-tube pressure loss due to the provision of protrusions on the inner surfaces of the bent portions B1 to B7, and to avoid the occurrence of large deformation and breakage in the bending work process.
<Example 10>
FIG. 19A shows a plan view of the corrugated heat transfer tube 69 employed in Example 10, and FIG. 19B shows a perspective view of the heat transfer tube 69. Here, although the protrusion 693 is provided in the straight part 694, no protrusion is provided in the section 695 intersecting the bent surface S1 in the bent part CC.

<実施例11>
図20に示すように、実施例11で採用したコルゲート伝熱管70は、コルゲート伝熱管の外面71と冷媒管72との接触部位には突起を設けていない。冷媒管72が巻かれる部位に対応する管外面に凹みが設けられると、冷媒管72と伝熱管外面71との接触が悪くなり、冷媒管72からの伝熱効果が低下するおそれがある。そこで、冷媒管72が巻き付けられていない部位に突起713を設けることで、冷媒管72からの伝熱効果の低下を防ぐことができる。
<その他>
上述した実験及び実施例においては、図21(a)に示すように、伝熱管としてコルゲート溝を有するコルゲート管に突起が設けられている。なお、図21(b)に示すように、伝熱管としてハイフィン管に突起が設けられた管、または図21(c)に示すように、伝熱管として花柄管に突起が設けられた管を採用することもできる。


<Example 11>
As shown in FIG. 20, the corrugated heat transfer tube 70 employed in Example 11 has no protrusion at the contact portion between the outer surface 71 of the corrugated heat transfer tube and the refrigerant tube 72. If the tube outer surface corresponding to the portion around which the refrigerant tube 72 is wound is provided with a dent, the contact between the refrigerant tube 72 and the heat transfer tube outer surface 71 is deteriorated, and the heat transfer effect from the refrigerant tube 72 may be reduced. Therefore, by providing the protrusion 713 at a portion where the refrigerant pipe 72 is not wound, it is possible to prevent the heat transfer effect from the refrigerant pipe 72 from being lowered.
<Others>
In the experiments and examples described above, as shown in FIG. 21A, the corrugated tube having a corrugated groove as the heat transfer tube is provided with a protrusion. In addition, as shown in FIG.21 (b), the pipe | tube with which the projection was provided in the high fin pipe as a heat exchanger tube, or the pipe | tube with which the protrusion was provided in the flower pattern pipe as shown in FIG.21 (c). It can also be adopted.


Claims (21)

内部と外部との熱交換を行う給湯用コルゲート伝熱管であって、その特徴は、
管内に螺旋コルゲートが設けられており、
前記内部を流れる流体のレイノルズ数(Re)が7000未満の区間に位置する部分の内面の少なくとも一部に、高さ(H1)が0.5mm〜1.5mmである複数の突起が設けられている、給湯用コルゲート伝熱管。
A corrugated heat transfer tube for hot water supply that exchanges heat between the inside and the outside.
A spiral corrugation is provided in the tube,
A plurality of protrusions having a height (H1) of 0.5 mm to 1.5 mm are provided on at least a part of the inner surface of a portion located in a section where the Reynolds number (Re) of the fluid flowing inside is less than 7000. Corrugated heat transfer tube for hot water supply.
内部と外部との熱交換を行う給湯用コルゲート伝熱管であって、その特徴は、
管内に螺旋コルゲートが設けられており、
前記内部を流れる流体のレイノルズ数(Re)が7000未満の区間に位置する部分の内面の少なくとも一部に、高さ(H1)が内径(D)の0.05〜0.15倍である複数の突起が設けられている、
給湯用コルゲート伝熱管。
A corrugated heat transfer tube for hot water supply that exchanges heat between the inside and the outside.
A spiral corrugation is provided in the tube,
A plurality of at least part of the inner surface of the portion located in a section where the Reynolds number (Re) of the fluid flowing inside is less than 7000 is 0.05 to 0.15 times the inner diameter (D). Protrusions are provided,
Corrugated heat transfer tube for hot water supply.
内部と外部との熱交換を行う給湯用コルゲート伝熱管であって、その特徴は、
管内に螺旋コルゲートが設けられており、
前記内部を流れる流体のレイノルズ数(Re)が7000未満の区間に位置する部分の内面の少なくとも一部に、高さ(H1)がコルゲート溝の深さ(Hm)の1〜3倍である複数の突起が設けられている、
給湯用コルゲート伝熱管。
A corrugated heat transfer tube for hot water supply that exchanges heat between the inside and the outside.
A spiral corrugation is provided in the tube,
Plural in which the height (H1) is 1 to 3 times the depth (Hm) of the corrugated groove on at least a part of the inner surface of the portion located in the section where the Reynolds number (Re) of the fluid flowing inside is less than 7000 Protrusions are provided,
Corrugated heat transfer tube for hot water supply.
内部と外部との熱交換を行う給湯用コルゲート伝熱管であって、その特徴は、
管内に螺旋コルゲートが設けられており、
前記内部を流れる流体のレイノルズ数(Re)が7000未満の区間に位置する部分の内面の少なくとも一部に複数の突起が設けられており、
前記複数の突起のピッチ(P1)と前記コルゲートのピッチ(Pm)とは異なる値である、
給湯用コルゲート伝熱管。
A corrugated heat transfer tube for hot water supply that exchanges heat between the inside and the outside.
A spiral corrugation is provided in the tube,
A plurality of protrusions are provided on at least a part of the inner surface of the portion located in a section where the Reynolds number (Re) of the fluid flowing inside is less than 7000,
The pitch (P1) of the plurality of protrusions and the pitch (Pm) of the corrugate are different values.
Corrugated heat transfer tube for hot water supply.
給湯器の熱交換器に用いられ、内部と外部との熱交換を行うコルゲート伝熱管であって、その特徴は、
管内に螺旋コルゲートが設けられており、
前記内部を流れる流体である水が流入する流入口の近傍に位置する部分の内面に、高さ(H1)が0.5mm〜1.5mmである複数の突起が設けられている、
給湯用コルゲート伝熱管。
A corrugated heat transfer tube that is used in a heat exchanger of a water heater and performs heat exchange between the inside and the outside.
A spiral corrugation is provided in the tube,
A plurality of protrusions having a height (H1) of 0.5 mm to 1.5 mm are provided on the inner surface of a portion located in the vicinity of the inflow port into which water that is a fluid flowing through the inside flows.
Corrugated heat transfer tube for hot water supply.
給湯器の熱交換器に用いられ、内部と外部との熱交換を行うコルゲート伝熱管であって、その特徴は、
管内に螺旋コルゲートが設けられており、
前記内部を流れる流体である水が流入する流体入口の近傍に位置する部分の内面に、高さ(H1)が内径(D)の0.05〜0.15倍である複数の突起が設けられている、
給湯用コルゲート伝熱管。
A corrugated heat transfer tube that is used in a heat exchanger of a water heater and performs heat exchange between the inside and the outside.
A spiral corrugation is provided in the tube,
A plurality of protrusions whose height (H1) is 0.05 to 0.15 times the inner diameter (D) are provided on the inner surface of the portion located in the vicinity of the fluid inlet into which water, which is the fluid flowing inside, flows. ing,
Corrugated heat transfer tube for hot water supply.
給湯器の熱交換器に用いられ、内部と外部との熱交換を行うコルゲート伝熱管であって、その特徴は、
管内に螺旋コルゲートが設けられており、
前記内部を流れる流体である水が流入する流体入口の近傍に位置する部分の内面に、高さ(H1)がコルゲート溝の深さ(Hm)の1〜3倍である複数の突起が設けられている、
給湯用コルゲート伝熱管。
A corrugated heat transfer tube that is used in a heat exchanger of a water heater and performs heat exchange between the inside and the outside.
A spiral corrugation is provided in the tube,
A plurality of protrusions whose height (H1) is 1 to 3 times the depth (Hm) of the corrugated groove are provided on the inner surface of a portion located in the vicinity of the fluid inlet into which water, which is a fluid flowing through the inside, flows. ing,
Corrugated heat transfer tube for hot water supply.
給湯器の熱交換器に用いられ、内部と外部との熱交換を行うコルゲート伝熱管であって、その特徴は、
管内に螺旋コルゲートが設けられており、
前記内部を流れる流体である水が流入する流入口の近傍に位置する部分の内面に、複数の突起が設けられており、
前記複数の突起のピッチ(P1)と前記コルゲートのピッチ(Pm)とは異なる値である、
給湯用コルゲート伝熱管。
A corrugated heat transfer tube that is used in a heat exchanger of a water heater and performs heat exchange between the inside and the outside.
A spiral corrugation is provided in the tube,
A plurality of protrusions are provided on the inner surface of the portion located in the vicinity of the inlet into which water, which is a fluid flowing through the inside, flows,
The pitch (P1) of the plurality of protrusions and the pitch (Pm) of the corrugate are different values.
Corrugated heat transfer tube for hot water supply.
内部を流れる流体の流速が0.1m/s〜0.6m/sである、請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。   The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8, wherein the flow velocity of the fluid flowing inside is 0.1 m / s to 0.6 m / s. 前記突起の任意の高さにおける断面形状は、円形、楕円形もしくは近似円形のような滑らかな曲線で構成されている、請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。   The hot water corrugated heat transfer tube according to any one of claims 1 to 8, wherein a cross-sectional shape at an arbitrary height of the protrusion is configured by a smooth curve such as a circle, an ellipse, or an approximate circle. 前記流体が流出する流体出口の近傍に位置する部分の内面には、前記突起が設けられていない平滑部を有する
請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。
The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8, wherein a smooth portion not provided with the protrusion is provided on an inner surface of a portion located near a fluid outlet from which the fluid flows out.
前記突起の高さ(H1)よりも溝深さの浅い溝が前記内面に形成されている、
請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。
A groove having a groove depth shallower than the height (H1) of the protrusion is formed on the inner surface.
The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8.
前記複数の突起は、管軸の方向に平行して設けられている、
請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。
The plurality of protrusions are provided in parallel to the direction of the tube axis.
The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8.
前記複数の突起は、螺旋状に設けられている、
請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。
The plurality of protrusions are provided in a spiral shape,
The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8.
前記複数の突起は、径方向の対向する位置で一対となるように設けられている、
請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。
The plurality of protrusions are provided so as to be paired at radially opposing positions.
The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8.
前記複数の突起のピッチ(P1)と内径(D)との比は、0.5〜10である、
請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。
The ratio between the pitch (P1) and the inner diameter (D) of the plurality of protrusions is 0.5 to 10.
The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8.
前記複数の突起間には、高さ(H2)が0.5mm未満である小突起が設けられている、
請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。
A small protrusion having a height (H2) of less than 0.5 mm is provided between the plurality of protrusions.
The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8.
前記内面には、前記突起が設けられていない平滑部が存在する、
請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。
On the inner surface, there is a smooth portion not provided with the protrusion,
The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8.
前記突起は、前記外部から力を加えることにより形成されるものであり、直線部には前記突起が形成され、曲げ部には前記突起が形成されない、
請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。
The protrusion is formed by applying a force from the outside, the protrusion is formed in a straight portion, and the protrusion is not formed in a bent portion.
The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8.
前記突起は、前記外部から力を加えることにより形成されるものであり、曲げ部においては、曲げられている面と交差する部分には前記突起が形成されていない、
請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。
The protrusion is formed by applying a force from the outside, and in the bent portion, the protrusion is not formed in a portion that intersects the bent surface.
The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8.
前記給湯用コルゲート伝熱管の外部には、前記流体と熱交換を行う第2流体を流すための第2伝熱管が配置されており、
給湯用コルゲート伝熱管の外面には、前記第2伝熱管が接触しており、
前記突起は、前記外面を凹ませることによって前記内面に形成されるものであって、前記第2伝熱管との接触部分以外の場所に形成されている、
請求項1から8のいずれかに記載の給湯用コルゲート伝熱管。

A second heat transfer tube for flowing a second fluid that exchanges heat with the fluid is disposed outside the corrugated heat transfer tube for hot water supply,
The second heat transfer tube is in contact with the outer surface of the corrugated heat transfer tube for hot water supply,
The protrusion is formed on the inner surface by denting the outer surface, and is formed at a place other than the contact portion with the second heat transfer tube,
The corrugated heat transfer tube for hot water supply according to any one of claims 1 to 8.

JP2008533094A 2006-09-08 2007-08-24 Corrugated heat transfer tube for hot water supply Active JP4768029B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNA2006101130277A CN1924507A (en) 2006-09-08 2006-09-08 Helical groove heat exchange pipe for water heater
CN200610113027.7 2006-09-08
PCT/JP2007/066436 WO2008029639A1 (en) 2006-09-08 2007-08-24 Corrugated heat exchanger tube for hot water supply

Publications (2)

Publication Number Publication Date
JPWO2008029639A1 true JPWO2008029639A1 (en) 2010-01-21
JP4768029B2 JP4768029B2 (en) 2011-09-07

Family

ID=37817247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008533094A Active JP4768029B2 (en) 2006-09-08 2007-08-24 Corrugated heat transfer tube for hot water supply

Country Status (7)

Country Link
US (1) US20090250198A1 (en)
EP (1) EP2071266A4 (en)
JP (1) JP4768029B2 (en)
KR (1) KR20090055604A (en)
CN (1) CN1924507A (en)
AU (1) AU2007292663B2 (en)
WO (1) WO2008029639A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089957A1 (en) * 2009-02-05 2010-08-12 パナソニック株式会社 Heat exchanger
JP2011012909A (en) * 2009-07-03 2011-01-20 Hitachi Cable Ltd Heat transfer tube and heat exchanger
CZ305768B6 (en) * 2010-04-02 2016-03-09 Halla Visteon Climate Control Corporation Cooler
JP5431210B2 (en) * 2010-03-05 2014-03-05 株式会社Uacj銅管 Heat transfer tube and heat exchanger
JP2012026407A (en) * 2010-07-27 2012-02-09 Denso Corp Intercooler
JP5642462B2 (en) * 2010-09-08 2014-12-17 株式会社Uacj銅管 Heat exchanger tube for heat exchanger and heat exchanger using the same
JP5850693B2 (en) * 2011-10-05 2016-02-03 日野自動車株式会社 Tube for heat exchanger
TWI471510B (en) * 2012-05-16 2015-02-01 Yu Chen Lin Electric heating device
RU2537643C2 (en) * 2012-09-18 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Heat exchange element efficiency improvement method
RU2522759C2 (en) * 2012-09-18 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Heat exchange element
US20140116668A1 (en) * 2012-10-31 2014-05-01 GM Global Technology Operations LLC Cooler pipe and method of forming
JP2015045482A (en) 2013-08-29 2015-03-12 株式会社コベルコ マテリアル銅管 Heat transfer pipe for in-pipe single phase flow
US20150122459A1 (en) * 2013-11-06 2015-05-07 Carrier Corporation Brazed heat exchanger design
FR3016689B1 (en) * 2014-01-20 2016-01-15 Vallourec Heat Exchanger Tubes IMPROVED TUBE FOR THERMAL EXCHANGER
JP6223298B2 (en) * 2014-07-31 2017-11-01 株式会社コベルコ マテリアル銅管 Heat transfer tube for single-phase flow in tube
CN104976766B (en) * 2014-11-21 2017-08-25 六安同辉智能科技有限公司 The circular copper plumbing and its manufacture method of a kind of water heater combustion heating
CN110892223B (en) * 2017-07-24 2021-03-23 三菱电机株式会社 Heat exchanger and refrigeration cycle device
JP7254307B2 (en) * 2020-03-04 2023-04-10 株式会社Kmct heat transfer tube
KR102471239B1 (en) 2021-06-21 2022-11-25 린나이코리아 주식회사 Steam generator heat pipe of steam convection oven

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235694A (en) * 1985-04-11 1986-10-20 Hitachi Cable Ltd Heat transfer tube
JPS61289293A (en) * 1985-06-14 1986-12-19 Hitachi Ltd Heat transfer tube and manufacture thereof
JPH06317362A (en) * 1992-05-27 1994-11-15 Hitachi Cable Ltd Heat transfer tube for tubular absorption type vertical absorber
JPH0875384A (en) * 1994-07-01 1996-03-19 Hitachi Ltd Heat transfer tube for non-azeotrope refrigerant, heat exchanger using the same tube, assembling method and refrigerating air conditioner using the same exchanger
JP2003056995A (en) * 2001-08-20 2003-02-26 Komatsu Electronics Inc Heat exchanger
JP2005009833A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Double pipe type heat exchanger
JP2005221172A (en) * 2004-02-06 2005-08-18 Daikin Ind Ltd Heat exchanger for supplying hot water

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2422517A (en) * 1944-12-21 1947-06-17 Erwin G Baker Gas engine fuel induction means
US3779312A (en) * 1972-03-07 1973-12-18 Universal Oil Prod Co Internally ridged heat transfer tube
US4111402A (en) * 1976-10-05 1978-09-05 Chemineer, Inc. Motionless mixer
US4585059A (en) * 1980-01-15 1986-04-29 H & H Tube & Mfg. Co. Heat transfer tube assembly
JPH06100432B2 (en) * 1984-06-20 1994-12-12 株式会社日立製作所 Heat transfer tube
JPS6189497A (en) * 1984-10-05 1986-05-07 Hitachi Ltd Heat transfer pipe
JP3811123B2 (en) * 2002-12-10 2006-08-16 松下電器産業株式会社 Double tube heat exchanger
US7011150B2 (en) * 2004-04-20 2006-03-14 Tokyo Radiator Mfg. Co., Ltd. Tube structure of multitubular heat exchanger
DE102005052973B4 (en) * 2004-11-09 2014-11-20 Denso Corporation Double-walled pipe and manufacturing method therefor
CN100451531C (en) * 2005-03-25 2009-01-14 清华大学 Water heater heat exchange tube
JP2007218486A (en) * 2006-02-15 2007-08-30 Hitachi Cable Ltd Heat transfer tube for heat exchanger, and heat exchanger using the same
US7413004B2 (en) * 2006-02-27 2008-08-19 Okonski Sr John E High-efficiency enhanced boiler

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235694A (en) * 1985-04-11 1986-10-20 Hitachi Cable Ltd Heat transfer tube
JPS61289293A (en) * 1985-06-14 1986-12-19 Hitachi Ltd Heat transfer tube and manufacture thereof
JPH06317362A (en) * 1992-05-27 1994-11-15 Hitachi Cable Ltd Heat transfer tube for tubular absorption type vertical absorber
JPH0875384A (en) * 1994-07-01 1996-03-19 Hitachi Ltd Heat transfer tube for non-azeotrope refrigerant, heat exchanger using the same tube, assembling method and refrigerating air conditioner using the same exchanger
JP2003056995A (en) * 2001-08-20 2003-02-26 Komatsu Electronics Inc Heat exchanger
JP2005009833A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Double pipe type heat exchanger
JP2005221172A (en) * 2004-02-06 2005-08-18 Daikin Ind Ltd Heat exchanger for supplying hot water

Also Published As

Publication number Publication date
AU2007292663A1 (en) 2008-03-13
US20090250198A1 (en) 2009-10-08
EP2071266A4 (en) 2013-01-23
EP2071266A1 (en) 2009-06-17
WO2008029639A1 (en) 2008-03-13
KR20090055604A (en) 2009-06-02
CN1924507A (en) 2007-03-07
AU2007292663B2 (en) 2010-08-12
JP4768029B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4768029B2 (en) Corrugated heat transfer tube for hot water supply
JP4942773B2 (en) Heat transfer pipe for hot water supply
JP5106453B2 (en) Plate heat exchanger and refrigeration air conditioner
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
JP6336342B2 (en) Heat exchanger
JP2009174833A (en) Heat transfer tube for heat exchanger and heat exchanger using the same
JP6573210B2 (en) Double tube heat exchanger and heat pump heat source machine equipped with the same
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
JP4572662B2 (en) Heat exchanger
JP2012077917A (en) Inner grooved corrugated tube, and heat exchanger
JP2009264644A (en) Heat exchanger
JP5157617B2 (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2012057856A (en) Heat transfer tube for heat exchanging device, and heat exchanging device using the heat transfer tube
JP5289088B2 (en) Heat exchanger and heat transfer tube
JP2008267631A (en) Heat exchanger
JP2008249163A (en) Heat exchanger for supplying hot water
CN209978658U (en) Shell and tube heat exchanger and air conditioning unit
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP2010112565A (en) Heat exchanger
JP5540683B2 (en) Heat exchanger and water heater provided with the same
CN216482406U (en) Heat exchanger and air conditioning unit
JP2011012909A (en) Heat transfer tube and heat exchanger
CN215676621U (en) Fin structure and heat exchanger
JP5494017B2 (en) Heat exchanger and heat pump water heater using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4768029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250