JPS61289293A - Heat transfer tube and manufacture thereof - Google Patents

Heat transfer tube and manufacture thereof

Info

Publication number
JPS61289293A
JPS61289293A JP12820085A JP12820085A JPS61289293A JP S61289293 A JPS61289293 A JP S61289293A JP 12820085 A JP12820085 A JP 12820085A JP 12820085 A JP12820085 A JP 12820085A JP S61289293 A JPS61289293 A JP S61289293A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
protrusions
protrusion
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12820085A
Other languages
Japanese (ja)
Other versions
JPH0670556B2 (en
Inventor
Heikichi Kuwabara
桑原 平吉
Kenji Takahashi
研二 高橋
Takehiko Yanagida
柳田 武彦
Hisashi Nakayama
中山 恒
Shigeo Sugimoto
杉本 滋郎
Kiyoshi Oizumi
大泉 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP60128200A priority Critical patent/JPH0670556B2/en
Publication of JPS61289293A publication Critical patent/JPS61289293A/en
Publication of JPH0670556B2 publication Critical patent/JPH0670556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To provide the heat transfer tube having heat transfer surface structue, high in heat transfer coefficient and durability, and the inexpensive manufacturing method thereof by a method wherein the shape of the section of protuberance, provided in the tube, is constituted of a circle or a smooth curve like the circle at the bottom surface and an arbitrary height while the protuberances are arranged in the tube regularly along a spiral curve. CONSTITUTION:The protuberances 3 are formed on the inner wall surface 1 of the heat transfer tube along the spiral curve. The section of the protuberance 3 is circle or ellipse. When single-phase fluid, having no phase change, flows through the tube, the fluid 60 at the central portion of the tube flows into the axial direction of the tube, however, the flow direction of fluid 61, near the wall surface of the tube, is curved and a part thereof generates vertical vortex having the rotating axis thereof in the axial direction of the tube when it flows through gaps between protuberances. In the transversal section of the tube, the stream line is not curved suddenly when the flow collides against the protuberance since the protuberance is provided with a curvature, therefore, effect of corrosion due to the shear stress of the fluid may be small.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は、空気調和機、冷凍機等の熱交換器に用いる
伝熱管の構造及び製法に関するものであり、特に単相流
伝熱管に適した面構造及びその製法に係わる発明である
[Detailed Description of the Invention] [Field of Application of the Invention] This invention relates to the structure and manufacturing method of heat exchanger tubes used in heat exchangers such as air conditioners and refrigerators, and particularly relates to aspects suitable for single-phase flow heat exchanger tubes. This invention relates to the structure and manufacturing method thereof.

〔発明の背景〕[Background of the invention]

周知の如く空気調和機や冷凍機等の熱交換器には伝熱管
が設けられており、これらの管の内面の構造は管に加工
を施さない平滑管の他、米国特許第3,768,291
号の如き二次元状のリブを備えたもの、あるいは、米国
特許第3.1130.087号の例のように管壁内側に
転造用の加ニブラグを挿入し、溝加工を行うことにより
一次側のリブを設けた後、さらに追加工により二次側の
溝を付けた三次元突起状の面構造を有する管が知られて
いる。
As is well known, heat exchangers such as air conditioners and refrigerators are equipped with heat exchanger tubes, and the inner structure of these tubes includes smooth tubes without any processing, as well as U.S. Patent No. 3,768, 291
A type with two-dimensional ribs such as the one shown in U.S. Pat. A tube having a three-dimensional protruding surface structure in which a secondary side groove is added by additional machining after side ribs are provided is known.

この面構造を有する伝熱管を例えば単相流用の伝熱面に
用いたとすると、この面構造の突起形状は丸みを帯びて
いない鋭角状であり、後に詳述するが角を曲がる流れに
よりはく離渦を生じ、伝熱管の人出日間の流体の圧力損
失が高くなり、流体の駆動力を多く要する。また、流体
の流線に対する垂直な平面に対しては、流体がその部分
でよどむために運動エネルギが衝突の圧力となり、この
ためその部分が長時間たつうちに減耗する。伝熱性能に
ついては、この減耗によりリブの高さ、リブの形状が最
適値から変動するために初期の性能値よりも低くなる。
If a heat transfer tube having this surface structure is used as a heat transfer surface for single-phase flow, for example, the protrusion shape of this surface structure is not rounded but has an acute angle. As a result, the pressure loss of the fluid increases during the heat exchanger tube's operation, and a large amount of fluid driving force is required. In addition, for a plane perpendicular to the streamline of the fluid, the fluid stagnates in that part, so the kinetic energy becomes a collision pressure, which causes the part to wear out over a long period of time. As for the heat transfer performance, the rib height and rib shape fluctuate from the optimum values due to this wear and tear, so the performance value becomes lower than the initial performance value.

またこの転造プラグを用いる方法は、−次溝と二次溝を
加工しなければならないので、必然的に加工工程が増え
、コストアンプの要因となっている。
In addition, in the method using this rolled plug, the secondary groove and the secondary groove must be machined, which inevitably increases the number of machining steps, which is a factor in increasing costs.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、熱伝達率が高い性能を得るとともに、
耐久性の高い伝熱面構造を有する伝熱管及びその安価な
製法を提供することにある。
The purpose of the present invention is to obtain performance with high heat transfer coefficient, and
An object of the present invention is to provide a heat transfer tube having a highly durable heat transfer surface structure and an inexpensive manufacturing method thereof.

〔発明の概要〕[Summary of the invention]

この発明の特徴は、管内に設けた突起の横断面の形状が
、底面及び任意の高さの位置において円、またはだ円の
ような滑らかな曲線で構成され、このような突起を、管
内にらせん状の曲線に沿って規則正しく配列したもので
ある。
A feature of this invention is that the cross-sectional shape of the protrusion provided inside the pipe is composed of a smooth curve such as a circle or an ellipse at the bottom surface and at an arbitrary height position, and such a protrusion is provided inside the pipe. They are regularly arranged along a spiral curve.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1.第2図により説明する
。伝熱管内壁面1に、突起3をらせん状の曲線4に沿っ
て形成する。この突起3は、第3図(A)に示すように
、平面が円形の突起32か、あるいは第3図(B)に示
すように、楕円形の突起34である。または(C)に示
すように卵の断面形に類似した非対称の楕円曲線状の突
起36でもよい。あるいは(D)の如き小判状38でも
よい。また、突起の底面より任意の高さの横断面形状も
、それぞれ底面と類似の形状をしており、底面より横断
面積は減少している。また縦断面形状は、第4図(A)
、(B)、(C)、(D)に示すようになめらかな曲線
で形成されている。なお、平面は第3図(A)〜(D)
に近似した曲面でもよい。
Hereinafter, one embodiment of the present invention will be described in Section 1. This will be explained with reference to FIG. A protrusion 3 is formed along a spiral curve 4 on the inner wall surface 1 of the heat exchanger tube. The protrusion 3 is a protrusion 32 having a circular plane as shown in FIG. 3(A), or an elliptical protrusion 34 as shown in FIG. 3(B). Alternatively, as shown in (C), the protrusion 36 may have an asymmetrical elliptic curve shape similar to the cross-sectional shape of an egg. Alternatively, it may be an oval form 38 as shown in (D). Further, the cross-sectional shape of the protrusion at an arbitrary height from the bottom surface has a similar shape to the bottom surface, and the cross-sectional area is smaller than that of the bottom surface. The longitudinal cross-sectional shape is shown in Figure 4 (A).
, (B), (C), and (D) are formed with smooth curves. The planes are shown in Figures 3 (A) to (D).
It may be a curved surface that approximates .

次に本発明の製造方法を図面をもって説明する。Next, the manufacturing method of the present invention will be explained with reference to the drawings.

第5図に、本発明の製造法の一例を示す。内。FIG. 5 shows an example of the manufacturing method of the present invention. Inside.

外周面が平滑な円管1の外周に沿って円管固定用工具5
2及び歯車状工具54を有する回転体50を外部電力g
(図示せず)による回転させ、歯車状工具54の歯40
で管を塑性変形させて管内に突起3を形成する。この場
合、歯車状工具の取付は角度により管軸o−o’方向の
ピッチが決まるゆなお、突起3の形状は、工具の歯40
に対応し、歯40の角部に相当する部分が丸味を有する
ものとなる。
A circular tube fixing tool 5 is attached along the outer circumference of the circular tube 1 with a smooth outer circumferential surface.
2 and a gear-like tool 54 are powered by an external power g.
(not shown) rotates the teeth 40 of the gear-like tool 54.
The tube is plastically deformed to form a protrusion 3 inside the tube. In this case, since the mounting angle of the gear-shaped tool determines the pitch in the tube axis o-o' direction, the shape of the protrusion 3 is similar to the tooth 4 of the tool.
Corresponding to this, the portions corresponding to the corners of the teeth 40 are rounded.

突起3に対応する管外の凹みの円周方向ピッチは、歯車
状工具54に備えられた歯40の円周方向ピッチに等し
く、工具54の押し付は量を調節して、突起3の高さを
定めることが出来る。工具54を管軸に対して直角方向
に回転させる場合には、各々独立した環状の突起3の列
を管内壁に設けられる。歯車状工具54を図に示すよう
に回転させつつ、管1を矢印方向に送るとスパイラル状
の突起列が形成される。管1を固定し歯車状工具54を
スパイラル状に進ませても、スパイラル状に進む突起列
が形成される。なお、一般には、管を軸方向に送り、工
具54を固定して製作する。
The circumferential pitch of the recesses outside the tube corresponding to the protrusions 3 is equal to the circumferential pitch of the teeth 40 provided on the gear-like tool 54, and the height of the protrusions 3 is adjusted by adjusting the amount of pressing of the tool 54. It is possible to determine the When the tool 54 is rotated in a direction perpendicular to the tube axis, rows of independent annular protrusions 3 are provided on the inner wall of the tube. When the tube 1 is fed in the direction of the arrow while rotating the gear-like tool 54 as shown in the figure, a spiral row of protrusions is formed. Even if the tube 1 is fixed and the gear-shaped tool 54 is advanced in a spiral manner, a series of protrusions that advance in a spiral manner are formed. Note that, generally, the tube is fed in the axial direction and the tool 54 is fixed in order to manufacture the tube.

突起列の間は、平らな面として残る。A flat surface remains between the rows of protrusions.

管外に突起3を設ける際にできる凹部分には、管外沸騰
、凝縮を促進するための微細加工を行うことはできず、
この部分を除いた管外の平滑な部分が管外伝熱促進の有
効面積となる。このため管外機械加工を精度良く行うた
めに各突起列の間の管外に、管軸に対して平行な面を必
要とする。このとき管外表面が管軸に対して平行であれ
ば管内表面もこの部分では管軸に対して平行である。
It is not possible to perform fine processing to promote boiling and condensation outside the tube in the concave portion created when providing the protrusion 3 outside the tube.
The smooth part outside the tube excluding this part becomes the effective area for promoting heat transfer outside the tube. Therefore, in order to perform external machining with high precision, a surface parallel to the tube axis is required on the outside of the tube between each row of protrusions. At this time, if the tube outer surface is parallel to the tube axis, the tube inner surface is also parallel to the tube axis in this portion.

第5A図に、用いて歯車状工具54の略図を示す、工具
の歯先円周角度βを変えることによって突起の円周方向
のピッチZを変えることができ、また歯先高さhは、管
外から管内へ押込む深さより大きいものを用いる。この
歯車状工具54の一例を挙げると外径りはおよび33〜
35mm、歯先高さhは0.45〜0.8am歯先円周
角βは10”〜20°、歯先の幅Wはおよそ1mで、こ
の寸法の歯車状工具を用いることによりリブ高さe=0
.45〜6■、円周方向ピッチZ=2.5〜5mの伝熱
管を製作することができる。
FIG. 5A shows a schematic diagram of a gear-like tool 54. By changing the circumferential angle β of the tooth tip of the tool, the pitch Z in the circumferential direction of the projections can be changed, and the tooth tip height h is Use one that is larger than the depth of pushing into the pipe from outside the pipe. To give an example of this gear-shaped tool 54, the outer diameter is 33~
35mm, the height h of the tooth tip is 0.45~0.8am, the circumferential angle β of the tooth tip is 10''~20°, the width W of the tooth tip is approximately 1m, and by using a gear-shaped tool with these dimensions, the rib height can be reduced. Sae=0
.. Heat exchanger tubes with a diameter of 45 to 6 m and a circumferential pitch Z of 2.5 to 5 m can be manufactured.

この場合、外径りが変われば、最適な円周方向ピッチを
形成する歯先円周角度βはそれとともに変化する。
In this case, if the outer radius changes, the tooth tip circumferential angle β that forms the optimum circumferential pitch changes accordingly.

管軸方向リブピッチは、歯車状工具54の角度を管軸垂
直方向を0°とした場合、5°〜20゜傾けることによ
り軸方向ピッチを5〜14aaの範囲で変えられる。
The rib pitch in the tube axis direction can be changed in the range of 5 to 14 aa by tilting the gear-like tool 54 by 5 degrees to 20 degrees, assuming that the angle of the gear-like tool 54 is 0 degrees in the direction perpendicular to the tube axis.

図には、工具54ひとつを用いて一条の突起列を設ける
図を示しであるが、工具54を複数個並べて複数条の突
起列を形成することも可能である。
Although the figure shows a diagram in which one row of protrusions is formed using one tool 54, it is also possible to form a plurality of rows of protrusions by lining up a plurality of tools 54.

これらの選択は、突起列形成にもとづく工数の削減を図
ることも出来るが、突起の円周方向ピッチと、突起列の
管軸方向ピッチとの相関によって決められる。このよう
な方法により、突起3の横断面形状が円弧形状をしてお
り、突起列方向に切った突起3の縦断面形状が、突起列
の長手方向に向って円弧状に起伏を持つような突起形状
をした突起列を管内壁に形成することができる。
These selections can reduce the number of man-hours based on the formation of the protrusion rows, but are determined by the correlation between the pitch of the protrusions in the circumferential direction and the pitch of the protrusion rows in the tube axis direction. By such a method, the cross-sectional shape of the protrusion 3 has an arc shape, and the longitudinal cross-sectional shape of the protrusion 3 cut in the direction of the protrusion row has arc-like undulations in the longitudinal direction of the protrusion row. A row of protrusions in the shape of a protrusion can be formed on the inner wall of the tube.

突起の大きさの一例として、楕円の長径が2〜5m、短
径が1.5〜3■程度がよい、突起列は図のように、各
々独立した、先端にまるみをおびた円すい形状の突起を
内壁面上に並べた構造でも良いし、同一突起列において
、隣接する突起間が管内壁の平滑部よりも起伏していて
もよい。
As an example of the size of the protrusions, it is best to use an ellipse with a long axis of 2 to 5 m and a short axis of 1.5 to 3 mm.As shown in the figure, each row of protrusions is independent and has a conical shape with a rounded tip. The structure may be such that the protrusions are arranged on the inner wall surface, or the adjacent protrusions in the same row of protrusions may be more undulating than the smooth part of the inner wall of the tube.

第6図は、管内を相変化のない単相流体が流れるときの
流線の模式図を示す、管中央部の流体60は、巻軸方向
に流れて行くが、壁面近傍の流体61は、突起により流
れ方向が曲げられ、その一部は突起と突起の隙間を流出
するとき、管軸方向にその回転軸を有する縦渦ができる
FIG. 6 shows a schematic diagram of streamlines when a single-phase fluid with no phase change flows inside the tube.The fluid 60 in the center of the tube flows in the direction of the winding axis, but the fluid 61 near the wall surface The flow direction is bent by the protrusions, and when a portion of the flow flows out through the gap between the protrusions, a longitudinal vortex is created whose rotation axis is in the direction of the tube axis.

本発明の伝熱管の突起は、第7図に示されるように、縦
断面では、流れが突起に衝突しても突起が曲率を有して
いるため、流線が急激に曲らずにリブに沿って流れ、壁
面に働く流体の粘性力に起因するせん断応力の作用がよ
り少なく、流体のせん断応力に起因する潰食の作用が小
さい、また、第8図に示すように、横断面でも、突起の
側面部分を通る流れも曲率を有するために、流線の方向
の急激な変化、及びはく離渦の発生量は少なく流体力の
作用による潰食の作用はごくわずかである。
As shown in FIG. 7, the protrusions of the heat exchanger tube of the present invention have a curvature in the longitudinal section even when the flow collides with the protrusions, so that the streamlines do not curve sharply , the shear stress caused by the viscous force of the fluid acting on the wall surface is smaller, and the erosion effect caused by the fluid shear stress is smaller. Since the flow passing through the side surface of the protrusion also has a curvature, there are few rapid changes in the direction of streamlines and the generation of separation vortices, and the effect of erosion due to the action of fluid force is negligible.

耐腐蝕性を確認するため、腐蝕の加速実験を表1の条件
で行った。
In order to confirm the corrosion resistance, an accelerated corrosion experiment was conducted under the conditions shown in Table 1.

表1 腐蝕実験条件 実験結果は、表2に示されるように、突起形状が丸いも
のの方が、突起が角形の三次元形状のものより腐食速度
が遅くなっている。これは従来から用いられ、耐腐蝕性
が確認されている二次元形状の突起を有する伝熱管の腐
蝕速度とほぼ同じであり、ここに示した突起が丸い三次
元形状は実用的には差しつかえない腐蝕の程度である。
Table 1 Corrosion Experiment Conditions As shown in Table 2, the experimental results show that the corrosion rate of the round protrusions is slower than that of the three-dimensional protrusions that are rectangular. This is almost the same as the corrosion rate of conventionally used heat exchanger tubes with two-dimensional protrusions that have been confirmed to have corrosion resistance, and the three-dimensional shape with round protrusions shown here is not practical. There is no degree of corrosion.

本発明の曲率を有する三次元形状の突起を有する伝熱管
の性能について以下に述べる0本発明の伝熱管の性能に
及ぼすパラメータのうち、突起高さ0円周方向の突起ピ
ッチ及び管軸方向の突起のピッチに着目し、実験を実施
しその効果を明らかにした。なお伝熱管内径dは14.
7m〜15.81の範囲で実験を実施した。
The performance of the heat exchanger tube having three-dimensional protrusions with curvature according to the present invention will be described below.Among the parameters that affect the performance of the heat exchanger tube of the present invention, the protrusion height, the protrusion pitch in the circumferential direction, and the protrusion pitch in the tube axis direction. We focused on the pitch of the protrusions and conducted experiments to clarify its effect. The heat exchanger tube inner diameter d is 14.
Experiments were conducted in the range of 7 m to 15.81 m.

第9図に、管軸方向のピッチpを711IIと固定し、
また円周方向のピッチ2を41に固定して突起高さeを
o、4sm(C>印)、0.5m(Δ印)。
In FIG. 9, the pitch p in the tube axis direction is fixed as 711II,
Further, the pitch 2 in the circumferential direction is fixed at 41, and the protrusion height e is o, 4sm (C> mark), 0.5m (Δ mark).

0.6m(0印) に変えた場合の熱伝達率及び圧力損
失の測定結果を示す、横軸にはレイノルズ数(=u−d
/υ、u;管内平均流速(m/s)。
The horizontal axis shows the measurement results of the heat transfer coefficient and pressure drop when changing to 0.6 m (0 mark).The horizontal axis shows the Reynolds number (=u-d
/υ, u: Average flow velocity in the pipe (m/s).

d:管内径(I)、υ:流体の動粘性係数(m2/S)
)で、縦軸は無次元化された熱伝達率Nu/Pr” (
=αd/λ/Pr″4.a:熱伝達率(W/m” ・K
)、λ:流体の熱伝導率(W / m・K)、Pr:流
体のプラントル数)、及び管路の抵抗係数fを示しであ
る。
d: Pipe inner diameter (I), υ: Fluid kinematic viscosity coefficient (m2/S)
), and the vertical axis is the dimensionless heat transfer coefficient Nu/Pr” (
=αd/λ/Pr″4.a: Heat transfer coefficient (W/m”・K
), λ: thermal conductivity of the fluid (W/m·K), Pr: Prandtl number of the fluid), and resistance coefficient f of the pipe.

尚、第9図においては煩瑣になることを避けるために図
示してはないが、管の内面に何等加工を施さない平滑管
について実験を行った結果、熱伝達率に付いては従来一
般に知られているDittus −30elterの式
、Nu=0.023Rall’P r” ’  (グラ
フA)と良く一致し、管路の抵抗係数に付いてはPra
ndtlの式1/ ”Y7=2.OQog (Re 1
7)−0,8(グラフB) と良く一致した結果が得ら
れている。なお、管内径はこの場合15.8mである。
Although it is not shown in Fig. 9 to avoid clutter, we conducted an experiment on a smooth tube without any processing on the inner surface, and found that the heat transfer coefficient was not shown in the conventionally known information. It is in good agreement with the Dittus -30elter equation, Nu = 0.023Rall'P r'' (graph A), and the resistance coefficient of the pipe is Pra
ndtl formula 1/”Y7=2.OQog (Re 1
7) -0,8 (Graph B) Results are obtained that are in good agreement. Note that the inner diameter of the pipe is 15.8 m in this case.

熱伝達率については、突起高さ0.5膿と0.6mのも
のは、平滑管(A)に比して2倍以上の高い性能を有し
ている。
Regarding the heat transfer coefficient, those with protrusion heights of 0.5 m and 0.6 m have a performance that is more than twice as high as that of the smooth tube (A).

第10図に示されるように、突起高さeを高くしていく
と、熱伝達率の上昇割合よりも抵抗係数の増加割合の方
が高くなっている。
As shown in FIG. 10, as the protrusion height e increases, the rate of increase in the resistance coefficient becomes higher than the rate of increase in the heat transfer coefficient.

第9図に示されるように、突起高さを高くすると圧力損
失が高くなり、ある限界以上、圧力損失が高くなると熱
伝達率の上昇による圧力損失の低減分が吸収しきれなく
なる。すなわち、この場合では突起高さが0.5mより
高くなると、熱伝達率の上昇分がわずかであるにもかか
わらず、抵抗係数が増大しているので伝熱促進効果は少
なくなり、突起高さが0.5閣が最適高さであることが
考えられる。
As shown in FIG. 9, increasing the height of the protrusion increases the pressure loss, and when the pressure loss increases beyond a certain limit, it becomes impossible to absorb the reduction in pressure loss due to the increase in heat transfer coefficient. In other words, in this case, when the protrusion height becomes higher than 0.5 m, the resistance coefficient increases even though the increase in heat transfer coefficient is small, so the heat transfer promotion effect decreases, and the protrusion height increases. It is considered that 0.5 kaku is the optimum height.

このことを確かめるため第9図で得られた結果を従来一
般に熱伝達率、及び抵抗係数についてその内容が知られ
ている文献(例えば、R,L、Webband E、R
,G、Eckert ”Application of
 RoughSurfaces  to  l1eat
  Exchanger  Design” 。
To confirm this, the results obtained in FIG.
, G. Eckert “Application of
RoughSurfaces to eat
Exchanger Design”.

International Journal of 
Heat and MassTransfer、 Vo
A 、15. p1647〜p1658.1972) 
 で示されるような (3t/s t、) Cf/f、) 113 (添字0:平滑管) で与えられる熱伝達率、及び抵抗係数について、上記の
三次元形状の突起の付いた伝熱管と、何等このような加
工を施していない平滑管とこれらのの比を取ったものの
割合で評価を行った。これらの値は平滑管については1
であり、伝熱性能が向上するにしたがってその値が大き
くなり、上記第9図に示された実験値を水速2.5m/
s  と、この伝熱管の適用される冷凍機の水温に対応
する物性値とから算出されるRe=3X10’の場合に
ついて整理して結果を第10図に示しである。
International Journal of
Heat and Mass Transfer, Vo
A, 15. p1647-p1658.1972)
Regarding the heat transfer coefficient and resistance coefficient given by (3t/s t,) Cf/f, ) 113 (subscript 0: smooth tube), The evaluation was made based on the ratio of these to a smooth tube that had not undergone any such processing. These values are 1 for smooth tubes.
The value increases as the heat transfer performance improves, and the experimental value shown in Figure 9 above is changed to a water velocity of 2.5 m/
s and the physical property values corresponding to the water temperature of the refrigerator to which this heat exchanger tube is applied. The results are summarized in FIG. 10 for the case of Re=3X10'.

第10図に示される通り、最も伝熱性能の良いのは、突
起高さが0.5閣の伝熱管であり、突起高さが0.5+
mより高くなった場合、あるいは0.5mより低くなる
と伝熱性能は低い値を示す。
As shown in Figure 10, the heat transfer tube with the best heat transfer performance has a protrusion height of 0.5, and the protrusion height is 0.5 +
When it becomes higher than m or lower than 0.5 m, the heat transfer performance shows a low value.

この最適な突起高さは、流体の壁面近傍の境界層と関連
があり、管径等により多少の値の違いはあるが、はぼこ
の最適値は一定の値をとると考えられる。第10図にお
いてDで示される従来の二次元リブ付管(米国特許第3
,768,291号相当)の実験データ(e=0.3m
、p=4mm)  より、伝熱性能を示す式(1)を計
算すると1.43 となり、この値より高い範囲を三次
元リブ付管の特徴を有する範囲とすると、突起高さの範
囲は0.45〜0.6mm となる。
This optimum height of the protrusion is related to the boundary layer near the wall of the fluid, and although the value varies somewhat depending on the pipe diameter, etc., the optimum height of the protrusion is considered to be a constant value. A conventional two-dimensional ribbed tube (U.S. Patent No. 3
, 768, 291) experimental data (e = 0.3 m
, p = 4 mm), the equation (1) indicating the heat transfer performance is calculated as 1.43, and if the range higher than this value is defined as the range having the characteristics of a three-dimensional ribbed tube, then the range of protrusion height is 0. It will be .45 to 0.6 mm.

次に、突起の円周方向ピッチが伝熱性能に及ぼす影響を
モデル実験によって調べた結果を述べる。
Next, we will discuss the results of a model experiment investigating the effect of the circumferential pitch of the protrusions on heat transfer performance.

この場合の2は、管内面の突起の周方向ピッチである。In this case, 2 is the circumferential pitch of the protrusions on the inner surface of the tube.

第11図に管軸方向のピッチpを7mに固定し、また突
起高さを0.45閣とした場合の2を変えた場合の熱伝
達率と抵抗係数の測定結果を示す1図において、2が2
.5m(X印)、4■(0印)、5m(O印)の結果が
示されている。
Figure 11 shows the measurement results of the heat transfer coefficient and resistance coefficient when the pitch p in the tube axis direction is fixed at 7 m and the protrusion height is set at 0.45 m, and when 2 is varied. 2 is 2
.. The results are shown for 5m (X mark), 4■ (0 mark), and 5m (O mark).

z=2.5snと4閣の結果を比較すると、熱伝達率は
z=4閣が高い値を示しており、抵抗係数fは、z=2
.5mの方が大きくなっているので2=4amの方が伝
熱性能が高いことは明らかである。
Comparing the results of z = 2.5sn and 4 cabinets, the heat transfer coefficient shows a high value for z = 4 cabinets, and the resistance coefficient f is z = 2
.. Since 5 m is larger, it is clear that 2=4 am has higher heat transfer performance.

z=2.5+mの場合は、第12図で示されるように突
起5と突起5が連続し、突起と突起の空隙Cがない状態
で、第13図で示されるような突起と突起の間から生成
される縦渦6の大きさが小さく微小な縦渦7が放出され
る。すなわち、突起と突起が密になった極限が二次元状
突起で、伝熱促進の機構が三次元突起から二次突起に近
づくため、伝熱性能が二次元状の突起と類似してくる。
In the case of z=2.5+m, the protrusions 5 are continuous as shown in FIG. 12, and there is no gap C between the protrusions, and there is a gap between the protrusions as shown in FIG. 13. The longitudinal vortex 6 generated from the vortex 6 is small in size, and a minute longitudinal vortex 7 is emitted. In other words, a two-dimensional protrusion is the extreme density of protrusions, and the heat transfer promotion mechanism approaches the secondary protrusion from the three-dimensional protrusion, so the heat transfer performance becomes similar to that of the two-dimensional protrusion.

第11図に二次元突起(◇印y p=7m、e=0.5
m)の測定結果を三次元突起の結果をあわせて示した。
Figure 11 shows the two-dimensional protrusion (◇ mark y p=7m, e=0.5
The measurement results of m) are shown together with the results of three-dimensional protrusions.

この結果からも示されるようにピッチ2が密になると二
次元状突起の抵抗係数の結果と同様に圧力損失が高くな
っている。
As shown from this result, when the pitch 2 becomes denser, the pressure loss becomes higher, similar to the result of the resistance coefficient of the two-dimensional protrusion.

z=4■の場合は、第13図(ロ)で示されるように、
突起と突起の空隙Cから、流れ方向に回転軸をもつ縦渦
6が発生し、これが伝熱促進効果を高めている。二次元
状突起を過ぎる流れは、物体の位置で流れがはく離し、
流れが物体後流部で再付着することによって伝熱促進さ
れている。この場合、物体の直後で流れが澱み、圧力損
失を上昇させていたが、三次元状突起の場合は、前記の
縦渦によって伝熱促進されるので、流れのエネルギーを
有効に伝熱促進に用いることができる。この場合、供試
伝熱管の空隙Cは11であり、また突起の長手方向の距
離すは3■であった。この空隙Cがある程度以上広くな
ると、伝熱促進に効果的な縦渦が生成されずに伝熱促進
の効果は余り高くない、第11図に示されるように、円
周方向ピッチ2が5mの場合(0印)は熱伝達率の上昇
分が、z=4mの場合より低くなり、空隙Cが広くなる
と熱伝達率が低下することを裏付けている。
In the case of z=4■, as shown in Figure 13 (b),
A longitudinal vortex 6 having a rotation axis in the flow direction is generated from the gap C between the protrusions, and this enhances the heat transfer promoting effect. The flow that passes through the two-dimensional protrusion separates at the position of the object,
Heat transfer is promoted by redeposition of the flow at the trailing edge of the object. In this case, the flow stagnates immediately after the object, increasing pressure loss, but in the case of three-dimensional protrusions, heat transfer is promoted by the longitudinal vortex, so the energy of the flow can be effectively used to promote heat transfer. Can be used. In this case, the gap C of the test heat exchanger tube was 11, and the distance in the longitudinal direction of the protrusions was 3. If this gap C becomes larger than a certain extent, longitudinal vortices that are effective in promoting heat transfer will not be generated, and the effect of promoting heat transfer will not be very high.As shown in Figure 11, when the circumferential pitch 2 is 5 m In the case (marked 0), the increase in the heat transfer coefficient is lower than in the case of z=4m, which confirms that the heat transfer coefficient decreases as the gap C becomes wider.

この場合も前述のように伝熱性能を一般的に表示する式
、s t/ s t0/ (f/ Je) i/3で実
験値を整理し、第14図に示す1図において示されるよ
うに、z=4mが最大の値をとっている。またDの値は
二次元リブ(s=0.3++a、p=4■)の実験値よ
り得られたもので、三次元突起の伝熱促進効果が高いこ
とを示している。前記したように、二次元リブ付伝熱管
の実験データから算出した値より高い範囲を限定する範
囲とすると、円周方向のピッチの範囲は3.5m〜5m
である。
In this case as well, as mentioned above, the experimental values are organized using the formula that generally expresses heat transfer performance, s t/ s t0/ (f/ Je) i/3, as shown in Figure 1 shown in Figure 14. The maximum value is taken at z=4m. Furthermore, the value of D was obtained from experimental values for a two-dimensional rib (s=0.3++a, p=4■), indicating that the three-dimensional protrusion has a high heat transfer promoting effect. As mentioned above, if the range is defined as a range higher than the value calculated from the experimental data of the two-dimensional ribbed heat exchanger tube, the pitch range in the circumferential direction is 3.5 m to 5 m.
It is.

軸方向ピッチの影響については、第15図に示されるよ
うにリブ高さa =0 、5 ms 、  円周方向の
ピッチz=4mの場合に、管軸方向のピッチが5m、7
m+ 10mmの場合について実験を行った。
Regarding the influence of the axial pitch, as shown in Fig. 15, when the rib height a = 0, 5 ms, and the circumferential pitch z = 4 m, the pitch in the tube axis direction is 5 m, 7 ms.
An experiment was conducted for the case of m+10 mm.

第15図に管軸方向のピッチが5m5(印)、7■(Δ
印)、10mm(0印)の結果を示す、軸方向ピッチが
密な方が熱伝達率、及び圧力損失ともに高くなっている
。これらの実験値も同様に前記の熱伝達率と抵抗係数の
比(st/5ta)/Cf/f、)”/3 で整理を行
った結果を第16図に示す0図に示されるようにピッチ
が5膿と7閣はほぼ同じ値を示しているが、ピッチが1
0awの実験値は5mmと7++mに比してかなり低い
値を示したいる。これは、第17図に示されるように、
三次元の突起部分3で渦が発生し、その渦が伝熱促進に
有効に活用され、拡散する距離内に次の下流側の突起が
存在する場合には性能が高く維持される。この場合が第
17図(a)に示される場合で、渦の拡散する距離は、
突起が二次元形状である場合突起高さの約10倍であり
、リブ高さが0.5閣とした場合、u=o、5mmX1
0=5mであり、第17図のnで示される部分は約5m
と推定され、すなわち軸方向ピッチが5mと71の場合
の性能は高い値を維持するが、軸方向ピッチが1101
Iの場合は、第17図(b)で示されるようにp > 
Qの場合で、渦の拡散距離よりも軸方向ピッチの方が長
いので、渦の生成されていない平滑な部分が多いため、
伝熱促進効果が少なくなっている。前記したように、二
次元リブ付伝熱管のの実験データから算出した熱伝達率
と圧力損失の比で示される値(第16図、D)より高く
、製作容易な実用的範囲とすると、管軸方向のピッチの
範囲は5a++〜9■である。
In Figure 15, the pitch in the tube axis direction is 5m5 (mark), 7■ (Δ
(marked) and 10 mm (marked 0), the closer the axial pitch is, the higher the heat transfer coefficient and pressure loss are. These experimental values were also organized using the ratio of heat transfer coefficient to resistance coefficient (st/5ta)/Cf/f, )''/3 as shown in Figure 16. Pitch 5 pus and 7 kaku show almost the same value, but pitch 1
The experimental values for 0aw are considerably lower than those for 5mm and 7++m. As shown in FIG.
A vortex is generated in the three-dimensional protrusion portion 3, and the vortex is effectively used to promote heat transfer, and when the next downstream protrusion exists within the distance of diffusion, high performance is maintained. This case is shown in Fig. 17(a), and the distance over which the vortex spreads is
If the protrusion has a two-dimensional shape, it is approximately 10 times the height of the protrusion, and if the rib height is 0.5 mm, then u = o, 5 mm x 1
0=5m, and the part indicated by n in Figure 17 is approximately 5m.
In other words, when the axial pitch is 5m and 71, the performance maintains a high value, but when the axial pitch is 1101
In the case of I, as shown in FIG. 17(b), p >
In the case of Q, the axial pitch is longer than the vortex diffusion distance, so there are many smooth areas where vortices are not generated.
The heat transfer promotion effect is reduced. As mentioned above, if the value is higher than the ratio of the heat transfer coefficient and pressure loss calculated from the experimental data of the two-dimensional ribbed heat exchanger tube (Fig. 16, D) and is within a practical range that is easy to manufacture, the tube The axial pitch range is from 5a++ to 9■.

以上、突起の各寸法について実験的に考察を行った結果
、管内面の突起の高さの範囲が0.45■〜0.6閣、
円周方向のピッチが3.5m〜5■、かつ軸方向のピッ
チが5m〜9閣の範囲の突起列が最適寸法であった。
As a result of experimental consideration of each dimension of the protrusion, the height range of the protrusion on the inner surface of the tube is 0.45cm to 0.6cm.
The optimum dimensions were a protrusion row with a circumferential pitch of 3.5 m to 5 m and an axial pitch of 5 m to 9 cm.

なお管内側に形成された丸みを帯びた突起列を過ぎる流
れは、その配列によって異なる。第18図に示される流
れは、突起3が千鳥状に配列された場合の流れのパター
ンを示したもので、突起後流90が後流部の突起に再衝
突することによって、伝熱促進効果が維持されるわけで
あるが第19図に示されるように、基盤状の突起3を配
列すると突起後流100の渦が拡散する前に再び突起に
衝突し、十分に伝熱促進効果を示さない、また、突起外
側の流れは、管軸方向に直線状に流体が流れ。
Note that the flow that passes through the rows of rounded protrusions formed on the inside of the tube differs depending on their arrangement. The flow shown in FIG. 18 shows a flow pattern when the protrusions 3 are arranged in a staggered manner, and the flow 90 of the protrusions re-collides with the protrusions in the trailing portion, thereby promoting the heat transfer effect. However, as shown in FIG. 19, when the base-like protrusions 3 are arranged, the vortices in the wake of the protrusions 100 collide with the protrusions again before being diffused, and the heat transfer is sufficiently promoted. Also, the flow outside the protrusion is in a straight line in the direction of the tube axis.

伝熱促進されないので、配列は基盤状よりも千鳥状にし
た方が伝熱性能は高くなる。
Since heat transfer is not promoted, heat transfer performance is higher if the arrangement is staggered rather than in a base shape.

一方、従来から用いられている、コルゲートの突起の連
続している、いわゆる二次元リブ付管は第11図に示さ
れるように熱伝達性能は高いが、圧力損失が大幅に高く
なる。圧力損失が高すぎると、同じ流体を循環させるの
に要するポンプ動力が多く消費されるので圧力損失は低
い方が良い。
On the other hand, a conventionally used so-called two-dimensional ribbed tube having continuous corrugated projections has a high heat transfer performance as shown in FIG. 11, but has a significantly high pressure loss. If the pressure loss is too high, a large amount of pump power will be consumed to circulate the same fluid, so the lower the pressure loss, the better.

本発明の伝熱管の場合は、熱伝達率の上昇分により、同
じ熱負荷であれば必要伝熱面積は少なくて良くなり、圧
力損失がその分だけ減少するので抵抗係数の増加分は十
分吸収することができる。
In the case of the heat transfer tube of the present invention, due to the increase in the heat transfer coefficient, the required heat transfer area is smaller for the same heat load, and the pressure loss is reduced by that amount, so the increase in the resistance coefficient can be sufficiently absorbed. can do.

また、管壁近傍の乱流渦の生成は、管内径により余り影
響されないので、この三次元突起を有する伝熱管の適用
範囲はおよびIQ〜25.41である。
Furthermore, since the generation of turbulent vortices near the tube wall is not significantly influenced by the tube inner diameter, the applicable range of the heat exchanger tube having this three-dimensional protrusion is IQ ~ 25.41.

以上述べた本発明の伝熱管の外表面にも伝熱面構造を設
けることもできる。以下にその方法を述べる。まず、伝
熱管の内面に、突起を形成する。
A heat transfer surface structure can also be provided on the outer surface of the heat transfer tube of the present invention described above. The method is described below. First, protrusions are formed on the inner surface of the heat exchanger tube.

伝熱管内にリブを管外からロール加工で形成すると、そ
の部分は微細加工伝熱面構造を形成することができず、
無効面積が増すので、伝熱管の構造として、管外にロー
ル加工による凹部が形成されていす、管軸に対して平行
度の高い面に伝熱促進面構造を実現する必要がある。こ
のため次の工程において、第20図に示すように管外の
平滑部207つまり突起を形成する際の凹部が形成され
ていない部分に多孔質な沸騰伝熱に有効な伝熱面構造2
08を設ける。なお、230は突起3を設ける際にでき
る凹部である。
When ribs are formed inside a heat transfer tube by roll processing from outside the tube, it is not possible to form a microfabricated heat transfer surface structure in that part.
Since the effective area increases, the structure of the heat transfer tube requires forming a concave part by rolling on the outside of the tube, and realizing a heat transfer promoting surface structure on a surface highly parallel to the tube axis. Therefore, in the next step, as shown in FIG. 20, a smooth part 207 outside the tube, that is, a part where a concave part is not formed when forming a protrusion, has a porous heat transfer surface structure 2 that is effective for boiling heat transfer.
08 will be provided. Note that 230 is a recess formed when the protrusion 3 is provided.

この場合、管外熱伝達率を向上させるための管外微細加
工を初めに行い、そののち管内リブを形成するためのロ
ール加工を行ってもよいが、管内ロール加工を行う際に
ロール加工用工具の構造によっては、先に形成されてい
る管外伝熱促進面構造を潰すことがあるので、管内加工
を先に行い管内リブを形成し、そののち管外微細加工を
行う場合をここでは説明する。
In this case, micro-machining on the outside of the tube to improve the heat transfer coefficient outside the tube may be performed first, and then roll processing may be performed to form ribs on the inside of the tube. Depending on the structure of the tool, the previously formed external heat transfer promoting surface structure may be destroyed, so we will explain here the case where the internal processing is performed first to form the internal ribs, and then the external micromachining is performed. do.

一例として、先ずローレット加工によって、管軸に対し
てほぼ45°の方向に浅い溝(0,1〜0.2■)を形
成させる6次に管軸に対してほぼ直角にバイトによるす
き起こし加工を行い、フィン212を形成させる。この
フィン高さは約1■、ピッチは0.4〜0.6mが適当
である。このようにすることにより、加工前に平滑であ
った面上にノコギリ歯状のフィン列が設けられる0次の
工程によるロール加工などによって、ノコギリ歯状フィ
ンをねかせて、あるいはフィンをつぶすような方法によ
り、隣接フィン同志を接合して、伝熱面の表皮下に空洞
209と開孔210を有する多孔製構造208を形成出
来る。第21図に伝熱管の外観を示す。
As an example, first, a shallow groove (0.1 to 0.2 mm) is formed in a direction of approximately 45 degrees to the tube axis by knurling.6 Next, a cutting process is performed using a cutting tool at approximately right angles to the tube axis. is performed to form the fins 212. Appropriately, the height of the fins is approximately 1 cm, and the pitch is approximately 0.4 to 0.6 m. By doing this, it is possible to cause the sawtooth fins to lie down or to crush the fins by rolling, etc. in a zero-order process in which rows of sawtooth fins are provided on a smooth surface before processing. The method allows adjacent fins to be joined together to form a porous structure 208 having cavities 209 and apertures 210 under the skin of the heat transfer surface. Figure 21 shows the appearance of the heat exchanger tube.

例えば、このような伝熱管の管内に水を、管外に低沸点
有機媒体であるフレオン冷媒を流す場合を例にとる。伝
熱管を多数洞内に挿入したシェルチューブ形熱交換器が
広くターボ冷凍機の蒸発器などの利用されている。管内
側の水の温度が管外側のフレオン冷媒の温度に比べて約
5〜10℃ぐらい高いのが通例である。管内流は、突起
の存在により、壁面近傍において乱れを生成し、管内壁
と管内流の主流との間の熱交換が、平滑な面の場合に比
へて活発に行なわれる。
For example, let us consider a case where water is flowed into the inside of such a heat transfer tube and Freon refrigerant, which is a low boiling point organic medium, is flowed outside the tube. Shell-tube heat exchangers, in which multiple heat transfer tubes are inserted into cavities, are widely used in evaporators of turbo refrigerators, etc. Typically, the temperature of the water inside the tube is about 5 to 10 degrees Celsius higher than the temperature of the Freon refrigerant outside the tube. Due to the presence of the protrusions, the flow within the tube generates turbulence near the wall surface, and heat exchange between the inner wall of the tube and the main flow of the flow within the tube is more active than in the case of a smooth surface.

一方、管外壁と管外側のフレオン液冷媒との熱交換にお
いては、一旦沸騰が起きると、空洞内に蒸気泡が保持さ
れ、空洞内壁と蒸気泡の間に薄いフレオン液膜が形成さ
れる。この薄液膜の蒸発によって、液の蒸発にもとづく
潜熱輸送が促進される。
On the other hand, in heat exchange between the outer wall of the tube and the Freon liquid refrigerant on the outside of the tube, once boiling occurs, vapor bubbles are retained within the cavity, and a thin Freon liquid film is formed between the inner wall of the cavity and the vapor bubbles. The evaporation of this thin liquid film promotes latent heat transport based on the evaporation of the liquid.

第22図に第21図の実施例のもので突起高さが0.3
asの場合を例にとり、突起ピッチPが伝熱管の伝熱効
率に及ぼす影響を示す0図かられかるように、高い伝熱
効率が得られる突起ピッチPの最適な範囲がある。つま
り、Pが大きい場合は管外側の平滑部の面積が大きくな
り、沸騰伝熱に有効な機械加工により多孔質構造を形成
する伝熱面積を広くとれる。そのために管外側の伝熱効
率は、その面積増加分向上する。
Figure 22 shows the embodiment shown in Figure 21 with a protrusion height of 0.3.
Taking the case of as as an example, there is an optimal range of the protrusion pitch P in which high heat transfer efficiency can be obtained, as can be seen from Figure 0, which shows the influence of the protrusion pitch P on the heat transfer efficiency of the heat transfer tube. That is, when P is large, the area of the smooth portion on the outside of the tube becomes large, and the heat transfer area forming the porous structure can be widened by machining effective for boiling heat transfer. Therefore, the heat transfer efficiency on the outside of the tube is improved by the increase in area.

一方、管内側の熱伝達率は、Pが大きくなると第23図
のように突起3によって生ずる流れの乱れ7oが、その
後流側の壁面近傍部まで影響を及ぼさない領域が生じる
ために、急激に伝熱効率が低下する。この場合、管外側
の沸騰性能が向上する割合に比べて、管内側の強制対流
による伝熱性能の低下割合が大きい、そのために伝熱管
としての総合的な伝熱効率はPが大きくなると急激に低
下する0次にPが小さい場合は、ある程度よりも小さく
しても乱れの影響が及ぼす伝熱面範囲は増加しないため
、管内強制対流の伝熱効率はそれぼど変化しなくなる。
On the other hand, as P increases, the heat transfer coefficient on the inside of the tube suddenly increases, as shown in FIG. Heat transfer efficiency decreases. In this case, the rate of decrease in heat transfer performance due to forced convection on the inside of the tube is greater than the rate of improvement in boiling performance on the outside of the tube, and therefore the overall heat transfer efficiency of the heat transfer tube decreases rapidly as P increases. When the zero-order P is small, the heat transfer surface area affected by turbulence does not increase even if it is made smaller than a certain level, so the heat transfer efficiency of forced convection in the tube hardly changes.

一方、管外側は、Pが小さくなると、管外くぼみの占め
る面積の、管外全体の面積に対する割合が急激に小さく
なるために、管外沸騰伝熱性能も急激に低下する。従っ
て、伝熱管としての総合的な伝熱効率はPが小さくなっ
ても急激に低下する1以上のような現象によって、伝熱
管の総合的な伝熱効率を高く保つ最適な突起ピッチPの
範囲が存在することになる。第22図から伝熱管の熱通
過率の最適な範囲は5圓〜15mである。
On the other hand, as P becomes smaller on the outside of the tube, the ratio of the area occupied by the outside of the tube to the area of the entire outside of the tube rapidly decreases, so that the boiling heat transfer performance outside the tube also decreases rapidly. Therefore, due to the phenomenon of 1 or more in which the overall heat transfer efficiency of a heat transfer tube decreases rapidly even when P becomes small, there is an optimal range of protrusion pitch P that maintains a high overall heat transfer efficiency of the heat transfer tube. I will do it. From FIG. 22, the optimum range for the heat transfer coefficient of the heat transfer tube is 5 m to 15 m.

ところで、本発明の伝熱管でシェル・チューブ形熱交換
器を構成する場合、第24@に示すように伝熱管の両端
部215を広げておいて、突起形成加工を行った後に、
管板216に伝熱管を挿入して拡管などにより管板と伝
熱管とを接合する方法がとれる。従来のプラグ加工、あ
るいは引き抜き加工により管内に突起を設ける方法は、
伝熱管の両端部がストレートでなければ加工が出来ない
ため、一旦管内突起加工を行った後に、両端部分の突起
を切削加工して、平滑面にしてから拡管を行っている。
By the way, when constructing a shell-tube heat exchanger using the heat exchanger tube of the present invention, as shown in No. 24@, both ends 215 of the heat exchanger tube are widened, and after the protrusion forming process is performed,
A method can be used in which the heat exchanger tubes are inserted into the tube sheet 216 and the tube sheet and the heat exchange tubes are joined by tube expansion or the like. The method of creating protrusions inside the pipe by conventional plug processing or drawing processing is as follows:
Since it is impossible to process the heat exchanger tube unless both ends are straight, the protrusions on the inside of the tube are first processed, and then the protrusions at both ends are cut to make a smooth surface before expansion.

従って本発明による伝熱管は、シェル・チューブ熱交換
器を構成する場合において、その組立工程を減らすこと
が可能となる。
Therefore, when the heat exchanger tube according to the present invention constitutes a shell-tube heat exchanger, it is possible to reduce the assembly process.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱伝達率が高く耐久性の高い伝熱管が
得られると共に、安価に製造できる。
According to the present invention, a heat exchanger tube with high heat transfer coefficient and high durability can be obtained, and can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例になる伝熱管の縦断面図、第
2図は、本発明の伝熱管構造を示す要部拡大斜視図、第
3図(A)、(B)、(C)。 (D)は、この発明の他の実施例を示す平面図、第4図
(A)、(B)、(C)、(D)は各々第3図の(A)
、(B)、(c)、(D)の横断面図、第5図及び第5
A図は本発明の製法の一例を示す図、第6図は本発明の
詳細な説明図、第7図は9本発明の伝熱管の断面図、第
8図は同正面図、第9図〜第11図及び第14図〜第1
7図は、本発明の実験データの一例を示す図、第12図
、第13図及び第18図、第19図は突起ピッチと伝熱
効率の関係を示す図、第20図、第21図は本発明を応
用した伝熱管の一例を示す図、第22図〜第23図は第
20図の実施例の性能を説明する図、第24図は第20
図の実施例の用途例を示す図である。 1・・・伝熱管、3・・・突起、40・・・歯、52・
・・円管固第 1 図 z z 図 イ 3 図 <A)       (B) 茗4 図 (A)              (B)゛ふ二、l
屯途弘 舊5図 ¥:J  q 回 しイノル人゛数 尺e 冨  /θ 図 ρ4       ρ、5       ρ・6突fF
L高1CC代−) 第 11  図 しイノルに数 Re 冨 12  図 ′¥J ノ3 図 冨 74 図 円周方間ビヅチ2(取??t) ’f、  15図 しイノルスパ数 Re K  /8 図 、ヲ 矧 Z77  図 ¥JZ1図 vZZ図 Ml方口ビノチ (gy art) 冨 23  図 遁 24   図
FIG. 1 is a longitudinal sectional view of a heat exchanger tube according to an embodiment of the present invention, FIG. 2 is an enlarged perspective view of the main part showing the structure of the heat exchanger tube of the present invention, and FIGS. 3(A), (B), ( C). (D) is a plan view showing another embodiment of the present invention, and FIGS. 4(A), (B), (C), and (D) are respectively (A) of FIG.
, (B), (c), (D) cross-sectional views, Figures 5 and 5.
Figure A is a diagram showing an example of the manufacturing method of the present invention, Figure 6 is a detailed explanatory diagram of the present invention, Figure 7 is a cross-sectional view of the heat exchanger tube of the present invention, Figure 8 is a front view of the same, Figure 9 ~Figures 11 and 14~1
FIG. 7 is a diagram showing an example of experimental data of the present invention, FIGS. 12, 13, 18, and 19 are diagrams showing the relationship between protrusion pitch and heat transfer efficiency, and FIGS. A diagram showing an example of a heat exchanger tube to which the present invention is applied, FIGS. 22 to 23 are diagrams explaining the performance of the embodiment of FIG. 20, and FIG.
It is a figure which shows the example of a use of the Example of a figure. DESCRIPTION OF SYMBOLS 1... Heat exchanger tube, 3... Protrusion, 40... Teeth, 52...
... Circular tube solidity No. 1 Figure z z Figure A 3 Figure < A) (B) Meat 4 Figure (A) (B) ゛F2, l
Tundu Hongke 5 figure ¥: J q Turning Inorian number Shake Toku /θ Figure ρ4 ρ, 5 ρ・6 tut fF
L height 1 CC range -) No. 11 Fig. Inol number Re 12 Fig.'¥J ノ3 Fig. 74 Fig. Circumferential width 2 (take??t) 'f, 15 Fig. Inol spa number Re K /8 Figures, wo 矧 Z77 Figure ¥ JZ1 Figure vZZ Figure Ml Directions (gy art) Tomi 23 Figure 24 Figure

Claims (3)

【特許請求の範囲】[Claims] 1.伝熱管内面に、1条あるいは複数条の螺旋曲線に沿
つて一定間隙で断続的に設けられた突起の列を有し、各
突起列の間の管内表面は管軸に対して平行な面を有する
ものにおいて、前記各突起は、高さが0.45mm〜0
.6mm、円周方向ピッチが3.5〜5mmであり、底
面及び任意の高さにおける横断面形状が円、楕円もしく
はこれらに近似したなめらかな曲線からなり、横断面積
が突起の高さ方向に連続的に減少することを特徴とする
伝熱管。
1. The inner surface of the heat exchanger tube has a row of protrusions intermittently provided at regular intervals along one or more spiral curves, and the inner surface of the tube between each row of protrusions has a plane parallel to the tube axis. in which each of the protrusions has a height of 0.45 mm to 0.
.. 6 mm, the circumferential pitch is 3.5 to 5 mm, the cross-sectional shape at the bottom and any height is a circle, ellipse, or a smooth curve similar to these, and the cross-sectional area is continuous in the height direction of the protrusion. A heat exchanger tube characterized by a reduction in temperature.
2.伝熱管内面に、1条あるいは複数条の螺旋曲線に沿
つて一定間隙で断続的に設けられた突起の列を有し、各
突起列の間の管内表面は管軸に対して平行な面を有し、
伝熱管外面に多孔質伝熱面を有するものにおいて、前記
各突起は高さが0.45mm〜0.6mm、円周方向ピ
ツチが3.5mm〜5mm、軸方向ピツチが5mm〜1
5mmであり、かつ各突起は底面及び任意の高さにおけ
る横断面形状が円、楕円もしくはこれらに近似したなめ
らかな曲線からなり、横断面積が突起の高さ方向に連続
的に減少することを特徴とする伝熱管。
2. The inner surface of the heat exchanger tube has a row of protrusions intermittently provided at regular intervals along one or more spiral curves, and the inner surface of the tube between each row of protrusions has a plane parallel to the tube axis. have,
In a heat transfer tube having a porous heat transfer surface on the outer surface, each of the projections has a height of 0.45 mm to 0.6 mm, a circumferential pitch of 3.5 mm to 5 mm, and an axial pitch of 5 mm to 1.
5 mm, and the cross-sectional shape of each protrusion at the bottom and at any height is a circle, an ellipse, or a smooth curved line approximating these, and the cross-sectional area decreases continuously in the height direction of the protrusion. heat exchanger tube.
3.伝熱管内面に、塑性加工により、1条あるいは複数
条の螺旋曲線に沿つて管軸に平行な面をへだてて一定間
隙で断続的に突起列を設けるものにおいて、外周上に断
続的に突起を有する歯車状の工具と円管固定用工具を用
いて管外から管内への押出し加工を行なうことにより、
管内面に断続的な突起列を形成することを特徴とする伝
熱管の製造方法。
3. In the case where the inner surface of the heat exchanger tube is provided with a row of protrusions intermittently at constant intervals along one or more spiral curves along a surface parallel to the tube axis by plastic working, the protrusion is intermittently formed on the outer periphery. By extruding from the outside of the tube into the inside of the tube using a gear-shaped tool and a circular tube fixing tool,
A method for manufacturing a heat exchanger tube, characterized by forming intermittent rows of protrusions on the inner surface of the tube.
JP60128200A 1985-06-14 1985-06-14 Heat transfer tube and manufacturing method thereof Expired - Lifetime JPH0670556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60128200A JPH0670556B2 (en) 1985-06-14 1985-06-14 Heat transfer tube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128200A JPH0670556B2 (en) 1985-06-14 1985-06-14 Heat transfer tube and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS61289293A true JPS61289293A (en) 1986-12-19
JPH0670556B2 JPH0670556B2 (en) 1994-09-07

Family

ID=14978939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128200A Expired - Lifetime JPH0670556B2 (en) 1985-06-14 1985-06-14 Heat transfer tube and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0670556B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173763B1 (en) * 1994-10-28 2001-01-16 Kabushiki Kaisha Toshiba Heat exchanger tube and method for manufacturing a heat exchanger
JP2002070658A (en) * 2000-08-31 2002-03-08 Calsonic Kansei Corp Exhaust gas heat exchanger for vehicular exhaust gas recirculation device
JP2002090081A (en) * 2000-09-11 2002-03-27 Valeo Engine Cooling Ab Fluid transportation tube and cooler for automobile comprising the same
JP2005221094A (en) * 2004-02-03 2005-08-18 Iwai Kikai Kogyo Co Ltd Heat transfer pipe for heat exchanger
JPWO2004046277A1 (en) * 2002-11-15 2006-03-16 株式会社クボタ Cracking tube with spiral fin
JP2006514733A (en) * 2003-05-10 2006-05-11 チンファ ユニバーシティ Enhanced heat exchanger tube with discontinuous bi-directionally inclined internal ribs
WO2006103788A1 (en) 2005-03-25 2006-10-05 Tsinghua University Heat transfer tube for supplying hot water
JP2008215766A (en) * 2007-03-07 2008-09-18 Daikin Ind Ltd Heat exchanger for hot water supply
WO2008120699A1 (en) * 2007-03-30 2008-10-09 Kubota Corporation Thermal decomposition tube
JP2009056479A (en) * 2007-08-31 2009-03-19 Orion Mach Co Ltd Heat transfer pipe manufacturing device and method, and heat transfer pipe
JP2009264644A (en) * 2008-04-24 2009-11-12 Panasonic Corp Heat exchanger
JPWO2008029639A1 (en) * 2006-09-08 2010-01-21 清華大学 Corrugated heat transfer tube for hot water supply
JP2010038429A (en) * 2008-08-04 2010-02-18 Panasonic Corp Heat exchanger
JP2011133141A (en) * 2009-12-22 2011-07-07 Kazuo Taka Heating pipe and cooking machine
JP2015117923A (en) * 2013-12-20 2015-06-25 日立アプライアンス株式会社 Air conditioner
JP2018096655A (en) * 2016-12-16 2018-06-21 三菱電機株式会社 Tube with spirally corrugated groove, heat exchanger, and method of manufacturing tube with spirally corrugated groove
WO2021132310A1 (en) * 2019-12-27 2021-07-01 株式会社クボタ Pyrolysis tube provided with fluid stirring element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176593A (en) * 1983-03-24 1984-10-05 Hitachi Cable Ltd Boiling type heat transfer tube and manufacture thereof
JPS6029594A (en) * 1983-07-27 1985-02-14 Sumitomo Light Metal Ind Ltd Heat-transmitting pipe and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176593A (en) * 1983-03-24 1984-10-05 Hitachi Cable Ltd Boiling type heat transfer tube and manufacture thereof
JPS6029594A (en) * 1983-07-27 1985-02-14 Sumitomo Light Metal Ind Ltd Heat-transmitting pipe and manufacture thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173763B1 (en) * 1994-10-28 2001-01-16 Kabushiki Kaisha Toshiba Heat exchanger tube and method for manufacturing a heat exchanger
JP2002070658A (en) * 2000-08-31 2002-03-08 Calsonic Kansei Corp Exhaust gas heat exchanger for vehicular exhaust gas recirculation device
JP2002090081A (en) * 2000-09-11 2002-03-27 Valeo Engine Cooling Ab Fluid transportation tube and cooler for automobile comprising the same
JP4638583B2 (en) * 2000-09-11 2011-02-23 チタンエックス エンジン クーリング ホールディング アクチボラグ Fluid transport tube and automotive cooler comprising the tube
JPWO2004046277A1 (en) * 2002-11-15 2006-03-16 株式会社クボタ Cracking tube with spiral fin
US7799963B2 (en) 2002-11-15 2010-09-21 Kubota Corporation Cracking tube having helical fins
JP2006514733A (en) * 2003-05-10 2006-05-11 チンファ ユニバーシティ Enhanced heat exchanger tube with discontinuous bi-directionally inclined internal ribs
JP2005221094A (en) * 2004-02-03 2005-08-18 Iwai Kikai Kogyo Co Ltd Heat transfer pipe for heat exchanger
AU2005329849B2 (en) * 2005-03-25 2009-09-03 Daikin Industries, Ltd. Hot water heat transfer pipe
US8215380B2 (en) 2005-03-25 2012-07-10 Tsinghua University Hot water heat transfer pipe
CN100451531C (en) * 2005-03-25 2009-01-14 清华大学 Water heater heat exchange tube
JP2009068838A (en) * 2005-03-25 2009-04-02 Tsinghua Univ Heat transfer tube for supplying hot water
WO2006103788A1 (en) 2005-03-25 2006-10-05 Tsinghua University Heat transfer tube for supplying hot water
JPWO2006103788A1 (en) * 2005-03-25 2008-09-04 清華大学 Heat transfer pipe for hot water supply
JPWO2008029639A1 (en) * 2006-09-08 2010-01-21 清華大学 Corrugated heat transfer tube for hot water supply
JP4768029B2 (en) * 2006-09-08 2011-09-07 清華大学 Corrugated heat transfer tube for hot water supply
JP2008215766A (en) * 2007-03-07 2008-09-18 Daikin Ind Ltd Heat exchanger for hot water supply
WO2008120699A1 (en) * 2007-03-30 2008-10-09 Kubota Corporation Thermal decomposition tube
JP2008249249A (en) * 2007-03-30 2008-10-16 Kubota Corp Thermal decomposition pipe
US8231837B2 (en) 2007-03-30 2012-07-31 Kubota Corporation Thermal cracking tube
JP2009056479A (en) * 2007-08-31 2009-03-19 Orion Mach Co Ltd Heat transfer pipe manufacturing device and method, and heat transfer pipe
JP2009264644A (en) * 2008-04-24 2009-11-12 Panasonic Corp Heat exchanger
JP2010038429A (en) * 2008-08-04 2010-02-18 Panasonic Corp Heat exchanger
JP2011133141A (en) * 2009-12-22 2011-07-07 Kazuo Taka Heating pipe and cooking machine
JP2015117923A (en) * 2013-12-20 2015-06-25 日立アプライアンス株式会社 Air conditioner
WO2015093183A1 (en) * 2013-12-20 2015-06-25 日立アプライアンス株式会社 Air conditioner
JP2018096655A (en) * 2016-12-16 2018-06-21 三菱電機株式会社 Tube with spirally corrugated groove, heat exchanger, and method of manufacturing tube with spirally corrugated groove
WO2021132310A1 (en) * 2019-12-27 2021-07-01 株式会社クボタ Pyrolysis tube provided with fluid stirring element
JPWO2021132310A1 (en) * 2019-12-27 2021-12-23 株式会社クボタ Pyrolysis tube with fluid agitation element

Also Published As

Publication number Publication date
JPH0670556B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
JPS61289293A (en) Heat transfer tube and manufacture thereof
Maradiya et al. The heat transfer enhancement techniques and their thermal performance factor
US4715436A (en) Construction of a heat transfer wall of a heat transfer pipe
EP0165583B1 (en) Heat transfer tube for single phase flow
Sheikholeslami et al. Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices
JPH10103887A (en) Heat transfer pipe and its manufacture
JP2010532855A (en) Finned tube with stepped top
JPH08291988A (en) Structure of heat exchanger
US7175393B2 (en) Transonic blade profiles
JPH08178574A (en) Cross-grooved inside surface heat transfer tube for mixed refrigerant and heat exchanger using the same
US20150330713A1 (en) Heat exchanger and heat exchanging unit
KR100472526B1 (en) Heat exchanger tube for absorber and its manufacturing method
US7418848B2 (en) High-performance and high-efficiency rolled fin tube and forming disk therefor
US20080078534A1 (en) Heat exchanger tube with enhanced heat transfer co-efficient and related method
JP5642462B2 (en) Heat exchanger tube for heat exchanger and heat exchanger using the same
JPS61280390A (en) Heat exchanger and manufacture thereof
JP2580353B2 (en) ERW heat transfer tube and its manufacturing method
JPS6029594A (en) Heat-transmitting pipe and manufacture thereof
KR102537524B1 (en) Fan
Saha et al. Active and passive techniques: their applications
JPH0639463A (en) Manufacture of heat transmission tube
JP3622297B2 (en) Heat exchanger
JPS62242795A (en) Heat transfer tube
JPH11337284A (en) Heat exchanger
Saha et al. 2D Roughness, 3D Roughness and Roughness Applications

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term