JP5184122B2 - Ferritic stainless steel flexible tube - Google Patents

Ferritic stainless steel flexible tube Download PDF

Info

Publication number
JP5184122B2
JP5184122B2 JP2008027721A JP2008027721A JP5184122B2 JP 5184122 B2 JP5184122 B2 JP 5184122B2 JP 2008027721 A JP2008027721 A JP 2008027721A JP 2008027721 A JP2008027721 A JP 2008027721A JP 5184122 B2 JP5184122 B2 JP 5184122B2
Authority
JP
Japan
Prior art keywords
mass
stainless steel
less
ferritic stainless
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008027721A
Other languages
Japanese (ja)
Other versions
JP2009185351A (en
Inventor
宏之 松山
昌文 高井良
央 岩崎
明彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2008027721A priority Critical patent/JP5184122B2/en
Priority to TW98101812A priority patent/TWI356138B/en
Priority to PCT/JP2009/051196 priority patent/WO2009098962A1/en
Priority to KR1020107017362A priority patent/KR101545762B1/en
Priority to CN200980102698.5A priority patent/CN101925686B/en
Publication of JP2009185351A publication Critical patent/JP2009185351A/en
Application granted granted Critical
Publication of JP5184122B2 publication Critical patent/JP5184122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/14Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics
    • F16L11/15Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics corrugated

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

本発明はフェライト系ステンレス鋼製フレキシブル管に関する。   The present invention relates to a ferritic stainless steel flexible tube.

例えば、エアコンは、冷媒を介した熱交換機であり、その配管には熱伝導性に優れた銅管が使われている。銅管は、熱伝導性だけではなく加工性にも優れていることから、熱伝導性が関与しない室内外機の接続配管にも使用されている。エアコン室内外機の設置時に、設置場所に応じて配管を人手で曲げたり、戻したりする必要がある。さらには、配管接続部は、接続ジョイントの形状に合わせて、45°のフレア加工が施されており、素管の外径と比較してフレア先端部外径を40%程度拡管するフレア加工を行い、フレアナットで所定のトルクで締め付けることにより接続している。つまり、施工現場で作業者が工具などを使用して曲げられることや、フレア加工を行えるような加工性が必要である。
しかし、近年の銅素材の高騰により、銅以外の素材の適用検討が必要であり、例えば、銅と同様に加工性に優れるアルミニウム管を用いた接続配管も見受けられるようになった。ただし、アルミニウム管の場合、接続のために両端には銅管が溶接されており、加工の手間とコストがかかるという問題がある。
一方、ステンレス鋼はその優れた耐食性から屋内外の各種給水・給湯・ガス用配管に用いられており、設置場所にあわせて配管する必要から、曲げ加工が可能なようにステンレス管に各種波形形状を施したフレキシブル管が使用されている(例えば、特許文献1)。このフレキシブル管により、銅やアルミニウム管のように、ある程度の曲げ加工ができるようになっている。これらステンレス鋼製のフレキシブル管はSUS304、304L、316、316Lといったオーステナイト系ステンレス鋼が使われている。
これらオーステナイト系ステンレス鋼製フレキシブル管をエアコン室内外機接続配管に適用した場合、オーステナイト系ステンレス鋼はNiが多く使用されているため高価であり、また、使用される環境によっては応力腐食割れが発生する可能性があるという欠点がある。さらには、オーステナイト系ステンレス鋼は優れた加工性を有しているが、銅やアルミニウムと比較して硬質であることと、さらに加工硬化が大きいため、製造されたフレキシブル管を施工現場において人手で繰り返し曲げ戻しを行うことや、工具を使用した管端のフレア加工が困難であるという問題がある。
また、オーステナイト系ステンレス鋼製のフレキシブル管が使われる給水・給湯・ガス配管はゴムパッキンやOリングを介して接続されており(例えば、特許文献2)、このような接続方法ではエアコン配管などの高圧用途への適用は困難であり、現状の銅配管へオーステナイト系ステンレス鋼を用いたフレキシブル管を適用することは困難であった。
オーステナイト系ステンレス鋼と比較して、安価で加工硬化が小さいフェライト系ステンレス鋼製のフレキシブル管については、自動車排気系での検討がある(例えば、特許文献3)が目的や必要特性が異なっており、施工時の曲げ加工性や接続部のフレア加工性については検討がなされていない。
特開2006−177529号公報 特開平9−242949号公報 特開平11−159616号公報
For example, an air conditioner is a heat exchanger through a refrigerant, and a copper pipe having excellent heat conductivity is used for its pipe. Since the copper pipe is excellent not only in heat conductivity but also in workability, it is also used in connection pipes for indoor and outdoor units that do not involve heat conductivity. When installing an air conditioner indoor / outdoor unit, it is necessary to manually bend or return the piping according to the installation location. Furthermore, the pipe connection part is flared by 45 ° according to the shape of the connection joint, and flared to expand the flared tip outer diameter by about 40% compared to the outer diameter of the raw pipe. Connected by tightening with a predetermined torque with a flare nut. In other words, it is necessary for the worker to be able to bend using a tool or the like at the construction site, or to be workable so that flare processing can be performed.
However, due to recent soaring copper materials, it is necessary to examine the application of materials other than copper. For example, connection pipes using aluminum tubes that are excellent in workability like copper have been found. However, in the case of an aluminum pipe, copper pipes are welded to both ends for connection, and there is a problem that it takes labor and cost for processing.
Stainless steel, on the other hand, is used for various types of indoor and outdoor water supply, hot water supply, and gas piping due to its excellent corrosion resistance. The flexible pipe which gave is used (for example, patent document 1). This flexible tube can be bent to some extent like a copper or aluminum tube. These stainless steel flexible tubes are made of austenitic stainless steel such as SUS304, 304L, 316, 316L.
When these austenitic stainless steel flexible pipes are applied to air conditioner indoor / outdoor connection pipes, austenitic stainless steel is expensive because of its high Ni content, and stress corrosion cracking may occur depending on the environment in which it is used. There is a drawback that there is a possibility of doing. Furthermore, although austenitic stainless steel has excellent workability, it is harder than copper and aluminum, and because it is harder to work, the manufactured flexible pipe must be manually installed at the construction site. There are problems that it is difficult to repeatedly bend back and flaring the tube end using a tool.
In addition, water supply, hot water supply, and gas pipes that use flexible pipes made of austenitic stainless steel are connected via rubber packing and O-rings (for example, Patent Document 2). Application to high-pressure applications is difficult, and it has been difficult to apply flexible pipes using austenitic stainless steel to current copper pipes.
Compared to austenitic stainless steel, flexible pipes made of ferritic stainless steel that are less expensive and less work-hardening have been studied in automobile exhaust systems (for example, Patent Document 3), but have different purposes and necessary characteristics. The bending workability during construction and the flare workability of the connecting part have not been studied.
JP 2006-177529 A JP-A-9-242949 JP-A-11-159616

本発明は、上述の状況に鑑みてなされたもので、経済的に優れ、施工時の曲げ加工性と接続部である管端部のフレア加工性に優れたフェライト系ステンレス鋼製のフレキシブル管を目的とする。   The present invention has been made in view of the above circumstances, and is a ferritic stainless steel flexible pipe that is economically superior and has excellent bending workability during construction and flare workability of a pipe end that is a connection part. Objective.

本発明者らは上記目的を達成するために、各種フェライト系ステンレス鋼を用いたフレキシブル管の、曲げ加工性と管端部のフレア加工性とを検討した。その結果、素材板の板厚と、加工性の指標となる平均ランクフォード値(平均r値)との特定の組み合わせにより、フレキシブル管の曲げ加工性とフレア加工性の向上が図れるとの知見を得、本発明に至った。   In order to achieve the above object, the present inventors have examined the bending workability and the flare workability of the tube end portion of flexible pipes using various ferritic stainless steels. As a result, the knowledge that the bending workability and flare workability of flexible pipes can be improved by a specific combination of the thickness of the material plate and the average rankford value (average r value) that is an index of workability. To the present invention.

即ち本発明のフェライト系ステンレス鋼製のフレキシブル管は、山部と谷部とが交互に配置され波形形状の可撓部が形成されている、フェライト系ステンレス鋼製のフレキシブル管であって、板厚0.2〜0.5mmで、平均r値が1.2以上であるフェライト系ステンレス鋼板を素材とし、前記可撓部の波形形状は、谷部外径と山部外径との比である谷部外径/山部外径が0.70〜0.90、かつ山部外径と可撓部を形成させる前の素管の外径の素管外径との比である山部外径/素管外径が0.9〜1.2であり、山部の頭頂部と谷部の底部とからなるピッチと前記素管外径の比であるピッチ/素管外径が0.13〜0.30であることを特徴とする。
前記フェライト系ステンレス鋼は、C:0.02質量%以下、N:0.02質量%以下、Si:1.0質量%以下、Mn:1.0質量%以下、P:0.05質量%以下、S:0.03質量%以下、Cr:16〜23質量%を含有し、さらに、Ti、Nbからなる群より選ばれる少なくとも1種をそれぞれ0.1〜0.6質量%含有し、残部がFeおよび不可避不純物よりなることが好ましく、さらに、Mg:0.0050質量%以下、Ni:0.6質量%以下、Cu:0.6質量%以下、Mo:2.0質量%以下からなる群より選ばれる1種以上を含有することがより好ましく、さらに、Al:0.05質量%以下、Ca:0.0050質量%以下、B:0.0050質量%以下、V:0.2質量%以下、REM:0.10質量%以下からなる群より選ばれる1種以上を含有することがさらに好ましい。
本発明のフェライト系ステンレス鋼製のフレキシブル管は、前記可撓部が形成されていない素管部を有することが好ましく、複数の前記素管部と複数の前記可撓部が、交互に形成されていても良く、全長がコイル状に巻き取られた形状であっても良いし、両端または片端にフレア加工部を有しても良い。
That is, the ferritic stainless steel flexible tube of the present invention is a ferritic stainless steel flexible tube in which peaks and troughs are alternately arranged to form a corrugated flexible portion, A ferrite stainless steel plate having a thickness of 0.2 to 0.5 mm and an average r value of 1.2 or more is used as a raw material, and the corrugated shape of the flexible portion is a ratio of a trough outer diameter and a crest outer diameter. A crest that is a ratio of a trough outer diameter / crest outer diameter of 0.70 to 0.90, and a crest outer diameter and an outer diameter of a raw pipe before forming a flexible portion. The outer diameter / outer tube outer diameter is 0.9 to 1.2, and the pitch / outer tube outer diameter, which is the ratio of the pitch formed by the top of the peak and the bottom of the valley, to the outer diameter of the outer tube is 0. .13 to 0.30.
The ferritic stainless steel is C: 0.02 mass% or less, N: 0.02 mass% or less, Si: 1.0 mass% or less, Mn: 1.0 mass% or less, P: 0.05 mass% Hereinafter, S: 0.03% by mass or less, Cr: 16 to 23% by mass, further containing at least one selected from the group consisting of Ti and Nb 0.1 to 0.6% by mass, The balance is preferably composed of Fe and inevitable impurities, and further Mg: 0.0050 mass% or less, Ni: 0.6 mass% or less, Cu: 0.6 mass% or less, Mo: 2.0 mass% or less It is more preferable to contain at least one selected from the group consisting of: Al: 0.05% by mass or less; Ca: 0.0050% by mass or less; B: 0.0050% by mass or less; V: 0.2 Less than mass%, REM: 0.10 mass% or less It is further preferred to contain one or more members selected from the group.
The flexible pipe made of ferritic stainless steel according to the present invention preferably has a base pipe part in which the flexible part is not formed, and the plurality of base pipe parts and the plurality of flexible parts are alternately formed. The entire length may be wound in a coil shape, or flared portions may be provided at both ends or one end.

本発明のフェライト系ステンレス鋼製のフレキシブル管によれば、施工時の曲げ加工性と、管端部のフレア加工性に優れ、かつ、安価なフレキシブル配管を提供することができる。   According to the flexible pipe made of ferritic stainless steel of the present invention, it is possible to provide an inexpensive flexible pipe that is excellent in bending workability during construction and flare workability at the end of the pipe.

本発明のフェライト系ステンレス鋼製のフレキシブル管は、板厚0.2〜0.5mmで、平均r値が1.2以上であるフェライト系ステンレス鋼板を素材とするものである。
フレキシブル管の一例について、図1を用いて説明する。図1は本発明の実施形態にかかるフェライト系ステンレス鋼製のフレキシブル管(以下、単にフレキシブル管ということがある)10の側面図である。
図1に示すとおり、フレキシブル管10は、両端部に設けられたフレア加工部14と、素管部12と、可撓部20とで構成されている。可撓部20は、フレキシブル管10の周面の円周方向に沿った、独立した山部22と谷部24とが交互に配置されて、波形形状が形成されている。フレアナット30は、回転およびスライド自在な状態で、フレキシブル管10に挿入されている。
The ferritic stainless steel flexible tube of the present invention is made of a ferritic stainless steel plate having a plate thickness of 0.2 to 0.5 mm and an average r value of 1.2 or more.
An example of the flexible tube will be described with reference to FIG. FIG. 1 is a side view of a ferritic stainless steel flexible tube (hereinafter sometimes simply referred to as a flexible tube) 10 according to an embodiment of the present invention.
As shown in FIG. 1, the flexible tube 10 includes a flare processing portion 14 provided at both ends, a raw tube portion 12, and a flexible portion 20. The flexible portion 20 is formed with a corrugated shape by alternately arranging independent crest portions 22 and trough portions 24 along the circumferential direction of the peripheral surface of the flexible tube 10. The flare nut 30 is inserted into the flexible tube 10 so as to be rotatable and slidable.

フレアナット30は、所定のトルクで締め付けて、配管同士を接続するために使用され、一般的にフレア加工前にフレキシブル管に挿入しておく。   The flare nut 30 is used to connect the pipes by tightening with a predetermined torque, and is generally inserted into the flexible pipe before flare processing.

可撓部20の波形形状は特に限定されず、山部22の頭頂部、谷部24の底部の形状が、曲面を形成していても良いし、鋭角な凸部を形成していても良い。
可撓部20の波形形状について、図2を用いて詳細に説明する。図2は、フレキシブル管10の断面図である。可撓部20の波形形状の大きさは特に限定されないが、谷部外径dv(mm)と山部外径dm(mm)の比(dv/dm)が0.70〜0.90、山部外径dmと素管外径d(mm)の比(dm/d)が0.9〜1.2であり、かつ、山部22頭頂部から谷部24底部までのピッチDw(mm)と素管外径d(mm)との比(Dw/d)が0.10〜0.30の範囲であることが好ましい。
谷部外径dv/山部外径dmが0.70より小さいと波の高さが大きくなりすぎ、製造性が低下するおそれがある。また、0.90を超えると波の高さが小さくなりすぎ、フレキシブル管としての曲げ加工性が低下するおそれがある。
山部外径dm/素管外径dが0.9より小さいと、製造性が低下するとともに管内を気体や液体が流れる際の抵抗が大きくなり、1.2を超えると製造性が低下するおそれがある。
ピッチDw/素管外径dが0.10より小さいと製造性が低下し、0.30を超えると曲げ加工性が低下するおそれがある。
The waveform shape of the flexible portion 20 is not particularly limited, and the shape of the top portion of the peak portion 22 and the bottom portion of the valley portion 24 may form a curved surface, or may form an acute convex portion. .
The waveform shape of the flexible portion 20 will be described in detail with reference to FIG. FIG. 2 is a cross-sectional view of the flexible tube 10. The size of the corrugated shape of the flexible portion 20 is not particularly limited, but the ratio (dv / dm) of the valley outer diameter dv (mm) to the mountain outer diameter dm (mm) is 0.70 to 0.90. The ratio (dm / d) of the part outer diameter dm to the raw pipe outer diameter d (mm) is 0.9 to 1.2, and the pitch Dw (mm) from the top of the peak 22 to the bottom of the valley 24 It is preferable that the ratio (Dw / d) to the outer diameter d (mm) of the raw tube is in the range of 0.10 to 0.30.
If the trough outer diameter dv / crest outer diameter dm is smaller than 0.70, the wave height becomes too large, and the productivity may be lowered. On the other hand, if it exceeds 0.90, the height of the wave becomes too small, and the bending workability as a flexible pipe may be lowered.
When the ridge outer diameter dm / element tube outer diameter d is smaller than 0.9, the manufacturability is lowered and the resistance when gas or liquid flows in the pipe is increased, and when it exceeds 1.2, the manufacturability is lowered. There is a fear.
If the pitch Dw / outer pipe outer diameter d is smaller than 0.10, the manufacturability is lowered, and if it exceeds 0.30, the bending workability may be lowered.

「素管」とは、一般的には鋼帯または鋼板から電気抵抗溶接またはアーク溶接によって製造した管を言い、本発明においては、引き抜き管を含み、可撓部20を設けていない箇所を示す。
素管部12の場所は特に限定されず、可撓部20の両側あるいは片側に配置されていても良いし、複数の素管部12と複数の可撓部20とが交互に配置されていても良い。
また、素管外径dは特に規定するものではないが、例えばエアコン接続配管では液側が6.35mm、ガス側が9.52mmの2種類が一般的に使用されており、また、水道配管では25mmを超える配管も使用されることもある。このため、素管外径dは6〜30mmの範囲で適宜決定することが好ましい。
The “element tube” generally refers to a tube manufactured from a steel strip or steel plate by electric resistance welding or arc welding. In the present invention, the tube includes a drawn tube and indicates a portion where the flexible portion 20 is not provided. .
The location of the raw tube portion 12 is not particularly limited, and may be arranged on both sides or one side of the flexible portion 20, and a plurality of raw tube portions 12 and a plurality of flexible portions 20 are alternately arranged. Also good.
In addition, the outer diameter d of the raw pipe is not particularly specified. For example, in air conditioner connection piping, two types are generally used: 6.35 mm on the liquid side and 9.52 mm on the gas side. Pipes that exceed the limit may be used. For this reason, it is preferable that the raw tube outer diameter d is appropriately determined in the range of 6 to 30 mm.

フレア加工部14のフレア加工性は、下記(1)式で表される拡管率(%)が、40%以上にできることが好ましい。
拡管率(%)=フレア加工部外径dt(mm)÷素管外径d(mm)×100・・・(1)
The flare workability of the flare processed portion 14 is preferably such that the tube expansion rate (%) represented by the following formula (1) can be 40% or more.
Tube expansion ratio (%) = flared portion outer diameter dt (mm) ÷ element tube outer diameter d (mm) × 100 (1)

フレキシブル管10の素材となるフェライト系ステンレス鋼板の板厚は、0.2〜0.5mmである。板厚が0.2mmより薄いと曲げ加工性は良好となるが、フレキシブル管としての強度が低下することと、フレア加工時に所定の拡管率まで加工できず、フレア加工先端部で割れが発生するおそれがあるためである。加えて、0.2mm以上であれば、市場での入手が比較的容易であるためである。一方、0.5mmを超えると、施工現場での曲げ加工性が著しく低下するとともに、施工現場でのフレア加工において所定の拡管率までフレア加工することが困難なためである。   The thickness of the ferritic stainless steel plate that is the material of the flexible tube 10 is 0.2 to 0.5 mm. If the plate thickness is less than 0.2 mm, the bending workability will be good, but the strength as a flexible tube will decrease, and it will not be possible to process to a predetermined tube expansion rate at the time of flare processing, and cracks will occur at the flare processing tip This is because there is a fear. In addition, if the thickness is 0.2 mm or more, it is relatively easy to obtain in the market. On the other hand, when the thickness exceeds 0.5 mm, the bending workability at the construction site is remarkably deteriorated, and it is difficult to flare to a predetermined tube expansion ratio in the flare processing at the construction site.

フレキシブル管10の素材となるフェライト系ステンレス鋼板は、平均r値が1.2以上である。
ここで、ランクフォード値(r値)とは、JIS Z2254で規定されているとおり、引張り試験片の板幅減少と板厚減少の比率を示すもので、r値が高いほど、加工性に優れる。平均r値とは、圧延方向のr値をr、圧延直角方向のr値をr90、圧延45°方向のr値をr45とした場合に、下記(2)式で表されるr値の加重平均値である。
平均r値=(r+r90+2r45)÷4・・・(2)
平均r値が1.2未満であると、充分なフレア加工性が得られないためである。
The ferritic stainless steel plate used as the material of the flexible tube 10 has an average r value of 1.2 or more.
Here, the Rankford value (r value) indicates the ratio of reduction in the plate width and thickness of the tensile test piece as defined in JIS Z2254, and the higher the r value, the better the workability. . And the average r value, when the r value in the rolling direction r 0, perpendicular to the rolling direction of the r value r 90, the r value in the rolling direction of 45 ° was r 45, represented by the following (2) formula r It is a weighted average value.
Average r value = (r 0 + r 90 + 2r 45 ) / 4 (2)
This is because if the average r value is less than 1.2, sufficient flare workability cannot be obtained.

フェライト系ステンレス鋼の組成は特に限定されないが、曲げ加工性と管端のフレア加工性を確保するための組成を選択することができる。フェライト系ステンレス鋼の組成について以下に詳細に説明する。
フェライト系ステンレス鋼は、C:0.02質量%以下、N:0.02質量%以下、Si:1.0質量%以下、Mn:1.0質量%以下、P:0.05質量%以下、S:0.03質量%以下、Cr:16〜23質量%を含有し、さらに、Ti、Nbからなる群より選ばれる少なくとも1種を0.1〜0.6質量%含有し、残部がFeおよび不可避不純物よりなることが好ましい。
The composition of the ferritic stainless steel is not particularly limited, but a composition for ensuring bending workability and flare workability at the tube end can be selected. The composition of the ferritic stainless steel will be described in detail below.
Ferritic stainless steel is C: 0.02 mass% or less, N: 0.02 mass% or less, Si: 1.0 mass% or less, Mn: 1.0 mass% or less, P: 0.05 mass% or less , S: 0.03% by mass or less, Cr: 16-23% by mass, further containing at least one selected from the group consisting of Ti and Nb, 0.1-0.6% by mass, the balance being It preferably consists of Fe and inevitable impurities.

炭素(C):フェライト系ステンレス鋼中のCの含有量は特に限定されないが、0.02質量%以下であることが好ましい。Cの含有量が0.02質量%を超えると、加工性や耐食性が劣化する。また、これらを固定させるために必要なTi、Nb量が増加するためである。一方、Cの含有量を0.001質量%未満とするには、精錬コストが嵩む。従って、Cの下限値は0.001質量%とすることが好ましい。   Carbon (C): The content of C in the ferritic stainless steel is not particularly limited, but is preferably 0.02% by mass or less. If the C content exceeds 0.02 mass%, workability and corrosion resistance deteriorate. Moreover, it is because the amount of Ti and Nb necessary for fixing them increases. On the other hand, in order to make the C content less than 0.001% by mass, the refining cost increases. Therefore, the lower limit value of C is preferably 0.001% by mass.

窒素(N):フェライト系ステンレス鋼中のNの含有量は特に限定されないが、0.02質量%以下であることが好ましい。Nの含有量が0.02質量%を超えると、加工性や耐食性が劣化する。また、これらを固定させるために必要なTi、Nb量が増加するためである。一方、Nの含有量を0.001質量%未満とするには、精錬コストが嵩む。従って、Nの下限値は0.001質量%とすることが好ましい。   Nitrogen (N): The content of N in the ferritic stainless steel is not particularly limited, but is preferably 0.02% by mass or less. If the N content exceeds 0.02% by mass, workability and corrosion resistance deteriorate. Moreover, it is because the amount of Ti and Nb necessary for fixing them increases. On the other hand, in order to make the N content less than 0.001% by mass, the refining cost increases. Therefore, the lower limit value of N is preferably 0.001% by mass.

ケイ素(Si):フェライト系ステンレス鋼中のSiの含有量は特に限定されないが、1.0質量%以下であることが好ましい。Siは脱酸元素として用いられる元素であるが、1.0質量%を超えると加工性を著しく低下させるためである。一方、Siの含有量を0.01質量%未満とするには、精錬コストが嵩む。従って、Siの下限値は0.01質量%とすることが好ましい。   Silicon (Si): The content of Si in the ferritic stainless steel is not particularly limited, but is preferably 1.0% by mass or less. Si is an element used as a deoxidizing element, but when it exceeds 1.0% by mass, workability is remarkably lowered. On the other hand, refining costs increase to make the Si content less than 0.01% by mass. Therefore, the lower limit of Si is preferably 0.01% by mass.

マンガン(Mn):フェライト系ステンレス鋼中のMnの含有量は特に限定されないが、1.0質量%以下であることが好ましい。加工性や耐食性を低下させるため、上限は1.0質量%が好ましい。一方、Mnの含有量を0.01質量%未満とするには、精錬コストが嵩む。従って、Mnの下限値は、不可避的に混入する0.01質量%とすることが好ましい。   Manganese (Mn): The content of Mn in the ferritic stainless steel is not particularly limited, but is preferably 1.0% by mass or less. In order to reduce workability and corrosion resistance, the upper limit is preferably 1.0% by mass. On the other hand, in order to make the Mn content less than 0.01% by mass, the refining cost increases. Therefore, the lower limit value of Mn is preferably set to 0.01% by mass which is inevitably mixed.

リン(P):フェライト系ステンレス鋼中のPの含有量は特に限定されないが、0.05質量%以下であることが好ましい。0.05質量%を超えると、固溶強化により加工性を低下させるとともに、耐食性や製造性を低下させるおそれがあるためである。一方、Pの下限は、原料選択などによる製鋼コストの増加を防止する観点から、0.01質量%が好ましい。   Phosphorus (P): The content of P in the ferritic stainless steel is not particularly limited, but is preferably 0.05% by mass or less. This is because if it exceeds 0.05% by mass, the workability is lowered due to solid solution strengthening, and the corrosion resistance and manufacturability may be lowered. On the other hand, the lower limit of P is preferably 0.01% by mass from the viewpoint of preventing an increase in steelmaking cost due to selection of raw materials.

硫黄(S):フェライト系ステンレス鋼中のSの含有量は特に限定されないが、0.03質量%以下が好ましい。0.03質量%を超えると、介在物などにより耐食性を劣化させるおそれがあるためである。一方、Sの下限は、製鋼コストを考慮して0.0005質量%が好ましい。   Sulfur (S): The content of S in the ferritic stainless steel is not particularly limited, but is preferably 0.03% by mass or less. This is because if it exceeds 0.03 mass%, corrosion resistance may be deteriorated by inclusions or the like. On the other hand, the lower limit of S is preferably 0.0005% by mass in consideration of steelmaking costs.

クロム(Cr):Crは、ステンレス鋼の基本特性である耐食性を確保するために必要な元素である。フェライト系ステンレス鋼中のCr含有量は特に限定されないが、16〜23質量%であることが好ましい。16質量%以上であれば、フレキシブル管が使用される環境で充分な耐食性を得ることができ、23質量%を超えると、加工性を低下させたり、製品コストを高めたり、製造性を劣化させるおそれがあるためである。   Chromium (Cr): Cr is an element necessary for ensuring corrosion resistance, which is a basic characteristic of stainless steel. The Cr content in the ferritic stainless steel is not particularly limited, but is preferably 16 to 23% by mass. If it is 16% by mass or more, sufficient corrosion resistance can be obtained in an environment where the flexible tube is used, and if it exceeds 23% by mass, workability is reduced, product cost is increased, and manufacturability is deteriorated. This is because there is a fear.

チタン(Ti)、ニオブ(Nb):Ti、NbはC、Nと結合して析出物を形成し、鋼中の固溶C、Nを低減することで加工性を向上させる元素である。また耐食性、特に溶接部の耐食性を向上させる元素である。フェライト系ステンレス鋼中には、Ti、Nbからなる群より選ばれる少なくとも1種類が、それぞれ0.1〜0.6質量%含有されていることが好ましい。0.1質量%未満であると、充分な加工性向上が図れないおそれがあり、0.6質量%を超えると加工性を低下させたり、またTiは介在物による疵の原因となりうるためである。   Titanium (Ti), niobium (Nb): Ti and Nb are elements that combine with C and N to form precipitates and reduce the solid solution C and N in the steel to improve workability. Moreover, it is an element which improves corrosion resistance, especially the corrosion resistance of a welded part. The ferritic stainless steel preferably contains 0.1 to 0.6% by mass of at least one selected from the group consisting of Ti and Nb. If the amount is less than 0.1% by mass, sufficient workability may not be improved, and if it exceeds 0.6% by mass, the workability may be reduced, and Ti may cause flaws due to inclusions. is there.

フェライト系ステンレス鋼は、さらに、Mg:0.0050質量%以下、Ni:0.6質量%以下、Cu:0.6質量%以下、Mo:2.0質量%以下からなる群より選ばれる1種以上を含有することが好ましい。
マグネシウム(Mg):フェライト系ステンレス鋼中のMgは、溶鋼中でAlとともにMg酸化物を形成し、脱酸剤として作用するほか、TiNの晶出核として作用する。TiNは凝固過程においてフェライト相の凝固核となり、TiNの晶出を促進させることで、凝固時にフェライト相を微細生成させることができる。凝固組織を微細化させることにより、製品のリジングやローピングなどの粗大凝固組織に起因する表面欠陥を防止できるほか、加工性の向上をもたらす。TiNの晶出核となるMg酸化物の溶鋼中での積極的な形成は0.0001質量%から安定して発現するので、これら効果を得るため下限0.0001質量%とするのが好ましい。ただし、0.0050質量%を超えると溶接性が劣化するため、上限を0.0050質量%とすることが好ましい。
The ferritic stainless steel is further selected from the group consisting of Mg: 0.0050 mass% or less, Ni: 0.6 mass% or less, Cu: 0.6 mass% or less, and Mo: 2.0 mass% or less. It is preferable to contain seeds or more.
Magnesium (Mg): Mg in ferritic stainless steel forms Mg oxide together with Al in molten steel and acts as a deoxidizer and also acts as a crystallization nucleus of TiN. TiN becomes a solidification nucleus of the ferrite phase in the solidification process, and by facilitating crystallization of TiN, the ferrite phase can be finely formed during solidification. By refining the solidified structure, surface defects caused by coarse solidified structures such as ridging and roping of products can be prevented and workability can be improved. Aggressive formation in the molten steel of Mg oxide, which serves as a crystallization nucleus of TiN, appears stably from 0.0001% by mass. Therefore, to obtain these effects, the lower limit is preferably made 0.0001% by mass. However, if it exceeds 0.0050% by mass, the weldability deteriorates, so the upper limit is preferably made 0.0050% by mass.

ニッケル(Ni):フェライト系ステンレス鋼中のNiは耐食性向上に有効な元素である。Niの含有量は特に限定されないが、上限は加工性やコストの面から0.6質量%が好ましく、下限は安定した効果が得られる0.01質量%が好ましい。   Nickel (Ni): Ni in ferritic stainless steel is an element effective for improving corrosion resistance. The Ni content is not particularly limited, but the upper limit is preferably 0.6% by mass from the viewpoint of workability and cost, and the lower limit is preferably 0.01% by mass with which a stable effect can be obtained.

銅(Cu):フェライト系ステンレス鋼中のCuは耐食性向上に有効な元素である。Cuの含有量は特に限定されないが、上限は加工性やコストの面から0.6質量%が好ましく、下限は安定した効果が得られる0.01質量%が好ましい。   Copper (Cu): Cu in ferritic stainless steel is an element effective for improving corrosion resistance. The Cu content is not particularly limited, but the upper limit is preferably 0.6% by mass from the viewpoint of workability and cost, and the lower limit is preferably 0.01% by mass with which a stable effect can be obtained.

モリブデン(Mo):フェライト系ステンレス鋼中のMoはステンレス鋼の耐食性を向上させる元素である。Moの含有量は特に限定されないが、上限は加工性やコスト面から2.0質量%が好ましく、下限は安定した効果が得られる0.01質量%が好ましい。   Molybdenum (Mo): Mo in ferritic stainless steel is an element that improves the corrosion resistance of stainless steel. The content of Mo is not particularly limited, but the upper limit is preferably 2.0% by mass from the viewpoint of workability and cost, and the lower limit is preferably 0.01% by mass with which a stable effect can be obtained.

フェライト系ステンレス鋼は、さらに、Al:0.05質量%以下、Ca:0.0050質量%以下、B:0.0050質量%以下、V:0.2質量%以下、REM:0.10質量%以下からなる群より選ばれる1種以上を含有することが好ましい。
アルミニウム(Al):フェライト系ステンレス鋼中のAlは脱酸元素として有効な元素であり、添加する場合は0.005質量%以上が好ましい。過剰の添加は加工性や靱性および溶接性を劣化させるため、上限は0.05質量%が好ましい。
Ferritic stainless steel is further Al: 0.05 mass% or less, Ca: 0.0050 mass% or less, B: 0.0050 mass% or less, V: 0.2 mass% or less, REM: 0.10 mass It is preferable to contain 1 or more types selected from the group consisting of% or less.
Aluminum (Al): Al in ferritic stainless steel is an effective element as a deoxidizing element, and when added, 0.005% by mass or more is preferable. Since excessive addition deteriorates workability, toughness, and weldability, the upper limit is preferably 0.05% by mass.

カルシウム(Ca):フェライト系ステンレス鋼中のCaは鋼の熱間加工性を改善する元素であり、添加する場合は安定した効果が得られる0.0005質量%以上が好ましい。過剰な添加は逆に熱間加工性を低下させるため、上限は0.0050質量%が好ましい。   Calcium (Ca): Ca in the ferritic stainless steel is an element that improves the hot workability of the steel, and when added, 0.0005% by mass or more is preferable because a stable effect can be obtained. On the contrary, excessive addition lowers hot workability, so the upper limit is preferably 0.0050% by mass.

ホウ素(B):フェライト系ステンレス鋼中のBは二次加工性を向上させる元素であり、Ti添加鋼への添加は有効である。Ti添加鋼はTiでCを固定するため、粒界の強度が低下し、二次加工の際に粒界割れが生じやすくなる。添加する場合は、その効果が安定して発現する0.0003質量%以上とするのが好ましい。しかし、過剰の添加は伸びの低下をもたらすため上限は0.0050質量%が好ましい。   Boron (B): B in ferritic stainless steel is an element that improves secondary workability, and addition to Ti-added steel is effective. Since Ti-added steel fixes C with Ti, the strength of the grain boundaries decreases, and intergranular cracking is likely to occur during secondary processing. When adding, it is preferable to set it as 0.0003 mass% or more which the effect expresses stably. However, since excessive addition causes a decrease in elongation, the upper limit is preferably 0.0050% by mass.

バナジウム(V):フェライト系ステンレス鋼中のVは耐食性等を劣化させるCr炭窒化物を抑制する元素であり、添加する場合は、その効果が安定して発現する0.01質量%以上とするのが好ましい。しかし、過剰の添加は熱間圧延での疵発生が問題となるため上限は0.2質量%が好ましい。   Vanadium (V): V in ferritic stainless steel is an element that suppresses Cr carbonitride that degrades corrosion resistance and the like. When added, the effect is stable and 0.01% by mass or more. Is preferred. However, excessive addition causes a problem of wrinkling during hot rolling, so the upper limit is preferably 0.2% by mass.

REM:フェライト系ステンレス鋼中のREMは鋼の熱間加工性を改善する元素であり、添加する場合は安定した効果が得られる0.005質量%以上が好ましい。過剰な添加は逆に熱間加工性を低下させるため、その含有量の上限は0.10質量%が好ましい。ここでREMとは、LaやCe等のライタノイド系希土類元素の含有量の総和とする。   REM: REM in ferritic stainless steel is an element that improves the hot workability of steel, and when added, it is preferably 0.005% by mass or more so that a stable effect can be obtained. On the contrary, excessive addition reduces hot workability, so the upper limit of the content is preferably 0.10% by mass. Here, REM is the total content of lanthanoid rare earth elements such as La and Ce.

フレキシブル管10の製造方法は特に限定されない。例えば、板厚0.2〜0.5mm、平均r値が1.2以上のフェライト系ステンレス鋼板を、既存の方法を用いて溶接管や引き抜き管として素管を得、前記素管に刃状の金型を押しつけることで波形形状を形成する方法が挙げられる。また、例えば、前記フェライト系ステンレス鋼板を凹凸ロールで波形成型し、波形成形した鋼板を巻きながら溶接して管にする方法等を挙げることができる。   The manufacturing method of the flexible tube 10 is not particularly limited. For example, a ferritic stainless steel sheet having a plate thickness of 0.2 to 0.5 mm and an average r value of 1.2 or more is obtained as a welded pipe or a drawn pipe using an existing method, and the raw pipe is shaped like a blade. There is a method of forming a waveform shape by pressing the mold. Moreover, for example, a method of forming a corrugated shape of the ferritic stainless steel plate with a concavo-convex roll and welding the corrugated steel plate while winding it into a tube can be exemplified.

本発明によれば、板厚0.2〜0.5mmで、平均r値が1.2以上のフェライト系ステンレス鋼板を用いることで、安価で、かつ、曲げ加工性、フレア加工性に優れたフェライト系ステンレス鋼製のフレキシブル管を得ることができる。特にフレア加工性の向上により、銅配管同様に拡管率を40%以上とすることができる。これにより、銅配管と同様に、フレアナットを用いた接続が容易となり、フレキシブル管を高圧用途へ適用できる。   According to the present invention, by using a ferritic stainless steel plate having a plate thickness of 0.2 to 0.5 mm and an average r value of 1.2 or more, it is inexpensive and excellent in bending workability and flare workability. A flexible tube made of ferritic stainless steel can be obtained. In particular, due to the improvement in flare workability, the tube expansion rate can be made 40% or more as with copper piping. Thereby, similarly to copper piping, the connection using a flare nut becomes easy and a flexible pipe can be applied to a high-pressure use.

本発明によれば、可撓部の波形形状を谷部外径dv/山部外径dm:0.70〜0.90、山部外径dm/素管外径d:0.9〜1.2、ピッチDw/素管外径d:0.10〜0.30とすることで、曲げ加工性をより向上させることができる。
本発明のフェライト系ステンレス鋼製のフレキシブル管は、素管部を有することでフレア加工を容易にすることができる。特に、複数の可撓部と複数の素管部とが交互に配置された長尺のフレキシブル管とすることで、施工現場で必要とする長さに応じて任意の素管部を切断し、端部に素管部を有するフレキシブル管を得ることができる。
According to the present invention, the corrugated shape of the flexible portion is determined as follows: trough outer diameter dv / crest outer diameter dm: 0.70 to 0.90, crest outer diameter dm / element tube outer diameter d: 0.9 to 1. 0.2, pitch Dw / element tube outer diameter d: 0.10 to 0.30, the bending workability can be further improved.
The flexible pipe made of ferritic stainless steel according to the present invention can facilitate flaring by having a raw pipe portion. In particular, by making a long flexible tube in which a plurality of flexible portions and a plurality of raw tube portions are alternately arranged, any arbitrary tube portion is cut according to the length required at the construction site, A flexible tube having an element tube at the end can be obtained.

図1では、フレキシブル管の可撓部は、それぞれ独立した山部と谷部とが、一定のピッチで並んでいるもの(ワンピッチ型)であるが、周面部に山部と谷部とが螺旋状に形成されていても良い。また、実際に配管として使用する場合、通常の家庭用エアコンでは接続配管として4〜5m程度の長さが必要であり、また、ビルなどの配管であれば10mを超えることも少なくない。こうした状況において、運搬のしやすさなどを考慮すると、図3に示すフレキシブル管40のように、全長がコイル状に巻き取られた、コイル形状(パイプ・イン・コイル)とするのが好ましい。なお、図3では、可撓部と素管部が同じ位置で巻き取られているが、可撓部と素管部の長さを変えることにより、または巻き取るコイル径を変えることにより、可撓部と素管部の位置がずれても良い。   In FIG. 1, the flexible portion of the flexible tube is such that independent crests and troughs are arranged at a constant pitch (one pitch type), but the crests and troughs spiral on the peripheral surface portion. It may be formed in a shape. Moreover, when actually using as piping, the length of about 4-5 m is required as connection piping in a normal household air conditioner, and if it is piping of buildings etc., it will often exceed 10 m. In consideration of the ease of transportation and the like in this situation, it is preferable to have a coil shape (pipe-in-coil) in which the entire length is wound in a coil shape like the flexible tube 40 shown in FIG. In FIG. 3, the flexible portion and the tube portion are wound up at the same position. However, it is possible to change the length of the flexible portion and the tube portion or by changing the coil diameter to be wound. The positions of the flexible part and the raw pipe part may be shifted.

図1では、フレキシブル管の端部にはフレア加工部が設けられているが、フレア加工部が設けられずに、素管部がフレキシブル管の端部となっていても良いし、可撓部が端部であっても良い。また、フレア加工部、素管部あるいは可撓部は、フレキシブル管の両端に設けられていても良いし、片端のみであっても良い。   In FIG. 1, the flared portion is provided at the end of the flexible tube. However, the raw tube portion may be the end of the flexible tube without providing the flared portion. May be the end. Further, the flared portion, the raw tube portion or the flexible portion may be provided at both ends of the flexible tube, or only at one end.

以上述べたように、本発明はエアコン接続配管のように施工時の繰り返し曲げ性やフレア加工性に優れたフェライト系ステンレス鋼製のフレキシブル管を、高価な銅に替わって提供することが可能となり、産業的価値は大きい。   As described above, the present invention can provide a ferritic stainless steel flexible pipe excellent in repeated bendability and flare workability during construction, such as an air conditioner connection pipe, instead of expensive copper. Industrial value is great.

以下、本発明について実施例を挙げて具体的に説明するが、実施例に限定されるものではない。
(実施例1〜12、比較例1〜3)
表1に示す成分と、残部をFeとした組成の鋼板を用い、表2に示す板厚で、8mmφのTIG溶接管を製造した。前記TIG溶接管を用い、表2の記載に従い、長さ170mmの波形形状部と、長さ30mmの素管部とを交互に複数配置した全長4mの長尺フレキシブル管を製造し、運搬のために全長をコイル状に巻いて、コイル径約1mのフレキシブル管パイプ・イン・コイルとした。このフレキシブル管パイプ・イン・コイルについて、波形形状部で挟まれた素管部を切断することで、両端に素管部を有し中央部に波形形状の可撓部を有するフレキシブル管を切り出し、曲げ加工性とフレア加工性を評価した。評価結果を表2に示す。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, it is not limited to an Example.
(Examples 1-12, Comparative Examples 1-3)
A steel plate having a composition shown in Table 1 and the balance being Fe was used, and an 8 mmφ TIG welded tube was manufactured with the plate thickness shown in Table 2. Using the TIG welded pipe, according to the description in Table 2, a long flexible pipe having a total length of 4 m in which a plurality of corrugated parts having a length of 170 mm and a plurality of raw pipe parts having a length of 30 mm are alternately arranged is manufactured and transported. The entire length was wound in a coil shape to obtain a flexible pipe pipe-in-coil having a coil diameter of about 1 m. About this flexible tube pipe-in-coil, by cutting the raw tube portion sandwiched between the corrugated portions, cut out a flexible tube having a corrugated flexible portion at the center and a raw tube portion at both ends, Bending workability and flare workability were evaluated. The evaluation results are shown in Table 2.

(曲げ加工性)
<試験方法>
曲げ加工性はチューブベンダー(外径:8mmφ、曲げR:17.5mm)を用いて180°曲げを行い、その後、万力とペンチを使いながら曲げる前の状態に戻すのを1回として、繰り返して曲げ戻し、目視で観察した。
<評価基準>
上記の試験方法により、3回繰り返して曲げ戻し、割れや亀裂等の損傷がないものを合格とした。
(Bending workability)
<Test method>
Bending workability is repeated by using a tube bender (outer diameter: 8mmφ, bending R: 17.5mm), bending 180 °, and then returning to the state before bending using a vise and pliers. The sample was bent back and visually observed.
<Evaluation criteria>
According to the test method described above, the test was repeated three times, and returned without bending, and no damage such as cracks or cracks was accepted.

(フレア加工性)
<試験方法>
フレア加工性は、市販のフレア工具を用いてフレア拡管率40%でフレア加工を行い、フレア加工部を目視で観察した。
<評価基準>
フレア加工部に割れ、亀裂等の損傷がないものを合格とした。
(Flare workability)
<Test method>
For the flare workability, flare processing was performed with a flare tube expansion rate of 40% using a commercially available flare tool, and the flare processed portion was visually observed.
<Evaluation criteria>
The flare-processed part was judged as acceptable if it had no damage such as cracks and cracks.

Figure 0005184122
Figure 0005184122

Figure 0005184122
Figure 0005184122

表2に示すとおり、曲げ加工性については、板厚を本発明範囲である0.2〜0.5mmとした実施例1〜12は、3回の曲げ戻しができた。一方、板厚が本発明範囲を外れる比較例1は、チューブベンダーで曲げることは可能であるが、基の形状に戻すことが困難であり、2回目の曲げ時に割れが発生した。このことから、人手で曲げ加工を行うようなエアコン室内外機接続配管などの用途への適用は困難であることが判った。
フレア加工性については、板厚および平均r値が本発明範囲である実施例1〜12は、拡管率40%のフレア加工ができることが判った。しかし、板厚が本発明範囲を外れる比較例1は40%のフレア加工を行うことができなかった。また、平均r値が本発明範囲を外れる比較例2、3は、フレア加工先端部で割れが発生したことから、エアコン接続配管などへの適用は困難であることが判った。
As shown in Table 2, Examples 1 to 12 in which the plate thickness was 0.2 to 0.5 mm, which is the range of the present invention, were able to be bent back three times. On the other hand, Comparative Example 1 in which the plate thickness is outside the scope of the present invention can be bent with a tube bender, but it is difficult to return to the shape of the base, and cracking occurred during the second bending. From this, it was found that it is difficult to apply to applications such as air conditioner indoor / outdoor connection pipes that are manually bent.
About flare workability, it turned out that Examples 1-12 whose board thickness and average r value are the scope of the present invention can perform flare processing with a tube expansion rate of 40%. However, Comparative Example 1 in which the plate thickness is out of the range of the present invention could not perform 40% flare processing. Further, Comparative Examples 2 and 3 in which the average r value was outside the range of the present invention were found to be difficult to apply to air conditioner connection pipes and the like because cracks occurred at the flared tip.

(実施例13〜15、参考例16、17
波形形状と曲げ加工性について評価した。表1に示す鋼Aを用い、板厚0.3mm、平均r値1.7のステンレス鋼板とした。前記ステンレス鋼板を用い、表3に示す種々の波形形状のフレキシブル管を実施例1と同様の加工方法により作製した。作成したフレキシブル管の曲げ加工性について、前述と同様の試験方法で試験し、割れや亀裂が発生する直前の曲げ戻し回数を計測し、その結果を表3に示す。
(Examples 13 to 15, Reference Examples 16 and 17 )
The waveform shape and bending workability were evaluated. Steel A shown in Table 1 was used as a stainless steel plate having a plate thickness of 0.3 mm and an average r value of 1.7. Using the stainless steel plate, various corrugated flexible tubes shown in Table 3 were produced by the same processing method as in Example 1. About the bending workability of the created flexible pipe, it tested by the test method similar to the above, the number of times of bending return just before a crack and a crack generate | occur | produce was measured, and the result is shown in Table 3.

Figure 0005184122
Figure 0005184122

実施例13〜15、参考例16、17は、いずれも山部外径/素管外径の比であるdm/dが、本発明の範囲内の0.90〜1.20である。
表3に示すとおり、実施例13〜15、参考例16、17のいずれにおいても、3回以上の曲げ戻しができた。このうち、谷部外径と山部外径の比であるdv/dmが本発明範囲内の0.70〜0.90であり、かつ、山部の頭頂部と谷部の底部のピッチDwと素管外径dとの比(Dw/d)が本発明範囲内の0.10〜0.30である実施例13〜15は、7回以上の曲げ戻しができ、曲げ加工性の向上が図られていた。
In Examples 13 to 15 and Reference Examples 16 and 17 , dm / d, which is the ratio of the ridge outer diameter / element tube outer diameter, is 0.90 to 1.20 within the range of the present invention.
As shown in Table 3, in any of Examples 13 to 15 and Reference Examples 16 and 17 , bending back was performed three times or more. Of these, dv / dm, which is the ratio of the valley outer diameter to the mountain outer diameter, is 0.70 to 0.90 within the scope of the present invention, and the pitch Dw between the top of the peak and the bottom of the valley Examples 13 to 15 in which the ratio (Dw / d) between the outer diameter d and the outer diameter d of the raw tube is 0.10 to 0.30 within the scope of the present invention can be returned 7 times or more, and the bending workability is improved. Was planned.

本発明の実施形態のフェライト系ステンレス鋼製のフレキシブル管の側面図である。It is a side view of the flexible pipe made from ferritic stainless steel of an embodiment of the present invention. 本発明の実施形態のフェライト系ステンレス鋼製のフレキシブル管の断面図である。It is sectional drawing of the flexible pipe made from ferritic stainless steel of embodiment of this invention. 本発明の実施形態のコイル状に巻き取られたフェライト系ステンレス鋼製のフレキシブル管の斜視図である。It is a perspective view of the flexible pipe made from ferritic stainless steel wound up in the shape of a coil of an embodiment of the present invention.

符号の説明Explanation of symbols

10 フェライト系ステンレス鋼製のフレキシブル管
12 素管部
14 フレア加工部
20 可撓部
22 山部
24 谷部
40 コイル状に巻き取られたフレキシブル管
dm 山部外径
dv 谷部外径
d 素管外径
Dw 山部頭頂部と谷部底部とからなるピッチ
DESCRIPTION OF SYMBOLS 10 Flexible pipe made of ferritic stainless steel 12 Element pipe part 14 Flare processing part 20 Flexible part 22 Mountain part 24 Valley part 40 Flexible pipe wound up in coil shape dm Mountain part outer diameter dv Valley part outer diameter d Elementary pipe Outer diameter Dw Pitch composed of the top of the mountain and the bottom of the valley

Claims (8)

山部と谷部とが交互に配置され波形形状の可撓部が形成されている、フェライト系ステンレス鋼製のフレキシブル管であって、板厚0.2〜0.5mmで、平均ランクフォード値が1.2以上であるフェライト系ステンレス鋼板を素材とし、
前記可撓部の波形形状は、谷部外径と山部外径との比である谷部外径/山部外径が0.70〜0.90、かつ山部外径と可撓部を形成させる前の素管の外径の素管外径との比である山部外径/素管外径が0.9〜1.2であり、山部の頭頂部と谷部の底部とからなるピッチと前記素管外径の比であるピッチ/素管外径が0.13〜0.30であることを特徴とするフェライト系ステンレス鋼製のフレキシブル管。
A flexible pipe made of ferritic stainless steel in which peaks and valleys are alternately arranged to form a corrugated flexible part, and has a plate thickness of 0.2 to 0.5 mm and an average Rankford value Is made of ferritic stainless steel sheet having a thickness of 1.2 or more,
The corrugated shape of the flexible portion has a trough outer diameter / crest outer diameter that is a ratio of a trough outer diameter to a crest outer diameter of 0.70 to 0.90, and a crest outer diameter and a flexible portion. Is the ratio of the outer diameter of the raw tube to the outer diameter of the raw tube before forming the outer diameter of the crest / outer pipe is 0.9 to 1.2, and the top of the crest and the bottom of the trough A flexible pipe made of ferritic stainless steel, wherein the pitch / element pipe outer diameter, which is the ratio of the pitch consisting of: and the outer diameter of the element tube, is 0.13 to 0.30.
前記フェライト系ステンレス鋼は、C:0.02質量%以下、N:0.02質量%以下、Si:1.0質量%以下、Mn:1.0質量%以下、P:0.05質量%以下、S:0.03質量%以下、Cr:16〜23質量%を含有し、さらに、Ti、Nbからなる群より選ばれる少なくとも1種をそれぞれ0.1〜0.6質量%含有し、残部がFeおよび不可避不純物よりなることを特徴とする請求項1に記載のフェライト系ステンレス鋼製のフレキシブル管。   The ferritic stainless steel is C: 0.02 mass% or less, N: 0.02 mass% or less, Si: 1.0 mass% or less, Mn: 1.0 mass% or less, P: 0.05 mass% Hereinafter, S: 0.03% by mass or less, Cr: 16 to 23% by mass, further containing at least one selected from the group consisting of Ti and Nb 0.1 to 0.6% by mass, 2. The flexible pipe made of ferritic stainless steel according to claim 1, wherein the balance is made of Fe and inevitable impurities. さらに、Mg:0.0050質量%以下、Ni:0.6質量%以下、Cu:0.6質量%以下、Mo:2.0質量%以下からなる群より選ばれる1種以上を含有することを特徴とする請求項2に記載のフェライト系ステンレス鋼製のフレキシブル管。   Furthermore, Mg: 0.0050 mass% or less, Ni: 0.6 mass% or less, Cu: 0.6 mass% or less, Mo: One or more selected from the group consisting of 2.0 mass% or less The flexible pipe made of ferritic stainless steel according to claim 2. さらに、Al:0.05質量%以下、Ca:0.0050質量%以下、B:0.0050質量%以下、V:0.2質量%以下、REM:0.10質量%以下からなる群より選ばれる1種以上を含有することを特徴とする請求項2または3に記載のフェライト系ステンレス鋼製のフレキシブル管。   Furthermore, from the group consisting of Al: 0.05 mass% or less, Ca: 0.0050 mass% or less, B: 0.0050 mass% or less, V: 0.2 mass% or less, REM: 0.10 mass% or less. The flexible pipe made of ferritic stainless steel according to claim 2 or 3, characterized by containing one or more selected. 前記可撓部が形成されていない素管部を有することを特徴とする、請求項1〜4のいずれか1項に記載のフェライト系ステンレス鋼製のフレキシブル管。   The flexible pipe made of ferritic stainless steel according to any one of claims 1 to 4, wherein the flexible pipe has a base pipe part in which the flexible part is not formed. 複数の前記素管部と複数の前記可撓部が、交互に形成されていることを特徴とする請求項5に記載のフェライト系ステンレス鋼製のフレキシブル管。   The flexible pipe made of ferritic stainless steel according to claim 5, wherein the plurality of elementary pipe parts and the plurality of flexible parts are alternately formed. 全長がコイル状に巻き取られた形状であることを特徴とする請求項1〜6のいずれか1項に記載のフェライト系ステンレス鋼製のフレキシブル管。   The flexible pipe made of ferritic stainless steel according to any one of claims 1 to 6, wherein the entire length is a coiled shape. 両端または片端にフレア加工部を有することを特徴とする、請求項1〜7のいずれかに記載のフェライト系ステンレス鋼製のフレキシブル管。   The flexible pipe made of ferritic stainless steel according to any one of claims 1 to 7, wherein a flared portion is provided at both ends or one end.
JP2008027721A 2008-02-07 2008-02-07 Ferritic stainless steel flexible tube Active JP5184122B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008027721A JP5184122B2 (en) 2008-02-07 2008-02-07 Ferritic stainless steel flexible tube
TW98101812A TWI356138B (en) 2008-02-07 2009-01-17 Flexible tube made of ferritic stainless steel
PCT/JP2009/051196 WO2009098962A1 (en) 2008-02-07 2009-01-26 Flexible tube made of ferrite-group stainless steel
KR1020107017362A KR101545762B1 (en) 2008-02-07 2009-01-26 Flexible tube made of ferrite-group stainless steel
CN200980102698.5A CN101925686B (en) 2008-02-07 2009-01-26 Flexible tube made of ferrite stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027721A JP5184122B2 (en) 2008-02-07 2008-02-07 Ferritic stainless steel flexible tube

Publications (2)

Publication Number Publication Date
JP2009185351A JP2009185351A (en) 2009-08-20
JP5184122B2 true JP5184122B2 (en) 2013-04-17

Family

ID=40952040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027721A Active JP5184122B2 (en) 2008-02-07 2008-02-07 Ferritic stainless steel flexible tube

Country Status (5)

Country Link
JP (1) JP5184122B2 (en)
KR (1) KR101545762B1 (en)
CN (1) CN101925686B (en)
TW (1) TWI356138B (en)
WO (1) WO2009098962A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180283703A1 (en) * 2017-03-31 2018-10-04 Lg Electronics Inc. Indoor unit for air conditioner

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719107B2 (en) * 2009-11-05 2015-05-13 新日鐵住金ステンレス株式会社 Stainless steel flexible tube
GB2478135A (en) * 2010-02-25 2011-08-31 Paul Anthony Davidson Improvements in and relating to gas meter connections
TWI407033B (en) * 2010-06-03 2013-09-01 Tozen Corp Flexible tube
JP2012106526A (en) * 2010-11-15 2012-06-07 Futaba Industrial Co Ltd Fuel inlet
CN103542184B (en) * 2013-09-19 2017-02-22 宁波钢汇不锈钢有限公司 Large-aperture stainless steel thin-walled tube
KR101674744B1 (en) * 2014-11-13 2016-11-10 주식회사 포스코 Ring header and apparatus for heat treating using the same
CA2964055C (en) * 2014-10-31 2020-06-30 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate, steel pipe, and production method therefor
CN106636909A (en) * 2017-01-13 2017-05-10 南京理工大学 Corrosion-resistant soft magnetic ferrite stainless steel
KR20180138070A (en) * 2017-06-20 2018-12-28 엘지전자 주식회사 Absorpotion Chiller
CN111331000B (en) * 2018-12-18 2022-09-09 浙江盾安禾田金属有限公司 Manufacturing method of air conditioner connecting pipe and air conditioner connecting pipe
CN111270157A (en) * 2020-02-28 2020-06-12 江苏汉唐环保科技有限公司 Metal hose and preparation process thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603591B2 (en) * 1993-05-27 1997-04-23 臼井国際産業株式会社 Thin metal flexible tube
JPH07268560A (en) * 1994-03-31 1995-10-17 Nippon Steel Corp Ferritic stainless steel for bellows material
JPH08261371A (en) * 1995-03-23 1996-10-11 Taiheiyo Tokushu Chuzo Kk Corrugated pipe with fitting
JPH08176750A (en) * 1994-12-28 1996-07-09 Nippon Steel Corp Ferritic stainless steel for working bellows
JPH08184391A (en) * 1994-12-29 1996-07-16 Usui Internatl Ind Co Ltd Bellows pipe
JP2979992B2 (en) * 1995-02-07 1999-11-22 松下電工株式会社 Flexible tube for sprinkler
JPH08257158A (en) * 1995-03-23 1996-10-08 Bosai Kikaku:Kk Unwinding pipe for sprinkler
JPH08280837A (en) * 1995-04-10 1996-10-29 Bosai Kikaku:Kk Sprinkler unwinding piping
JPH11159616A (en) * 1997-11-28 1999-06-15 Nippon Steel Corp Ferrite system stainless steel-made bellows excellent in fatigue characteristic
JP2000046182A (en) * 1998-07-31 2000-02-18 Nippon Steel Corp Stainless steel double tube bellows with improved stress corrosion cracking resistance and heat retaining property
EP1889938B1 (en) * 2005-06-09 2018-03-07 JFE Steel Corporation Ferrite stainless steel sheet for bellows stock pipe
JP4752573B2 (en) * 2005-06-09 2011-08-17 Jfeスチール株式会社 Ferritic stainless steel sheet for bellows tube and bellows tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180283703A1 (en) * 2017-03-31 2018-10-04 Lg Electronics Inc. Indoor unit for air conditioner

Also Published As

Publication number Publication date
KR101545762B1 (en) 2015-08-19
TWI356138B (en) 2012-01-11
KR20100113546A (en) 2010-10-21
CN101925686A (en) 2010-12-22
JP2009185351A (en) 2009-08-20
TW200940199A (en) 2009-10-01
CN101925686B (en) 2014-04-02
WO2009098962A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5184122B2 (en) Ferritic stainless steel flexible tube
KR101339484B1 (en) High-strength stainless steel pipe
JP3271262B2 (en) Duplex stainless steel with excellent corrosion resistance
JP5186769B2 (en) Sulfuric acid dew-point corrosion steel
WO2003044236A1 (en) Low alloy steel excellent in resistance to corrosion by hydrochloric acid and corrosion by sulfuric acid and weld joint comprising the same
CN105392909B (en) Narrow strip through cold rolling and the method for preparing the narrow strip through cold rolling for flexible pipe, the particularly form of the flat wire being made up of high strength steel of the flexible pipe of offshore applications or section bar
JP4787007B2 (en) Duplex stainless steel for urea production plant, welding materials and urea production plant
JP5124854B2 (en) Steel plate for line pipe, method for producing the same, and line pipe
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
KR0165152B1 (en) Ferritic stainless steel for forming corrugated tube
JP2002241900A (en) Austenitic stainless steel having excellent sulfuric acid corrosion resistance and workability
KR20100099284A (en) Line part of a nickel-poor steel for an exhaust system
JP6813127B1 (en) Steel
AU2013212844B2 (en) Pipeline and manufacturing method thereof
JPWO2014156175A1 (en) Steel plate for thick-walled steel pipe, method for producing the same, and thick-walled high-strength steel pipe
JP2002060910A (en) HIGH Cr WELDED STEEL PIPE
JP5045178B2 (en) Method for manufacturing bend pipe for line pipe and bend pipe for line pipe
JP5719107B2 (en) Stainless steel flexible tube
WO1994025636A1 (en) Ferritic stainless steel excellent in high-temperature oxidation resistance and scale adhesion
JP2010255036A (en) Ferritic stainless steel for corrugate tube
JP2007254807A (en) Steel pipe for sheathed heater, and sheathed heater
JP3470632B2 (en) Steel pipe for line pipe excellent in buckling resistance and method of manufacturing the same
US9284634B2 (en) Martensitic stainless steel having excellent corrosion resistance
JPH10204587A (en) High cr steel for line pipe, excellent in sulfide stress corrosion cracking resistance
CN102046825A (en) High-strength UOE steel pipe excellent in earthquake-proof performance and in low-temperature toughness of weld heat-affected zone

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5184122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250