JP2018096655A - Tube with spirally corrugated groove, heat exchanger, and method of manufacturing tube with spirally corrugated groove - Google Patents

Tube with spirally corrugated groove, heat exchanger, and method of manufacturing tube with spirally corrugated groove Download PDF

Info

Publication number
JP2018096655A
JP2018096655A JP2016243947A JP2016243947A JP2018096655A JP 2018096655 A JP2018096655 A JP 2018096655A JP 2016243947 A JP2016243947 A JP 2016243947A JP 2016243947 A JP2016243947 A JP 2016243947A JP 2018096655 A JP2018096655 A JP 2018096655A
Authority
JP
Japan
Prior art keywords
tube
groove
circular
spiral corrugated
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016243947A
Other languages
Japanese (ja)
Other versions
JP2018096655A5 (en
JP6818536B2 (en
Inventor
晋介 中畑
Shinsuke Nakahata
晋介 中畑
幸大 宮川
Yukihiro Miyagawa
幸大 宮川
徹 小出
Toru Koide
徹 小出
徹 利根川
Toru Tonegawa
徹 利根川
貴之 大井
Takayuki Oi
貴之 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016243947A priority Critical patent/JP6818536B2/en
Publication of JP2018096655A publication Critical patent/JP2018096655A/en
Publication of JP2018096655A5 publication Critical patent/JP2018096655A5/ja
Application granted granted Critical
Publication of JP6818536B2 publication Critical patent/JP6818536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tube with a spirally corrugated groove which has high heat transfer performance, a heat exchanger which uses the tube with the groove, and a method of manufacturing the tube with the spirally corrugated groove that can easily perform molding processing on the tube with the groove with a small man-hour.SOLUTION: A tube with a spirally corrugated groove is characterized in that: a circular tube is provided, on its outer peripheral surface 10, with a radially two-staged deformation part consisting of at least one groove part 11 in a spirally corrugated shape along a longer direction of the circular tube and a radially outer deformation part (hollow 12) of the circular tube formed continuously in a bottom part longer direction of the groove part, and also provided, on its inner peripheral surface 20, with a radially two-staged deformation part consisting of a projection part 21 in a spirally corrugated shape corresponding to the groove part and a radially inner deformation part (projection part 22) formed at the projection part, corresponding to the outer deformation part, and intermittent in a longer direction.SELECTED DRAWING: Figure 1

Description

この発明は、例えばヒートポンプ式給湯機等の熱交換器用の伝熱管などとして用いられる螺旋状波形溝付管、熱交換器、及び螺旋状波形溝付管の製造方法に関するものである。   The present invention relates to a spiral corrugated grooved tube used as a heat transfer tube for a heat exchanger such as a heat pump water heater, a heat exchanger, and a method of manufacturing a spiral corrugated grooved tube.

空気調和機、給湯機などの熱交換器に設けられる伝熱管には、平滑管の他に螺旋曲線に沿って形成された溝付管(例えば、特許文献1参照)や、管外表面に凹みを設けることで管内面に突起が形成された管などがある。例えば、熱交換器として、金属製円管の管外表面に形成された少なくとも一条の螺旋曲線に沿って断続的に管外表面に凹み(窪み)の列を設け、凹み形成に伴って管内面に、底面及び任意の高さにおける横断面形状が円形・楕円形または非対称楕円形曲線を成し、その横断面積が高さ方向に減少する突起列が形成されるような加工を施した伝熱管を用いた熱交換器がある(例えば、特許文献2参照)。
なお、特許文献2には、管外表面に凹みの列が、管内表面にはその凹みに基づく突起列が、何れも螺旋曲線4に沿って形成されたものが開示されているが、螺旋曲線4はロール10の軌跡を破線で示した仮想的なものであって、凹みの列、または突起列以外のものは示されていない。
A heat transfer tube provided in a heat exchanger such as an air conditioner or a water heater has a grooved tube formed along a spiral curve in addition to a smooth tube (see, for example, Patent Document 1), or a recess on the outer surface of the tube. There are pipes having protrusions formed on the inner surface of the pipe. For example, as a heat exchanger, a row of dents (dents) is intermittently provided on the outer surface of the tube along at least one spiral curve formed on the outer surface of the metal circular tube. In addition, the heat transfer tube is processed so that a cross-sectional shape at the bottom surface and at an arbitrary height forms a circular / elliptical or asymmetrical elliptic curve, and a row of protrusions whose cross-sectional area decreases in the height direction is formed. There is a heat exchanger using (see, for example, Patent Document 2).
Japanese Patent Application Laid-Open No. H10-260260 discloses a configuration in which a row of dents is formed on the outer surface of the tube and a row of protrusions based on the dent is formed on the inner surface of the tube along the spiral curve 4. Reference numeral 4 denotes a virtual one in which the trajectory of the roll 10 is indicated by a broken line.

特開2003−126916号公報(図1)JP2003-126916A (FIG. 1) 特開昭61−280390号公報(図5)JP 61-280390 A (FIG. 5)

伝熱管の伝熱性能を向上させるためには、螺旋状波形溝付管における溝部に断続的に凹みないしは窪み(以下、「窪み」という)を形成することで管内の伝熱面積を増加させ、また管内に流れる流体に一層の乱れを誘起させて高い伝熱性能を得ることができることが考えられる。
このような、断続的な窪みを有する螺旋状波形溝付管は、例えば、円管にローラー状加工ツールを用いて、先ず螺旋状の溝を形成し、その後、螺旋状の溝部分に歯車状のロールを押付けることで、溝部分に窪みの列が形成できるように考えられるが、螺旋溝の周期と歯車状のロールの窪みの周期を合わせるのは困難で、特に長尺管の場合は精度の高い周期調整が必要となるため、困難さが更に増すという問題があった。また、螺旋状溝付管の溝部分に窪みの形成位置を選択的に決めることが困難である上、加工工程は二段階となるため、品質や歩留まりが悪く、コストアップ要因となる問題があった。
また、螺旋溝が設けられておらず、窪みのみが螺旋状に形成された円管を利用して、後から窪みに沿って螺旋溝加工を付けることも考えられるが、窪みの螺旋周期と螺旋溝の周期を合わせることは困難であり、かつ窪み部分を選択的に形成することも困難であるなどの問題があって、従来技術では実現されていなかった。
In order to improve the heat transfer performance of the heat transfer tube, the heat transfer area in the tube is increased by forming recesses or depressions (hereinafter referred to as “dents”) intermittently in the groove part of the spiral corrugated grooved tube, In addition, it is conceivable that high heat transfer performance can be obtained by inducing further disturbance in the fluid flowing in the pipe.
Such a spiral corrugated grooved tube having intermittent depressions is formed, for example, by first forming a spiral groove using a roller-like processing tool on a circular tube and then forming a gear-like shape on the spiral groove portion. However, it is difficult to match the period of the spiral groove with the period of the gear-shaped roll depression, especially in the case of long pipes. There is a problem that difficulty is further increased because highly accurate cycle adjustment is required. In addition, it is difficult to selectively determine the formation position of the recess in the groove portion of the spiral grooved tube, and since the processing process is a two-step process, there is a problem that quality and yield are poor and this causes cost increase. It was.
In addition, it is conceivable to use a circular tube in which only a recess is formed spirally without a spiral groove, and it is possible to add a spiral groove process along the recess later. There are problems that it is difficult to match the period of the grooves and that it is difficult to selectively form the recessed portion, and this has not been realized in the prior art.

この発明は、前記のような実情に鑑みなされたもので、螺旋状波形の溝部分に、溝方向に断続的な窪みなどの径方向の変形部分を設けることにより管内の伝熱面積が増大され、管内に流れる流体に乱れを誘起させて高い伝熱性能が得られるようにした螺旋状波形溝付管、その溝付管を用いた熱交換器、及び前記溝付管を少ない加工工数で容易に成形加工できる螺旋状波形溝付管の製造方法を得ることを目的としている。   The present invention has been made in view of the above circumstances, and the heat transfer area in the pipe is increased by providing a radially deformed portion such as an intermittent depression in the groove direction in the groove portion of the spiral waveform. A spiral corrugated grooved tube that induces turbulence in the fluid flowing in the tube to obtain high heat transfer performance, a heat exchanger using the grooved tube, and the grooved tube can be easily processed with a small number of processing steps. It aims at obtaining the manufacturing method of the spiral corrugated grooved pipe | tube which can be shape | molded into.

この発明に係る螺旋状波形溝付管は、円管の外周面に、該円管の長手方向に沿う少なくとも一条の螺旋状波形の溝部と、その溝部の底部長手方向に断続的に形成された前記円管の径方向の外側変形部と、からなる径方向に2段の変形部分が設けられ、前記円管の内周面には前記溝部に対応する螺旋状波形の突条部と、その突条部に形成された前記外側変形部に対応する長手方向に断続的な径方向の内側変形部と、からなる径方向に2段の変形部分が設けられたことを特徴とするものである。
また、この発明に係る熱交換器は、円管の外周面に、該円管の長手方向に沿う少なくとも一条の螺旋状波形の溝部と、その溝部の底部長手方向に断続的に形成された前記円管の径方向の外側変形部と、からなる径方向に2段の変形部分が設けられ、前記円管の内周面には前記溝部に対応する螺旋状波形の突条部と、その突条部に形成された前記外側変形部に対応する長手方向に断続的な径方向の内側変形部と、からなる径方向に2段の変形部分が設けられた螺旋状波形溝付管を用いたものである。
また、この発明に係る螺旋状波形溝付管の製造方法は、所定位置に保持されるワークとしての円管の外周部に少なくとも一つ配設され、該円管の管軸方向に対して所定角度傾斜された軸の周りに回転自在に保持されたローラーからなっていて、その外周面から径方向に突出された周方向に少なくとも一つの突起を有する加工ツールを、前記円管の外周面に押付けた状態で、前記円管の管軸方向に転動させることで、前記円管の外周面に、管軸方向に沿う少なくとも一条の螺旋状波形の溝部と、その溝部の底部を更に前記円管の中心方向に断続的に凹ませた前記突起に対応する複数の窪みと、が形成された螺旋状波形溝付管を得るようにしたものである。
The spiral corrugated grooved tube according to the present invention is formed on the outer peripheral surface of the circular tube intermittently in the longitudinal direction of at least one spiral corrugated groove along the longitudinal direction of the circular tube and the bottom of the groove. A radially outer deformed portion of the circular pipe, and a two-stage deformed portion is provided in the radial direction, and a spiral corrugated ridge corresponding to the groove portion on the inner peripheral surface of the circular pipe; A two-stage deformed portion is provided in the radial direction, the inner deformed portion being intermittent in the longitudinal direction corresponding to the outer deformed portion formed on the protruding portion, and the radially deformed portion. is there.
Further, the heat exchanger according to the present invention is formed on the outer peripheral surface of the circular tube intermittently in the longitudinal direction of at least one spiral corrugated groove along the longitudinal direction of the circular tube and in the longitudinal direction of the bottom of the groove. A radially outer deformed portion of the circular pipe, and a two-stage deformed portion in the radial direction is provided; a spiral corrugated ridge corresponding to the groove portion on the inner peripheral surface of the circular pipe; and Using a spiral corrugated grooved tube provided with a radially deformed inner deformed portion corresponding to the outer deformed portion formed on the ridge, and a radially deformed two-stage deformed portion. It was.
Further, in the manufacturing method of the spiral corrugated grooved tube according to the present invention, at least one is arranged on the outer peripheral portion of the circular tube as a work held at a predetermined position, and the predetermined method is used with respect to the tube axis direction of the circular tube. A processing tool comprising a roller rotatably held around an angle inclined shaft and having at least one protrusion in the circumferential direction protruding radially from the outer peripheral surface thereof is provided on the outer peripheral surface of the circular pipe. By rolling in the tube axis direction of the circular tube in the pressed state, at least one spiral corrugated groove portion along the tube axis direction and the bottom portion of the groove portion are further formed on the outer peripheral surface of the circular tube. A spiral corrugated grooved tube in which a plurality of depressions corresponding to the protrusions intermittently dented in the central direction of the tube are formed is obtained.

この発明の螺旋状波形溝付管は、円管の内周面に、外周面の溝部に対応する螺旋状波形の突条部と、その突条部に形成された外側変形部に対応する長手方向に断続的な径方向の内側変形部とからなる円管の径方向に2段の変形部分が、円管の長手方向に設けられていることにより、管内の伝熱面積が増大されると共に、管内に流れる流体に乱れを誘起させて高い伝熱性能が得られる。
また、この発明の螺旋状波形溝付管を用いた熱交換器によれば、円管の内周面に、外周面の溝部に対応する螺旋状波形の突条部と、その突条部に形成された外側変形部に対応する長手方向に断続的な径方向の内側変形部とからなる円管の径方向に2段の変形部分が円管の長手方向に設けられていることにより、管内の伝熱面積が増大されると共に、管内に流れる流体に乱れを誘起させて高い伝熱性能が得られることで、熱交換効率に優れた熱交換器が得られる。
また、この発明の螺旋状波形溝付管の製造方法によれば、ローラー状の外周面から径方向に突出された周方向に少なくとも一つの突起を有する加工ツールを、円管の外周面に押付けた状態で円管の管軸方向に転動させることで、円管の外周面に、管軸方向に沿う少なくとも一条の螺旋状波形の溝部と、その溝部の底部を更に円管の中心方向に断続的に凹ませた前記突起に対応する複数の窪みと、が形成された螺旋状波形溝付管を得るようにしたので、螺旋状波形の溝部の形成とその溝部への窪み形成とを一括加工することができ、加工工数が削減され加工コストも抑えることができる。
The spiral corrugated grooved tube of the present invention has a spiral corrugated ridge corresponding to the groove on the outer peripheral surface on the inner peripheral surface of the circular tube, and a longitudinal length corresponding to the outer deformed portion formed on the ridge. Since the two-stage deformed portion in the radial direction of the circular tube, which is composed of the radially inner deformed portion intermittent in the direction, is provided in the longitudinal direction of the circular tube, the heat transfer area in the tube is increased. High heat transfer performance can be obtained by inducing turbulence in the fluid flowing in the pipe.
Further, according to the heat exchanger using the spiral corrugated grooved tube of the present invention, on the inner peripheral surface of the circular tube, the spiral corrugated protrusion corresponding to the groove on the outer peripheral surface, and the protrusion By providing a two-stage deformed portion in the longitudinal direction of the circular tube in the radial direction of the circular tube composed of the radially deformed inner deformed portion intermittent in the longitudinal direction corresponding to the formed outer deformed portion, As the heat transfer area is increased and disturbance is induced in the fluid flowing in the pipe to obtain high heat transfer performance, a heat exchanger excellent in heat exchange efficiency can be obtained.
Further, according to the manufacturing method of the spiral corrugated grooved tube of the present invention, a processing tool having at least one protrusion in the circumferential direction protruding radially from the roller-shaped outer peripheral surface is pressed against the outer peripheral surface of the circular tube. In this state, by rolling in the tube axis direction of the circular tube, at least one spiral wavy groove along the tube axis direction and the bottom of the groove portion further toward the center of the tube. Since a spiral corrugated grooved tube formed with a plurality of recesses corresponding to the protrusions intermittently recessed is obtained, the formation of the spiral corrugated groove and the formation of the recess in the groove are collectively performed. Processing can be performed, the number of processing steps can be reduced, and processing costs can be reduced.

本発明の実施の形態1に係る螺旋状波形溝付管を示す部分断面図。The fragmentary sectional view which shows the helical corrugated grooved tube which concerns on Embodiment 1 of this invention. 図1に示す螺旋状波形溝付管の溝部とその溝部に形成された円形状の窪みを示す要部詳細図で、(a)は外面図、(b)はA−A線における断面端面図。It is a principal part detail drawing which shows the groove part of the helical corrugated grooved tube shown in FIG. 1, and the circular hollow formed in the groove part, (a) is an external view, (b) is a cross-sectional end view in the AA line . 図1に示す螺旋状波形溝付管の製造方法におけるローラー外周部に突起が設けられた加工ツールを示す図で、(a)は正面図、(b)は平面図。It is a figure which shows the processing tool by which the processus | protrusion was provided in the roller outer peripheral part in the manufacturing method of the spiral corrugated grooved tube shown in FIG. 1, (a) is a front view, (b) is a top view. 図3に示された加工ツールの突起部分を示す図で、(a)は突起の上面図、(b)は突起部分の正面図。It is a figure which shows the protrusion part of the processing tool shown by FIG. 3, (a) is a top view of protrusion, (b) is a front view of a protrusion part. 本発明の実施の形態1に係る螺旋状波形溝付管の製造方法の要部を概念的に示す図であり、(a)はワークに対する加工ツールの位置関係を説明する図、(b)は加工ツールの回転軸とワークの管軸方向の関係を説明する平面図。It is a figure which shows notionally the principal part of the manufacturing method of the spiral corrugated grooved tube which concerns on Embodiment 1 of this invention, (a) is a figure explaining the positional relationship of the processing tool with respect to a workpiece | work, (b) is The top view explaining the relationship between the rotating shaft of a processing tool, and the pipe-axis direction of a workpiece | work. 本発明の実施の形態2に係る螺旋状波形溝付管の溝部とその溝部に形成された楕円形状の窪みを示す要部詳細図で、(a)は外面図、(b)はB−B線における断面端面図。It is principal part detail drawing which shows the groove part of the helical corrugated grooved tube which concerns on Embodiment 2 of this invention, and the elliptical hollow formed in the groove part, (a) is an external view, (b) is BB. Sectional end view in line. 図6の変形例になる、楕円形で底部がフラットな窪みを示す要部詳細図で、(a)は外面図、(b)はC−C線における断面端面図。FIGS. 7A and 7B are main part detail views showing a recess having an elliptical shape with a flat bottom, which is a modification of FIG. 6, wherein FIG. 7A is an external view, and FIG. 図6の他の変形例になる、非対称の楕円形状の窪みを示す要部詳細図で、(a)は外面図、(b)はD−D線における断面端面図。FIGS. 7A and 7B are main part detail views showing an asymmetrical elliptical depression according to another modification of FIG. 6, wherein FIG. 7A is an external view, and FIG. 7B is a cross-sectional end view taken along line DD. 図6に示された楕円形状の窪みを形成する加工ツールの突起部分を概念的に示す図で、(a)は突起の上面図、(b)は突起部分の正面図。FIGS. 7A and 7B are diagrams conceptually showing a protrusion portion of the processing tool forming the elliptical recess shown in FIG. 6, wherein FIG. 7A is a top view of the protrusion and FIG. 図7に示された楕円形で底部がフラットな窪みを形成する加工ツールの突起部分を概念的に示す図で、(a)は突起の上面図、(b)は突起部分の正面図。FIGS. 8A and 8B are diagrams conceptually showing a protrusion portion of the processing tool that forms a recess having an oval shape and a flat bottom portion shown in FIG. 7, wherein FIG. 8A is a top view of the protrusion and FIG. 図8に示された非対称の楕円形状の窪みを形成する加工ツールの突起部分を概念的に示す図で、(a)は突起の上面図、(b)は突起部分の正面図。It is a figure which shows notionally the protrusion part of the processing tool which forms the asymmetrical elliptical-shaped hollow shown by FIG. 8, (a) is a top view of protrusion, (b) is a front view of a protrusion part. 本発明の実施の形態3に係る螺旋状波形溝付管を示す部分断面図。The fragmentary sectional view which shows the spiral corrugated grooved tube which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る螺旋状波形溝付管の製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of the spiral corrugated grooved tube which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る螺旋状波形溝付管を示す部分断面図。The fragmentary sectional view which shows the spiral corrugated grooved tube which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る螺旋状波形溝付管の展開図。The expanded view of the helical corrugated grooved tube which concerns on Embodiment 4 of this invention.

実施の形態1.
図1は本発明の実施の形態1に係る螺旋状波形溝付管を示す部分断面図、図2は図1に示す螺旋状波形溝付管の溝部とその溝部に形成された円形状の窪みを示す要部詳細図で、(a)は外面図、(b)はA−A線における断面端面図である。なお、図1に示す螺旋状波形溝付管1は管内部に冷媒を通流して管外部の媒体との間で熱交換を行う熱交換器、例えば空気調和器、ヒートポンプ給湯機などの伝熱管として用いられるものである。
図1の螺旋状波形溝付管1は、図の左半部に示す外周面10に、ここでは四条の螺旋曲線に沿って螺旋状波形の連続的な溝部11が形成され、かつその溝部11の底部分には、円管の径方向への外側変形部としての、長手方向に断続的な窪み12の列が形成されている。螺旋曲線は螺旋状波形溝付管1の管軸O方向に沿って少なくとも一条形成される。
Embodiment 1 FIG.
1 is a partial sectional view showing a spiral corrugated grooved tube according to Embodiment 1 of the present invention, and FIG. 2 is a groove portion of the spiral corrugated grooved tube shown in FIG. 1 and a circular depression formed in the groove portion. FIG. 2 is a detailed view of the main part, showing (a) an external view and (b) a sectional end view taken along the line AA. The spiral corrugated grooved tube 1 shown in FIG. 1 is a heat exchanger such as an air conditioner or a heat pump water heater that exchanges heat with a medium outside the tube by flowing a refrigerant inside the tube. It is used as
In the spiral corrugated grooved tube 1 of FIG. 1, a continuous groove portion 11 having a spiral waveform is formed on the outer peripheral surface 10 shown in the left half portion of the drawing along the spiral curve of the four strips here, and the groove portion 11. A row of intermittent depressions 12 in the longitudinal direction is formed in the bottom portion of the tube as an outer deformation portion in the radial direction of the circular tube. The spiral curve is formed in at least one line along the tube axis O direction of the spiral corrugated tube 1.

図1の右半部に示すように、管壁を隔てた内周面20には、外周面10の溝部11に対応する螺旋状波形の突条部21と、その突条部21の尾根部分における外周面10の窪み12に対応した位置に、円管の径方向への内側変形部としての、断続的な突部22の列が形成されている。これによって、本発明の円管の内周面20には、突条部21と突部22からなる径方向に二段の凹凸状の変形部分が設けられている。なお、溝部11、窪み12、突条部21、及び突部22は、何れも他の領域との境界部分を含めて滑らかな曲線をもって形成されている。特に、溝部11及び突条部21は管軸O方向(長手方向)及び周方向の何れの断面形状も波形状に形成されている。   As shown in the right half of FIG. 1, on the inner peripheral surface 20 that separates the tube wall, a spiral corrugated ridge portion 21 corresponding to the groove portion 11 of the outer peripheral surface 10, and a ridge portion of the ridge portion 21. The row | line | column of the intermittent protrusion 22 as the inner side deformation | transformation part to the radial direction of a circular pipe is formed in the position corresponding to the hollow 12 of the outer peripheral surface 10. Thereby, the inner peripheral surface 20 of the circular pipe of the present invention is provided with a two-step uneven deformed portion in the radial direction composed of the protruding portion 21 and the protruding portion 22. In addition, all of the groove part 11, the hollow 12, the protrusion part 21, and the protrusion part 22 are formed with the smooth curve including the boundary part with another area | region. In particular, the groove 11 and the ridge 21 are formed in a wave shape in the cross-sectional shape in the tube axis O direction (longitudinal direction) and the circumferential direction.

ここでは、窪み12は円形状の窪み12A、突部22は円形状(立体的には円球体の一部)の突部22Aとして形成されているが、形状は特に限定されない。外周面10の窪み12は、溝部11の底部長手方向に断続的に形成された、円管の径方向の外側変形部として構成すればよく、内周面20の突部22は、突条部21に形成された、前記外側変形部に対応する長手方向に断続的な径方向の内側変形部として構成されればよい。また、窪み12と突部22は径方向への変形を逆にしても良い。   Here, the depression 12 is formed as a circular depression 12A, and the protrusion 22 is formed as a protrusion 22A having a circular shape (partially a part of a spherical body), but the shape is not particularly limited. The recess 12 of the outer peripheral surface 10 may be configured as a radially outer deformed portion of the circular pipe formed intermittently in the bottom longitudinal direction of the groove 11, and the protrusion 22 of the inner peripheral surface 20 is a protrusion. What is necessary is just to be comprised as a radially inner deformation | transformation part intermittently formed in the longitudinal direction corresponding to the said outer deformation | transformation part formed in the part 21. FIG. Moreover, you may reverse the deformation | transformation to the radial direction for the hollow 12 and the protrusion part 22. FIG.

前記のように外周面10に形成された螺旋状波形の溝部11に、断続的に形成された窪み12の列、及び内周面20の突条部21に断続的に形成された突部22、ここでは円形状の突部22Aの列が設けられた螺旋状波形溝付管1は熱交換器の伝熱管として用いられる。管内に流れる流体は螺旋状波形溝付管1に形成された螺旋状波形の溝部11に対応する突条部21によって、流路断面積が増減する変化に伴い流体の流れが大きく攪乱され伝熱促進効果が得られる。更に、内周面20に突出形成された突部22により流路断面積が細かく変動するだけでなく、熱交換する表面積も増加する。そして、突部22によって流体の流れが局所的に加減速され、また旋回流が発生し、更に伝熱促進効果が向上する。   As described above, the spiral corrugated grooves 11 formed on the outer peripheral surface 10 are intermittently formed in the rows of the recesses 12 and the protrusions 22 formed intermittently on the protrusions 21 of the inner peripheral surface 20. Here, the spiral corrugated grooved tube 1 provided with a row of circular protrusions 22A is used as a heat transfer tube of a heat exchanger. The fluid flowing in the pipe is greatly disturbed by the protrusion 21 corresponding to the spiral corrugated groove portion 11 formed in the spiral corrugated groove tube 1, and the flow of the fluid is greatly disturbed as the flow path cross-sectional area increases or decreases. A promoting effect is obtained. Furthermore, not only does the flow path cross-sectional area fluctuate finely due to the protrusions 22 protruding from the inner peripheral surface 20, but the surface area for heat exchange also increases. Then, the fluid flow is locally accelerated / decelerated by the protrusion 22 and a swirling flow is generated, and the heat transfer promoting effect is further improved.

次に、図1に示す螺旋状波形溝付管1の製造方法について、図3から図5を参照して説明する。なお、図3は図1に示す螺旋状波形溝付管の製造方法におけるローラー外周部に突起が設けられた加工ツールを示す図で、(a)は正面図、(b)は平面図である。図4は図3に示された加工ツールの突起部分を示す図で、(a)は突起の上面図、(b)は突起部分の正面図である。図5は本発明の実施の形態1に係る螺旋状波形溝付管の製造方法の要部を概念的に示す図であり、(a)はワークに対する加工ツールの位置関係を説明する図、(b)は加工ツールの回転軸とワークの管軸方向の関係を説明する平面図である。   Next, a manufacturing method of the spiral corrugated grooved tube 1 shown in FIG. 1 will be described with reference to FIGS. 3A and 3B are diagrams showing a processing tool in which protrusions are provided on the outer peripheral portion of the roller in the method for manufacturing the spiral corrugated grooved tube shown in FIG. 1, wherein FIG. 3A is a front view and FIG. 3B is a plan view. . 4A and 4B are diagrams showing a protrusion portion of the processing tool shown in FIG. 3, wherein FIG. 4A is a top view of the protrusion, and FIG. 4B is a front view of the protrusion portion. FIG. 5 is a diagram conceptually showing the main part of the manufacturing method of the spiral corrugated grooved tube according to Embodiment 1 of the present invention, (a) is a diagram for explaining the positional relationship of the machining tool with respect to the workpiece, b) is a plan view for explaining the relationship between the rotation axis of the machining tool and the pipe axis direction of the workpiece.

図3、図4に示すように、加工ツール4は、円管100の外表面110へ押し付けて塑性変形させ、外表面110に螺旋状波形の溝部11を形成するために、外周面の断面が略半円状の円盤形のローラー状に形成されており、加えて、そのローラー外周部4aには、溝部11の底部を更に円管100の中心方向に断続的に凹ませた窪み12を形成するための、周方向に所定間隔で径方向に突出された複数(8個)の突起5、ここでは図4に示すように円形の突起5Aが設けられている。加工ツール4の外径や厚み、及び突起5の形状やピッチは後述するように適宜に設定することができる。なお、突起5は周方向に少なくとも1つ設けられる。   As shown in FIGS. 3 and 4, the processing tool 4 is pressed against the outer surface 110 of the circular tube 100 to be plastically deformed, and a cross section of the outer peripheral surface is formed to form the spiral corrugated groove 11 on the outer surface 110. It is formed in a substantially semicircular disk-like roller shape, and in addition, a recess 12 is formed in the roller outer peripheral portion 4a by further recessing the bottom of the groove portion 11 in the center direction of the circular tube 100. For this purpose, a plurality of (eight) protrusions 5 projecting in the radial direction at predetermined intervals in the circumferential direction, here, circular protrusions 5A as shown in FIG. 4 are provided. The outer diameter and thickness of the processing tool 4 and the shape and pitch of the protrusions 5 can be appropriately set as will be described later. At least one protrusion 5 is provided in the circumferential direction.

図5(a)において、ワークである円管100は、円管保持用のチャックの爪3により回転不能かつ管軸Oの方向に従動移動可能に保持されている。加工ツール4は管軸Oの周りに少なくとも1つ以上、ここでは4つ配置される。複数個の加工ツール4を管軸Oの周りに配置する場合は、相互に均等な角度、ここでは90度で円管100を囲むように配置される。なお、円管100としては、例えば工業材料として市販されている銅系の管材、アルミニウム系の管材などから所望により適宜選択して用いることができる。   In FIG. 5A, a circular tube 100 as a work is held by a claw 3 of a chuck for holding a circular tube so that it cannot rotate but can be moved in the direction of the tube axis O. At least one, or four, processing tools 4 are arranged around the tube axis O. When a plurality of processing tools 4 are arranged around the tube axis O, they are arranged so as to surround the circular tube 100 at an equal angle to each other, here 90 degrees. In addition, as the circular pipe 100, for example, a copper pipe material, an aluminum pipe material, and the like that are commercially available as industrial materials can be appropriately selected and used as desired.

ローラー状の加工ツール4は、円管100に対して管軸Oに直交する方向において、管軸Oと加工ツール4との相対位置を維持した状態で、円管100の周りに図示していない鼓動装置によって回転駆動される。それに伴い、加工ツール4は円管100の未加工部である外表面110へ、少なくとも一条、ここでは4条の螺旋曲線に沿って押圧しつつ従動的に転動され、外表面110に螺旋状波形の溝部11を形成すると同時に、その螺旋状波形の溝部11の底部に断続的な窪み12の列が形成される。加工ツール4の転動によって得られた螺旋状波形溝付管1の外周面10に形成された溝部11と窪み12は、径方向に2段の変形部分を構成している。   The roller-shaped processing tool 4 is not shown around the circular tube 100 in a state in which the relative position between the tube axis O and the processing tool 4 is maintained in a direction orthogonal to the tube axis O with respect to the circular tube 100. It is rotationally driven by a beating device. Along with this, the processing tool 4 is driven and rolled to the outer surface 110, which is an unprocessed portion of the circular tube 100, while pressing along at least one line, here, four spiral curves. Simultaneously with the formation of the corrugated groove 11, an intermittent row of recesses 12 is formed at the bottom of the spiral corrugated groove 11. The groove 11 and the recess 12 formed in the outer peripheral surface 10 of the spiral corrugated grooved tube 1 obtained by rolling the processing tool 4 constitute a two-stage deformed portion in the radial direction.

加工ツール4の回転駆動の方向は、図5(a)の矢印Rで示すように、4つの加工ツール4の中心部に形成された円管100が挿通される開口部(図示省略)に対して、チャックの爪3による管保持部が存在しない側(図の右側)に、成形された螺旋状波形溝付管1が伸長していく回転方向とする。
円管100とその円管100の周りに、ここでは90度の等角度で設置された加工ツール4との位置関係は、4つの加工ツール4が何れも、図5(b)に示す平面視の管軸O方向に対して予め設定された所定の傾斜角度θで傾斜保持され、図5(b)の姿勢に対して側面方向から見たときの管軸Oの方向に対して平行な加工ツール傾斜軸O4にて回転自在に支持されるように配設され、さらに、各加工ツール4は円管100の径方向に対して所望の押付け寸法に移動及び固定可能に保持されている。
The direction of rotational driving of the processing tool 4 is relative to the opening (not shown) through which the circular pipes 100 formed at the center of the four processing tools 4 are inserted, as indicated by the arrow R in FIG. Thus, the rotation direction is such that the formed spiral corrugated grooved tube 1 extends on the side where the tube holding portion by the chuck claw 3 does not exist (the right side in the figure).
The positional relationship between the circular tube 100 and the processing tool 4 installed around the circular tube 100 at an equal angle of 90 degrees here is that the four processing tools 4 are all in plan view as shown in FIG. Is held at a predetermined inclination angle θ set in advance with respect to the direction of the tube axis O, and is parallel to the direction of the tube axis O when viewed from the side with respect to the posture of FIG. The processing tool 4 is disposed so as to be rotatably supported by the tool tilt axis O4, and each processing tool 4 is held so as to be movable and fixed to a desired pressing dimension with respect to the radial direction of the circular tube 100.

前記傾斜角度θによって、図5(a)に示す螺旋状波形の溝ピッチP11が定められる。複数個の加工ツール4を配置している場合は、各加工ツール4が何れも同一傾斜角度θを持つことで、その傾斜角度θに相当した螺旋状波形の溝ピッチP11を設定することができる。溝部11の螺旋状波形の形状は、ローラー外周部4aの表面形状によって定められる。表面形状がR形状を持ったり平面形状を持ったりすることで、円管100に波形で様々な溝形状を作り出すことができる。その溝加工と同時に、加工ツール4が持つ突起5がその溝部11に、窪み12を一括成形にて持たせることができる。   A groove pitch P11 having a spiral waveform shown in FIG. 5A is determined by the inclination angle θ. When a plurality of processing tools 4 are arranged, each processing tool 4 has the same inclination angle θ, so that a groove pitch P11 having a spiral waveform corresponding to the inclination angle θ can be set. . The shape of the spiral waveform of the groove portion 11 is determined by the surface shape of the roller outer peripheral portion 4a. Since the surface shape has an R shape or a planar shape, various groove shapes can be created in a corrugated shape in the circular tube 100. Simultaneously with the grooving, the projection 5 of the processing tool 4 can have the recess 12 in the groove portion 11 by batch molding.

図1の溝部11に形成された窪み12のピッチは、図3に示したローラー外周部4aに突設された突起5の円周方向の突起ピッチP5によって定められる。突起5の周方向の数は特に限定されず、例えば1個でもよく、9個以上でもよい。図2(b)に示す円形状の窪み12Aの深さD12は、図3のローラー外周部4aに備えられた突起5の突起高さH5を所望の寸法に調節することで定めることができる。
図1に示す内周面20の突条部21と突部22の列は、外周面10の螺旋状波形の溝部11と窪み12の列の二段形成に伴って作られるため、突部22の円周方向ピッチは窪み12が形成される円周ピッチと同様のピッチに定まる。また、図2に示した円形状の突部22Aの高さH22は、窪み12Aの深さD12が所定の高さで形成されることで高さ寸法が定まる。
The pitch of the recesses 12 formed in the groove 11 in FIG. 1 is determined by the protrusion pitch P5 in the circumferential direction of the protrusion 5 protruding from the roller outer periphery 4a shown in FIG. The number of the protrusions 5 in the circumferential direction is not particularly limited, and may be one, for example, nine or more. The depth D12 of the circular recess 12A shown in FIG. 2B can be determined by adjusting the projection height H5 of the projection 5 provided on the roller outer peripheral portion 4a of FIG. 3 to a desired dimension.
Since the row of the protrusions 21 and the protrusions 22 on the inner peripheral surface 20 shown in FIG. 1 is formed along with the two-stage formation of the spiral corrugated grooves 11 and the recesses 12 on the outer peripheral surface 10, the protrusions 22 are formed. The circumferential pitch is determined to be the same as the circumferential pitch in which the depressions 12 are formed. Further, the height H22 of the circular protrusion 22A shown in FIG. 2 is determined by the depth D12 of the recess 12A being formed at a predetermined height.

次に、本実施の形態1に係る製造方法について説明する。円管100の未加工部をチャックの爪3によって係止している状態で、突起5(5A)を有する加工ツール4による加工部に対して、円管100の未加工部と、成形加工済みの螺旋状波形溝付管1の何れの方向からも管軸O方向における能動的な駆動力は発生させていない。前述の状態で円管100に対して、図5(a)の矢印R方向に加工ツール4を捩る方向に相対的な回転駆動力を与えると、円管100の周りに所定の傾斜角度θがついた加工ツール傾斜軸O4で回転する加工ツール4が、円管100の外表面110に円管100の中心方向へ押し込まれることで螺旋状波形の溝部11と窪み12を同時に一括で径方向に二段の変形部分を形成しつつ、加工ツール傾斜軸O4の周りに従動回転され、円管100を図5(a)の矢印H方向に進行させる力が生じる。   Next, the manufacturing method according to the first embodiment will be described. In a state where the unprocessed portion of the circular tube 100 is locked by the claw 3 of the chuck, the unprocessed portion of the circular tube 100 and the processed portion are processed with respect to the processed portion by the processing tool 4 having the protrusion 5 (5A). No active driving force in the direction of the tube axis O is generated from any direction of the spiral corrugated grooved tube 1. When a relative rotational driving force is applied to the circular tube 100 in the above-described state in the direction of twisting the processing tool 4 in the direction of arrow R in FIG. 5A, a predetermined inclination angle θ is generated around the circular tube 100. When the machining tool 4 that rotates on the connected machining tool tilt axis O4 is pushed into the outer surface 110 of the circular tube 100 toward the center of the circular tube 100, the spirally corrugated groove 11 and the recess 12 are simultaneously gathered in the radial direction. While forming a two-stage deformed portion, it is driven and rotated around the machining tool tilt axis O4, and a force is generated to advance the circular tube 100 in the direction of arrow H in FIG.

チャックの爪3によって回転方向に対して固定された円管100の未加工部は、管軸O方向に沿って所定距離移動可能な状態で保持され、回転方向には拘束されているので、ローラー状の加工ツール4の矢印R方向への回転に伴って発生する円管100を図5(a)の矢印H方向に進行する推進力によって、未加工部はチャックの爪3と共に矢印H方向に移動していく。チャックの爪3の管軸O方向の位置が加工ツール4の図示省略している保持駆動機構に干渉する手前まで成形を続けることで、チャックの爪3の初期固定位置と前記保持駆動機構の設置位置との距離で決まる所定長の螺旋状波形溝付管1を連続的に成形加工できる。なお、長尺のものが必要な場合は、例えばチャックの爪3を一端開放して円管100を掴む位置を初期固定位置に戻して掴み直すことで、あるいは爪3の管軸O方向の移動可能範囲を広げ、爪3による把持位置と前記保持駆動機構との間に円管100の振れ止め機構を設けること、等で容易に対応できる。   The unprocessed portion of the circular tube 100 fixed with respect to the rotation direction by the claw 3 of the chuck is held in a state where it can move a predetermined distance along the tube axis O direction and is restricted in the rotation direction. The unprocessed part is moved in the direction of the arrow H together with the chuck claw 3 by the propulsive force that travels in the direction of the arrow H in FIG. Move. By continuing molding until the position of the chuck claw 3 in the direction of the tube axis O interferes with the holding drive mechanism (not shown) of the processing tool 4, the initial fixing position of the chuck claw 3 and the installation of the holding drive mechanism The spiral corrugated grooved tube 1 having a predetermined length determined by the distance to the position can be continuously formed. If a long one is required, for example, the chuck claw 3 is opened at one end and the position where the circular tube 100 is gripped is returned to the initial fixed position and re-gripped, or the claw 3 is moved in the direction of the tube axis O. This can be easily dealt with by expanding the possible range and providing a steadying mechanism for the circular tube 100 between the gripping position of the claw 3 and the holding drive mechanism.

上記のように、実施の形態1の螺旋状波形溝付管の製造方法は、ワークとしての円管の外周面110に、該円管の管軸O方向に対して所定の傾斜角度θで傾斜された加工ツール傾斜軸O4の周りに回転自在に保持された円盤状のローラーからなり、そのローラー外周部4aから径方向に突出された突起5を有する加工ツール4を、円管100の外周面に押付ける一方、円管の管軸O方向における加工ツール4によって成形が進行する側に位置する未加工部を回転不能かつ管軸方向にのみ移動可能に係止して、円管100と加工ツール4の支軸(図示省略)との間に相対的な捻り駆動力を与えることで、加工ツール4が従動的に転動されて円管の外周面110に、管軸方向に沿う螺旋状波形状の溝部11と、その溝部11の底部を更に円管の中心方向に断続的に凹ませた突起5に対応する複数の窪み12と、が1工程で形成された螺旋状波形溝付管1を得るようにしたものである。   As described above, in the manufacturing method of the spiral corrugated grooved tube according to the first embodiment, the outer peripheral surface 110 of the circular tube as the workpiece is inclined at a predetermined inclination angle θ with respect to the tube axis O direction of the circular tube. The processing tool 4 having a disc-shaped roller rotatably held around the processing tool tilt axis O4 and having a projection 5 protruding radially from the roller outer peripheral portion 4a is connected to the outer peripheral surface of the circular tube 100. On the other hand, the non-processed part positioned on the side where the molding proceeds by the processing tool 4 in the tube axis O direction of the circular tube is locked so that it cannot rotate but can only move in the tube axis direction. By applying a relative torsional driving force to the support shaft (not shown) of the tool 4, the processing tool 4 is driven to roll freely and spirally along the tube axis direction on the outer peripheral surface 110 of the circular tube. The wave-shaped groove 11 and the bottom of the groove 11 are A plurality of recesses 12 corresponding to the projection 5 by recessing intermittently in a direction, but is obtained so as to obtain a spiral waveform grooved tube 1 formed in one step.

本発明では、チャックの爪3による円管100の保持部分は、円管100の管軸O方向における加工ツール4による成形加工部に対して、円管100の未加工部を、回転不能かつ管軸O方向にのみ従属移動可能な状態で係止しているだけで、チャックの爪3と加工ツール4との間に管軸O方向の駆動力を持たない機構としているため、螺旋状波形の溝部11が成形されていく際に、正規な螺旋状波形状から外れた形状に押し潰される力が働くことなく、形状が良好な螺旋状波形溝付管1を製作することができる。また、円管100の未加工部側に円管保持用のチャックの爪3を設けたことで、加工直後の螺旋状波形の溝部11形状の管肉には、座屈させるまでの力が及ばないため、管の捩り潰れを支えるためのマンドレルを管内部に挿入しなくても円管100への押し込み量が大きい螺旋状波形の溝部11と窪み12の列と、内周面20への突条部21と突部22の列を形成することが可能となる。   In the present invention, the holding portion of the circular tube 100 by the chuck claw 3 is configured so that the unprocessed portion of the circular tube 100 is non-rotatable with respect to the forming processing portion by the processing tool 4 in the tube axis O direction of the circular tube 100. Since it is a mechanism that does not have a driving force in the direction of the tube axis O between the chuck claw 3 and the processing tool 4 only by being locked so as to be subordinately movable only in the direction of the axis O, it has a helical waveform. When the groove portion 11 is formed, the spiral corrugated grooved tube 1 having a good shape can be manufactured without the force of being crushed into a shape deviating from the normal spiral wave shape. In addition, by providing the chuck claw 3 for holding the circular tube on the unprocessed portion side of the circular tube 100, the tube wall having the shape of the spirally corrugated groove 11 immediately after processing exerts a force until buckling. Therefore, even if a mandrel for supporting the torsion of the tube is not inserted into the tube, the row of the spiral corrugated groove portions 11 and the recesses 12 and the protrusion to the inner peripheral surface 20 are large. It becomes possible to form the row of the ridges 21 and the protrusions 22.

また、加工ツール4のローラー外周部4aに設けた突起5のピッチ及び数を制御して、外周面10の窪み12及び内周面20の突部22におけるピッチ及び円管1周あたりの突部22の形成数を調整することで、管内を流れる流体の圧損と熱交換する表面積を必要に応じて加減調整することができ、伝熱性能を調節することができる。また、ローラー外周部4aに突起5を持つローラー状の加工ツール4であることにより、螺旋状波形の溝周期と窪み周期を調整することなく、突起5付きの加工ツールを交換することで自在に突起数量を可変して螺旋状波形溝付管をつくることができる。   Further, the pitch and the number of protrusions 5 provided on the roller outer peripheral portion 4a of the processing tool 4 are controlled, so that the pitches at the recesses 12 on the outer peripheral surface 10 and the protrusions 22 on the inner peripheral surface 20 and the protrusions per one round tube. By adjusting the number of 22 formed, the pressure loss of the fluid flowing in the pipe and the surface area for heat exchange can be adjusted as necessary, and the heat transfer performance can be adjusted. In addition, since the roller-shaped processing tool 4 has the protrusions 5 on the roller outer peripheral portion 4a, the processing tool with the protrusions 5 can be freely changed without adjusting the groove period and the recess period of the spiral waveform. A spiral corrugated grooved tube can be made by varying the number of protrusions.

また、前記加工方法によれば、螺旋状波形溝付管1は、外周面10に螺旋状波形の溝部11を形成すると同時に、その溝部11に断続的な窪み12が形成され、同時に内周面20には、溝部11に対応する突条部21と、その突条部21からさらに管中心方向に突出された突部22を一括で二段形成し、内周面20の突部22の横断面形状においては滑らかな円弧の波形形状を有し、螺旋状波形の溝部11に倣った螺旋曲線方向に沿って内周面20に突部22の断続的な列が形成される。溝部11と窪み12及び突条部21と突部22は、容易に一括加工することができるので、加工工数の削減及び加工コストの削減に優れた効果が得られる。また、螺旋状波形の溝部11は、円管100の周りに配設する加工ツール4の数を変えることで、任意に一つ以上形成することができる。   Moreover, according to the said processing method, the spiral corrugated grooved tube 1 forms the spiral corrugated groove part 11 in the outer peripheral surface 10, and the intermittent hollow 12 is formed in the groove part 11, and the inner peripheral surface simultaneously. 20, a protruding portion 21 corresponding to the groove portion 11 and a protruding portion 22 protruding further from the protruding portion 21 toward the center of the tube are formed in two steps, and the protruding portion 22 of the inner peripheral surface 20 is crossed. The surface shape has a smooth arcuate waveform shape, and intermittent rows of protrusions 22 are formed on the inner peripheral surface 20 along the spiral curve direction following the spiral corrugated groove 11. Since the groove part 11 and the hollow part 12 and the protrusion part 21 and the protrusion part 22 can be easily batch-processed, the effect excellent in the reduction of a process man-hour and the reduction of a process cost is acquired. Also, one or more spirally corrugated grooves 11 can be formed by changing the number of processing tools 4 arranged around the circular tube 100.

また、本実施の形態1の螺旋状波形溝付管1は、上記製造方法によって製造された、円管の外周面10に、該円管の長手方向に沿う少なくとも一条の螺旋状波形の溝部11と、その溝部の底部長手方向に断続的に形成された窪み12でなる円管の径方向の外側変形部と、からなる径方向に2段の変形部分が設けられ、円管の内周面20には溝部11に対応する螺旋状波形の突条部21と、その突条部に形成された、前記外側変形部に対応する長手方向に断続的な突部22でなる径方向の内側変形部と、からなる径方向に2段の変形部分が設けられていることにより、管内の伝熱面積が増大されると共に、管内に流れる流体に螺旋状波形の突条部21による流体の乱れだけでなく、突部22にて流体の乱れを更に一層誘起させることができるので、高い伝熱性能が得られる。   In addition, the spiral corrugated grooved tube 1 of the first embodiment is formed on the outer peripheral surface 10 of the circular tube manufactured by the above manufacturing method, and has at least one spiral corrugated groove portion 11 along the longitudinal direction of the circular tube. And a radially outer deformed portion of the circular pipe consisting of the depressions 12 formed intermittently in the longitudinal direction of the bottom of the groove, and a two-stage deformed portion in the radial direction is provided. The surface 20 has a spiral corrugated protrusion 21 corresponding to the groove 11 and a radially inner protrusion 22 formed in the protrusion corresponding to the outer deformation portion in the longitudinal direction. By providing the two-stage deformed portion in the radial direction including the deformed portion, the heat transfer area in the tube is increased, and the fluid flowing in the tube is disturbed by the spiral corrugated ridge portion 21. Not only can the protrusion 22 induce fluid turbulence even more. , High heat transfer performance can be obtained.

また、本実施の形態1の熱交換器は、上記製造方法によって製造された螺旋状波形溝付管1を伝熱管として用いたものであり、該熱交換器によれば、管内を流れる流体は螺旋状波形溝付管1の溝部11に対応する突条部21により流路断面積の変化に伴って流体の流れが攪乱され、更に突条部21に形成された管軸方向または突条部21の方向に断続的な突部22により熱交換する表面積が増加し、流体の流れが局所的に加減速及び旋回流が発生することで、伝熱促進効果が得られる。   Further, the heat exchanger according to the first embodiment uses the spiral corrugated grooved tube 1 manufactured by the above manufacturing method as a heat transfer tube, and according to the heat exchanger, the fluid flowing in the tube is The flow of the fluid is disturbed by the change in the cross-sectional area of the flow path by the protrusion 21 corresponding to the groove 11 of the spiral corrugated tube 1, and the tube axis direction or protrusion formed in the protrusion 21 is further disturbed. The surface area for heat exchange is increased by the protrusions 22 that are intermittent in the direction 21 and the fluid flow is locally accelerated / decelerated and a swirl flow is generated, so that a heat transfer promoting effect is obtained.

実施の形態2.
図6は本発明の実施の形態2に係る螺旋状波形溝付管の溝部とその溝部に形成された楕円形状の窪みを示す要部詳細図で、(a)は外面図、(b)はB−B線における断面端面図である。図7は図6の変形例になる、楕円形で底部がフラットな窪みを示す要部詳細図で、(a)は外面図、(b)はC−C線における断面端面図である。図8は図6の他の変形例になる、非対称の楕円形状の窪みを示す要部詳細図で、(a)は外面図、(b)はD−D線における断面端面図である。図9は図6に示された楕円形状の窪みを形成する加工ツールの突起部分を概念的に示す図で、(a)は突起の上面図、(b)は突起部分の正面図である。図10は図7に示された楕円形で底部がフラットな窪みを形成する加工ツールの突起部分を概念的に示す図で、(a)は突起の上面図、(b)は突起部分の正面図である。図11は図8に示された非対称の楕円形状の窪みを形成する加工ツールの突起部分を概念的に示す図で、(a)は突起の上面図、(b)は突起部分の正面図である。
Embodiment 2. FIG.
6A and 6B are main part detail views showing a groove portion of the spiral corrugated grooved tube according to Embodiment 2 of the present invention and an elliptical depression formed in the groove portion, where FIG. 6A is an external view, and FIG. It is a sectional end view in the BB line. FIGS. 7A and 7B are main part detail views showing a recess having an elliptical shape with a flat bottom, which is a modified example of FIG. 6, wherein FIG. 7A is an external view, and FIG. 7B is a cross-sectional end view taken along line CC. FIGS. 8A and 8B are main part detail views showing an asymmetrical elliptical depression according to another modification of FIG. 6, wherein FIG. 8A is an external view and FIG. 8B is a cross-sectional end view taken along line DD. FIGS. 9A and 9B are diagrams conceptually showing a protruding portion of the processing tool for forming the elliptical recess shown in FIG. 6, wherein FIG. 9A is a top view of the protruding portion, and FIG. 9B is a front view of the protruding portion. FIGS. 10A and 10B are diagrams conceptually showing the projection portion of the machining tool that forms the recess having the elliptical shape and the bottom portion shown in FIG. 7, wherein FIG. 10A is a top view of the projection, and FIG. 10B is a front view of the projection portion. FIG. FIG. 11 is a diagram conceptually showing a projection part of the processing tool for forming the asymmetrical elliptical depression shown in FIG. 8, wherein (a) is a top view of the projection and (b) is a front view of the projection part. is there.

なお、本実施の形態2は、螺旋状波形の溝部11の底部に断続的に設けた窪み12の上面視の形状を、実施の形態1の円形状に対して、楕円形状、楕円形状で底部がフラットな形状(楕円体の短軸部分の頂部をフラットにしたときの楕円体の上半部のような形状、または富士山状の形状)、または非対称な楕円形状(ないしは卵形状)となるように、加工工程で選択的に変更し得るようにしたものである。なお、窪み12の形状に応じて円管の内周面に形成される突部22の形状が変わることは言うまでもない。   In the second embodiment, the shape of the recess 12 provided on the bottom of the groove 11 having a spiral waveform is an elliptical shape and an elliptical shape with respect to the circular shape of the first embodiment. To have a flat shape (shape like the upper half of the ellipsoid when the top of the short axis of the ellipsoid is flat, or Mt. Fuji shape), or an asymmetric ellipse shape (or egg shape) Further, it can be selectively changed in the processing step. Needless to say, the shape of the protrusion 22 formed on the inner peripheral surface of the circular tube changes according to the shape of the recess 12.

実施の形態1では、外周面10に形成された螺旋状波形の溝部11に選択的かつ断続的に形成された窪み12の形状は、図2に示す円形状(立体的には球形の一部)の窪み12Aであるが、本実施の形態2では他の任意形状として、図6に示す楕円形状の窪み12B、図7に示す底部がフラットな楕円形状の窪み12C、または図8に示す非対称楕円形状の窪み12Dとしたものである。これらの窪み12の形状に対応して内周面20の突部22の形状が定まる。実施の形態1の突部22の形状は、図2に示すような円形状の突部22Aとして定まるが、本実施の形態2ではそれぞれ、図6に示す楕円形状の突部22B、図7に示す富士山形の突部22C、図8に示す非対称楕円形状の突部22Dとして形成される。   In the first embodiment, the shape of the recess 12 selectively and intermittently formed in the spiral corrugated groove portion 11 formed on the outer peripheral surface 10 is the circular shape shown in FIG. However, in the second embodiment, as other arbitrary shapes, the oval depression 12B shown in FIG. 6, the oval depression 12C having a flat bottom shown in FIG. 7, or the asymmetry shown in FIG. This is an elliptical recess 12D. The shape of the protrusion 22 of the inner peripheral surface 20 is determined corresponding to the shape of these recesses 12. The shape of the protrusion 22 of the first embodiment is determined as a circular protrusion 22A as shown in FIG. 2, but in the second embodiment, the elliptical protrusion 22B shown in FIG. This is formed as a Mt. Fuji-shaped protrusion 22C shown in FIG. 8, and an asymmetric elliptical protrusion 22D shown in FIG.

上記のとおり、螺旋状波形溝付管1の螺旋状波形の溝部11に形成される窪み12の形状と内周面20の突部22の形状は、加工ツール4の突起5の形状によって決まる。実施の形態1での加工ツール4のローラー外周部4aにある突起5の形状は図4に示した円形の突起5Aを用いることで図2に示す円形状の窪み12Aと円形状の突部22Aが加工できるが、実施の形態2では他の任意形状として図9に示す楕円形状の突起5Bを用いることで図6に示す楕円形状の窪み12Bと楕円形状の突部22Bができ、図10に示す富士山形の突起5Cを用いることで図7に示す底部がフラットな楕円形状の窪み12Cと富士山形の突部22Cができ、図11に示す非対称形状の突起5Dを用いることで図8に示す非対称楕円形状の窪み12Dと非対称楕円形状の突部22Dを形成できる。   As described above, the shape of the recess 12 formed in the spiral corrugated groove 11 of the spiral corrugated grooved tube 1 and the shape of the protrusion 22 of the inner peripheral surface 20 are determined by the shape of the protrusion 5 of the processing tool 4. The shape of the protrusion 5 on the roller outer peripheral portion 4a of the processing tool 4 in the first embodiment is the circular protrusion 12A and the circular protrusion 22A shown in FIG. 2 by using the circular protrusion 5A shown in FIG. However, in the second embodiment, the elliptical depression 12B and the elliptical protrusion 22B shown in FIG. 6 can be formed by using the elliptical protrusion 5B shown in FIG. 9 as another arbitrary shape, and FIG. By using the Mt. Fuji-shaped protrusion 5C shown in FIG. 7, an elliptical recess 12C having a flat bottom and a Mt. Fuji-shaped protrusion 22C shown in FIG. 7 are formed. By using the asymmetrical protrusion 5D shown in FIG. The asymmetrical elliptical recess 12D and the asymmetrical elliptical protrusion 22D can be formed.

なお、ローラー外周部4aの突起5の形状においては、角部などのエッジ部分を尖った形状とすることは避け、例えばR0.3mm以上の曲面を付けることにより、加工ツール4の回転力の負荷を軽減し、かつ円管100への窪み12(12A〜12D)の加工形成の抵抗を低減させることができる。   In addition, in the shape of the protrusion 5 of the roller outer peripheral portion 4a, it is avoided that the edge portion such as a corner is sharpened. For example, by applying a curved surface of R0.3 mm or more, the load of the rotational force of the processing tool 4 is applied. Can be reduced, and the resistance of forming the recess 12 (12A to 12D) into the circular tube 100 can be reduced.

上記のように実施の形態2によれば、外周面10に形成された螺旋状波形の溝部11に選択的かつ断続的に形成された、楕円形状の窪み12B、底部がフラットな楕円形状の窪み12C、非対称楕円形状の窪み12Dなど、種々の窪み12の列、(内周面20では窪み12の形状に対応した種々の突部22(22B〜22D)の列を有する螺旋状波形溝付管1、及びその螺旋状波形溝付管1を用いた熱交換器を得ることができる。このように、加工ツール4のローラー外周部4aの突起形状を自在に形成し調整することで、内周面の突部22の形状を決めることができる。また、内周面の突部22の形状を調節することで、熱交換性能及び圧損を調節することができる。
なお、窪み12や突部22の形状は例示したものに限定されるものではなく、例えば、周方向に複数の凹凸を有する形状や、窪み12に代えて、凸部の形状をした変形部を構成しても同様の効果が得られる。
As described above, according to the second embodiment, an elliptical recess 12B, which is selectively and intermittently formed in the spiral corrugated groove 11 formed on the outer peripheral surface 10, and an elliptical recess with a flat bottom. 12C, a spiral corrugated grooved tube having a row of various depressions 12 such as an asymmetric elliptical depression 12D, and a row of various protrusions 22 (22B to 22D) corresponding to the shape of the depression 12 on the inner peripheral surface 20 1 and a heat exchanger using the spiral corrugated grooved tube 1. Thus, by freely forming and adjusting the protrusion shape of the roller outer peripheral portion 4a of the processing tool 4, the inner periphery can be adjusted. The shape of the projection 22 on the surface can be determined, and the heat exchange performance and pressure loss can be adjusted by adjusting the shape of the projection 22 on the inner peripheral surface.
In addition, the shape of the dent 12 and the protrusion 22 is not limited to those illustrated, for example, a shape having a plurality of irregularities in the circumferential direction, or a deformed portion having a convex shape instead of the dent 12. Even if configured, the same effect can be obtained.

実施の形態3.
図12は本発明の実施の形態3に係る螺旋状波形溝付管を示す部分断面図、図13は本発明の実施の形態3に係る螺旋状波形溝付管の製造方法を示す説明図である。なお、本実施の形態3は、ローラー状の加工ツールとして、突起5を設けた加工ツール4、突起5を設けていない加工ツール4Aの双方を用いることで、一つの管に、窪み12を有する螺旋状波形の溝部11と窪みの無い螺旋状波形の溝部11Eの両方が形成された螺旋状波形溝付管1Aを得るようにしたものである。
Embodiment 3 FIG.
FIG. 12 is a partial cross-sectional view showing a spiral corrugated grooved tube according to Embodiment 3 of the present invention, and FIG. 13 is an explanatory view showing a method of manufacturing the spiral corrugated grooved tube according to Embodiment 3 of the present invention. is there. In addition, this Embodiment 3 has the hollow 12 in one pipe | tube by using both the processing tool 4A which provided the processus | protrusion 5, and the processing tool 4A which does not provide the processus | protrusion 5 as a roller-shaped process tool. The spiral corrugated grooved tube 1A in which both the spiral corrugated groove portion 11 and the spiral corrugated groove portion 11E having no depression are formed is obtained.

図12に示す、実施の形態3の螺旋状波形溝付管1Aは、図13に示すように、突起5を持つ加工ツール4と、突起が設けられていないローラー状の加工ツール4Aを図示省略している加工装置に管軸Oの周りに等角度で2つずつ取り付け、円管100の外表面に押し付け、図5に示した実施の形態1と同様に複数条(4つ)の螺旋曲線に沿って押圧しつつ転動させることで、外周面10に断続的な窪み12の列が有る螺旋状波形の溝部11と、窪み12の列が無い螺旋状波形の溝部11Eが形成される。なお、内周面20には、管軸O方向に断続的な突部22を有する突条部21と、突部22をもたない突条部21Eが形成される。   As shown in FIG. 13, the spiral corrugated grooved tube 1A according to Embodiment 3 shown in FIG. 12 omits the processing tool 4 having the protrusion 5 and the roller-shaped processing tool 4A having no protrusion. Are attached two by two around the tube axis O at equal angles, pressed against the outer surface of the circular tube 100, and a plurality of (four) spiral curves as in the first embodiment shown in FIG. , The spiral corrugated groove portion 11 having intermittent rows of recesses 12 on the outer peripheral surface 10 and the spiral corrugated groove portion 11E having no rows of recesses 12 are formed. The inner peripheral surface 20 is formed with a protrusion 21 having an intermittent protrusion 22 in the direction of the tube axis O and a protrusion 21E having no protrusion 22.

前記のような実施の形態3によれば、螺旋状波形溝付管1Aにおける窪み12と突部22の形成数を溝単位で調整することができる。突部22の形成数を調整することで、管内を流れる流体の圧損と熱交換する表面積を必要に応じて加減調整できるので、伝熱性能を調節することができるという更なる効果が得られる。   According to Embodiment 3 as described above, the number of depressions 12 and protrusions 22 formed in the spiral corrugated grooved tube 1A can be adjusted in units of grooves. By adjusting the number of the protrusions 22 formed, the pressure loss of the fluid flowing in the pipe and the surface area for heat exchange can be adjusted as necessary, so that a further effect that the heat transfer performance can be adjusted is obtained.

実施の形態4.
図14は本発明の実施の形態4に係る螺旋状波形溝付管を示す部分断面図、図15は本発明の実施の形態4に係る螺旋状波形溝付管の展開図である。なお、この実施の形態4は螺旋状波形の溝部に設ける窪み12(従って内周面の突部22)を、円管の回転円周方向に位相差を持たせて配置するようにしたものである。なお、製造に用いる加工装置の要部は実施の形態1に係る図5と同様であるので、図5も参照して説明する。なお、図15において、横軸は管軸Oの方向、縦軸は螺旋状波形溝付管1Bの周方向の角度(下端部を0度としたとき上端部は360度)、斜めの破線は前述の4条の螺旋状波形の曲線(溝部11A〜11D)の延在方向をそれぞれ表わしている。
Embodiment 4 FIG.
FIG. 14 is a partial sectional view showing a spiral corrugated grooved tube according to Embodiment 4 of the present invention, and FIG. 15 is a development view of the spiral corrugated grooved tube according to Embodiment 4 of the present invention. In the fourth embodiment, the depression 12 (and thus the protrusion 22 on the inner peripheral surface) provided in the groove portion of the spiral waveform is arranged with a phase difference in the rotation circumferential direction of the circular tube. is there. In addition, since the principal part of the processing apparatus used for manufacture is the same as that of FIG. 5 which concerns on Embodiment 1, it demonstrates with reference also to FIG. In FIG. 15, the horizontal axis is the direction of the tube axis O, the vertical axis is the angle in the circumferential direction of the spiral corrugated grooved tube 1B (the upper end is 360 degrees when the lower end is 0 degrees), and the oblique broken line is Each of the extending directions of the aforementioned four spiral waveform curves (groove portions 11A to 11D) is shown.

図14に示す螺旋状波形溝付管1Bは、ワークである円管100の周囲に90度の角度で4つ設けられた加工ツール4の突起5のワークに対する転写位置を、回転円周方向に位相差を持たせた状態で配置させ、加工ツール4を円管100の外表面110に押し付け、複数条、ここでは4条の螺旋曲線に沿って押圧しつつ転動させることで、管外表面部に螺旋状波形の溝部11(11A、11B、11C及び11D)が形成されると共に、位相をずらす如く配置された窪み12の列が位相差を有して形成される。位相をずらす如く配置された窪み12の位相差Fは、ここでは図15に示す展開図の通り約45度である。   The spiral corrugated grooved tube 1B shown in FIG. 14 is configured so that the transfer positions of the four protrusions 5 of the machining tool 4 provided at 90 degrees around the circular tube 100 that is the workpiece are relative to the workpiece in the rotational circumferential direction. The outer surface of the pipe is arranged with a phase difference, the processing tool 4 is pressed against the outer surface 110 of the circular tube 100, and rolled while pressing along a plurality of spiral curves, here four. A spiral corrugated groove portion 11 (11A, 11B, 11C, and 11D) is formed in the portion, and a row of depressions 12 arranged so as to shift the phase is formed with a phase difference. Here, the phase difference F of the depressions 12 arranged so as to shift the phase is about 45 degrees as shown in the developed view of FIG.

図15に示すように、この例では、溝部11Bと溝部11Dに対応する対角上に配設された2つの加工ツール4の突起5は円管100の外表面に同時に押し付けられ、それぞれの溝部11B、及び溝部11Dにそれぞれ突起5が転写されて窪み12が同時に形成される。一方、溝部11Aと溝部11Cに対応する対角上に配設された他の2つの加工ツール4の突起5は、円管100が管軸方向に所定寸法移動された時点の外表面における溝部11A、溝部11Cに対して、円管100が回転方向に45度回転された位置で同時に押し付けられて、同様に突起5がそれぞれ転写されて、双方の溝部に窪み12が同時に形成される。以降、円管100に対する加工ツール4の相対的な捩り方向の回転駆動によって、溝部11の形成と、窪み12の形成が4つの螺旋曲線に沿うように連続的に行われ、図14に示す、窪み12(従って内周面の突部22)の、円管の回転円周方向に対する位置が、位相差Fが45度となるように形成された螺旋状波形溝付管1Bが得られる。   As shown in FIG. 15, in this example, the projections 5 of the two processing tools 4 disposed diagonally corresponding to the groove 11B and the groove 11D are pressed against the outer surface of the circular tube 100 at the same time. The protrusions 5 are respectively transferred to the 11B and the groove 11D, and the recesses 12 are formed simultaneously. On the other hand, the projections 5 of the other two processing tools 4 disposed on the diagonals corresponding to the groove 11A and the groove 11C are the grooves 11A on the outer surface when the circular tube 100 is moved by a predetermined dimension in the tube axis direction. The circular tube 100 is simultaneously pressed against the groove portion 11C at a position rotated 45 degrees in the rotation direction, and the protrusions 5 are similarly transferred to form the recesses 12 in both groove portions at the same time. Thereafter, the rotation of the processing tool 4 relative to the circular tube 100 is rotationally driven in the torsional direction, and the formation of the groove 11 and the formation of the recess 12 are continuously performed along four spiral curves, as shown in FIG. A spiral corrugated grooved tube 1B is obtained in which the position of the recess 12 (and hence the protrusion 22 on the inner peripheral surface) in the rotational circumferential direction of the circular tube is such that the phase difference F is 45 degrees.

上記のように、実施の形態4においては、螺旋状波形溝付管1Bの周方向に隣り合う溝部11(溝部11A〜11D)の窪み12(または内周面20の周方向に隣り合う突条部21の突部22)の位置が、管軸Oの方向に位相をずらす如く配列できるように構成したので、流体の流れが更に撹乱されることが期待でき、それにより、伝熱の促進が図られ、熱交換効果に優れた螺旋状波形溝付管1B、または熱交換器(図示省略)が得られる効果がある。   As described above, in the fourth embodiment, the recesses 12 (or the protrusions adjacent in the circumferential direction of the inner peripheral surface 20) of the groove portions 11 (groove portions 11A to 11D) adjacent in the circumferential direction of the spiral corrugated grooved tube 1B. Since the positions of the protrusions 22) of the portion 21 can be arranged so as to shift the phase in the direction of the tube axis O, the fluid flow can be expected to be further disturbed, thereby promoting the heat transfer. The spiral corrugated grooved tube 1B having an excellent heat exchange effect or a heat exchanger (not shown) is obtained.

なお、本発明は、その発明の範囲内において、実施の形態を自由に組合せたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

1、1A、1B 螺旋状波形溝付管、100 円管、110 外表面、10 外周面、11(11A、11B、11C、11D)、11E 溝部、12 窪み、
12A 円形状の窪み、12B 楕円形状の窪み、
12C 底部がフラットな楕円形状の窪み、12D 非対称楕円形状の窪み、
20 内周面、21、21E 突条部、22 突部、22A 円形状の突部、
22B 楕円形状の突部、22C 富士山形の突部、22D 非対称楕円形状の突部、
3 爪、4 加工ツール、4a ローラー外周部、5、5A、5B、5C、5D 突起、D12 窪みの深さ、F 位相差、H5 突起高さ、H22 突部の高さ、
P5 突起ピッチ、P11 溝ピッチ、O 管軸、O4 加工ツール傾斜軸、
θ 傾斜角度。
1, 1A, 1B Spiral corrugated grooved tube, 100 circular tube, 110 outer surface, 10 outer peripheral surface, 11 (11A, 11B, 11C, 11D), 11E groove, 12 recess,
12A Circular recess, 12B Oval recess,
12C Elliptical depression with flat bottom, 12D Asymmetric elliptic depression,
20 inner peripheral surface, 21, 21E ridge, 22 protrusion, 22A circular protrusion,
22B Ellipse-shaped protrusion, 22C Fuji-mountain protrusion, 22D Asymmetric ellipse-shaped protrusion,
3 claw, 4 processing tool, 4a roller outer peripheral part, 5, 5A, 5B, 5C, 5D protrusion, D12 depth of depression, F phase difference, H5 protrusion height, H22 protrusion height,
P5 protrusion pitch, P11 groove pitch, O tube axis, O4 machining tool tilt axis,
θ Tilt angle.

Claims (9)

円管の外周面に、該円管の長手方向に沿う少なくとも一条の螺旋状波形の溝部と、その溝部の底部長手方向に断続的に形成された前記円管の径方向の外側変形部と、からなる径方向に2段の変形部分が設けられ、前記円管の内周面には前記溝部に対応する螺旋状波形の突条部と、その突条部に形成された前記外側変形部に対応する長手方向に断続的な径方向の内側変形部と、からなる径方向に2段の変形部分が設けられたことを特徴とする螺旋状波形溝付管。   On the outer peripheral surface of the circular tube, at least one spiral corrugated groove portion along the longitudinal direction of the circular tube, and a radially outer deformed portion of the circular tube formed intermittently in the bottom longitudinal direction of the groove portion, Are provided with two-stage deformed portions in the radial direction, and on the inner peripheral surface of the circular tube, a spiral corrugated ridge corresponding to the groove, and the outer deformed portion formed on the ridge. A spiral corrugated grooved tube comprising a radially deformed inner deformed portion intermittently extending in the longitudinal direction and two deformed portions in the radial direction. 前記外側変形部は、前記溝部の底部を前記円管の中心方向に凹ませた窪みからなることを特徴とする請求項1記載の螺旋状波形溝付管。   2. The spiral corrugated grooved tube according to claim 1, wherein the outer deformed portion is formed of a recess in which a bottom portion of the groove portion is recessed in a center direction of the circular tube. 前記窪みは、上面視形状が、円形状、楕円形状、底部がフラットな楕円形状、または非対称の楕円形状で成ることを特徴とする請求項2記載の螺旋状波形溝付管。   3. The spiral corrugated grooved tube according to claim 2, wherein the recess has a circular shape, an elliptical shape, an elliptical shape with a flat bottom, or an asymmetrical elliptical shape when viewed from above. 請求項1から請求項3までの何れかに記載の螺旋状波形溝付管を用いた熱交換器。   A heat exchanger using the spiral corrugated grooved tube according to any one of claims 1 to 3. 所定位置に保持されるワークとしての円管の外周部に少なくとも一つ配設され、該円管の管軸方向に対して所定角度傾斜された軸の周りに回転自在に保持されたローラーからなっていて、その外周面から径方向に突出された周方向に少なくとも一つの突起を有する加工ツールを、前記円管の外周面に押付けた状態で、前記円管の管軸方向に転動させることで、前記円管の外周面に、管軸方向に沿う少なくとも一条の螺旋状波形の溝部と、その溝部の底部を更に前記円管の中心方向に断続的に凹ませた前記突起に対応する複数の窪みと、が形成された螺旋状波形溝付管を得る螺旋状波形溝付管の製造方法。   At least one roller is provided on the outer periphery of a circular tube as a work held at a predetermined position, and is rotatably held around an axis inclined at a predetermined angle with respect to the tube axis direction of the circular tube. And rolling a processing tool having at least one protrusion in the circumferential direction protruding radially from the outer peripheral surface thereof in the tube axis direction of the circular tube while being pressed against the outer peripheral surface of the circular tube. And a plurality of spiral corrugated grooves along the tube axis direction on the outer peripheral surface of the circular tube, and a plurality of protrusions corresponding to the protrusions in which the bottom of the groove portion is further recessed intermittently in the central direction of the circular tube. The manufacturing method of the spiral corrugated grooved tube which obtains the spiral corrugated grooved tube in which the hollow was formed. 予め用意された、前記突起の形状が互いに異なる複数の前記加工ツールの中から、任意に選択された前記加工ツールを用いるようにしたことを特徴とする請求項5記載の螺旋状波形溝付管の製造方法。   The spiral corrugated grooved tube according to claim 5, wherein the processing tool arbitrarily selected from a plurality of the processing tools prepared in advance and having different projection shapes is used. Manufacturing method. 前記加工ツールにおける前記突起のピッチまたは数を変更することで、前記窪みの前記円管1周あたりの形成数を調整するようにしたことを特徴とする請求項5または請求項6記載の螺旋状波形溝付管の製造方法。   The spiral shape according to claim 5 or 6, wherein the number of the depressions formed per one circumference of the circular pipe is adjusted by changing the pitch or number of the protrusions in the processing tool. A method of manufacturing a corrugated grooved tube. 前記円管の外周部に、複数の前記加工ツールを配設し得るように構成し、該複数の加工ツールの内の少なくとも1つの前記加工ツールは、前記突起を設けていない周方向に一様な外周面を有するものを用いることを特徴とする請求項5から請求項7までの何れかに記載の螺旋状波形溝付管の製造方法。   A plurality of the processing tools can be disposed on an outer peripheral portion of the circular pipe, and at least one of the plurality of processing tools is uniform in a circumferential direction in which the protrusion is not provided. 8. A method for manufacturing a spiral corrugated grooved tube according to claim 5, wherein a tube having a peripheral surface is used. 前記突起が設けられた複数の前記加工ツールを前記円管の外周部に配設すると共に、前記加工ツールによって前記円管の外周面にそれぞれ形成される複数の前記溝部における、前記窪みの前記管軸方向の位置が、隣り合う前記溝部の間で位相差をもって形成されるように、前記加工ツールにおける前記突起の回転方向の位置を複数の前記加工ツールの間でずらすことを特徴とする請求項5から請求項7までの何れかに記載の螺旋状波形溝付管の製造方法。   A plurality of the processing tools provided with the protrusions are disposed on the outer peripheral portion of the circular pipe, and the pipes of the recesses in the plurality of groove portions respectively formed on the outer peripheral surface of the circular pipe by the processing tool. The position in the rotation direction of the protrusion in the processing tool is shifted among the plurality of processing tools so that an axial position is formed with a phase difference between the adjacent groove portions. A method for producing a spiral corrugated grooved tube according to any one of claims 5 to 7.
JP2016243947A 2016-12-16 2016-12-16 Manufacturing method of spiral corrugated grooved tube Active JP6818536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243947A JP6818536B2 (en) 2016-12-16 2016-12-16 Manufacturing method of spiral corrugated grooved tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243947A JP6818536B2 (en) 2016-12-16 2016-12-16 Manufacturing method of spiral corrugated grooved tube

Publications (3)

Publication Number Publication Date
JP2018096655A true JP2018096655A (en) 2018-06-21
JP2018096655A5 JP2018096655A5 (en) 2019-11-14
JP6818536B2 JP6818536B2 (en) 2021-01-20

Family

ID=62633287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243947A Active JP6818536B2 (en) 2016-12-16 2016-12-16 Manufacturing method of spiral corrugated grooved tube

Country Status (1)

Country Link
JP (1) JP6818536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240725A (en) * 2019-07-18 2021-01-19 芜湖美的厨卫电器制造有限公司 Turbulence piece for heat exchange device, heat exchange device with turbulence piece and gas water heater with turbulence piece

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289293A (en) * 1985-06-14 1986-12-19 Hitachi Ltd Heat transfer tube and manufacture thereof
JPS62242795A (en) * 1986-04-15 1987-10-23 Sumitomo Light Metal Ind Ltd Heat transfer tube
US20080029243A1 (en) * 2003-11-25 2008-02-07 O'donnell Michael J Heat exchanger tube with integral restricting and turbulating structure
JP2008261566A (en) * 2007-04-12 2008-10-30 Sumitomo Light Metal Ind Ltd Double-pipe heat exchanger
JP2009056479A (en) * 2007-08-31 2009-03-19 Orion Mach Co Ltd Heat transfer pipe manufacturing device and method, and heat transfer pipe
JP2009270755A (en) * 2008-05-07 2009-11-19 Sumitomo Light Metal Ind Ltd Heat-transfer pipe for heat exchanger and heat exchanger using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289293A (en) * 1985-06-14 1986-12-19 Hitachi Ltd Heat transfer tube and manufacture thereof
JPS62242795A (en) * 1986-04-15 1987-10-23 Sumitomo Light Metal Ind Ltd Heat transfer tube
US20080029243A1 (en) * 2003-11-25 2008-02-07 O'donnell Michael J Heat exchanger tube with integral restricting and turbulating structure
JP2008261566A (en) * 2007-04-12 2008-10-30 Sumitomo Light Metal Ind Ltd Double-pipe heat exchanger
JP2009056479A (en) * 2007-08-31 2009-03-19 Orion Mach Co Ltd Heat transfer pipe manufacturing device and method, and heat transfer pipe
JP2009270755A (en) * 2008-05-07 2009-11-19 Sumitomo Light Metal Ind Ltd Heat-transfer pipe for heat exchanger and heat exchanger using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240725A (en) * 2019-07-18 2021-01-19 芜湖美的厨卫电器制造有限公司 Turbulence piece for heat exchange device, heat exchange device with turbulence piece and gas water heater with turbulence piece

Also Published As

Publication number Publication date
JP6818536B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP5376763B2 (en) Heat exchanger tube
US6488078B2 (en) Heat-exchanger tube structured on both sides and a method for its manufacture
JPH0857535A (en) Pipe with multiplex wound rib and its production
JP2017075711A (en) Heat transfer pipe for heat exchanger and heat exchanger using it
JP2018096655A (en) Tube with spirally corrugated groove, heat exchanger, and method of manufacturing tube with spirally corrugated groove
CN215657224U (en) Integral new material spiral pipe rolling cutter and spiral pipe production device
US20070089873A1 (en) 3-D dimpled heat exchanger
JP2010101508A (en) Internally-grooved pipe, method of manufacturing the same, and heat exchanger with the internally-grooved pipe
WO2013145815A1 (en) Spiral pipe extrusion method and spiral pipe extrusion machine
JP2006181638A (en) Raceway ring for radial ball bearing and its manufacturing method
TWI581936B (en) Roller for forming heat transfer elements of heat exchangers
JP2018096655A5 (en)
JP2015024471A (en) Processing tool and processing method for nut for ball screw
JPH0519079B2 (en)
JP2001041672A (en) Heating tube with grooved inner surface and fin machining roll therefor
JP4628858B2 (en) Double tube manufacturing method and apparatus
JP2013202615A (en) Tube expanding billet, tube expanding device, and heat exchanger
JPS63172892A (en) Heat transfer pipe for evaporation and its manufacture
JP7433523B2 (en) Spinning method
JP2994159B2 (en) Steel pipe shaping method
JP3329681B2 (en) Inner grooved pipe, method of manufacturing the same, manufacturing apparatus
JP2000292088A (en) Heat transfer tube with internal grooves and method and apparatus for manufacturing the same
JP2015062955A (en) Manufacturing method of dimple steel pipe and dimple steel pipe manufacturing device
JP2003200223A (en) Manufacturing method of heat transfer element in rotary regenerative heat exchanger
JP3743342B2 (en) Spiral inner grooved tube and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R151 Written notification of patent or utility model registration

Ref document number: 6818536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250