JP2008019499A - High-frequency induction heating stress relaxation method - Google Patents

High-frequency induction heating stress relaxation method Download PDF

Info

Publication number
JP2008019499A
JP2008019499A JP2006194641A JP2006194641A JP2008019499A JP 2008019499 A JP2008019499 A JP 2008019499A JP 2006194641 A JP2006194641 A JP 2006194641A JP 2006194641 A JP2006194641 A JP 2006194641A JP 2008019499 A JP2008019499 A JP 2008019499A
Authority
JP
Japan
Prior art keywords
frequency induction
induction heating
heating
high frequency
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006194641A
Other languages
Japanese (ja)
Other versions
JP4254817B2 (en
Inventor
Takashi Hirano
隆 平野
Takuo Terajima
拓郎 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2006194641A priority Critical patent/JP4254817B2/en
Publication of JP2008019499A publication Critical patent/JP2008019499A/en
Application granted granted Critical
Publication of JP4254817B2 publication Critical patent/JP4254817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency induction heating stress relaxation method, capable of relaxing residual stress at a welded joint part of a small-diameter thin-walled pipe. <P>SOLUTION: In the high-frequency induction heating stress relaxation method for relaxing residual stress at an inner surface of the welded joint part 4, the inner surface of the welded joint part 4 of the small-diameter thin-walled pipes 2, 3 is cooled with water while being heated by a high-frequency induction coil 6 from an outer surface of the pipe. When performing high-frequency induction heating, the heating depth S of the high-frequency induction heating is adjusted to a range of t/6 to t/2, and the distance D between the weld center and the end of the high-frequency induction coil is adjusted to equal to or larger than a value defined by the formula: 1.35×(R×t)<SP>1/2</SP>, where R is the neutral radius and t is the sheet thickness of the pipes 2, 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、応力腐食割れを予防するための高周波誘導加熱応力緩和法に関するものである。   The present invention relates to a high-frequency induction heating stress relaxation method for preventing stress corrosion cracking.

従来、粒界応力腐食割れ(Intergranular Stress Corrosion Cracking、以下IGSCCという)の予防保全の一環として、オーステナイト系ステンレス鋼母材部および溶接部に対し、高周波誘導加熱による応力緩和法(Induction Heating Stress Improvement、以下IHSIという)が、沸騰水型原子炉(BWR)の溶接継手部に実施されている(例えば、特許文献1参照)。   Conventionally, as part of preventive maintenance of intergranular stress corrosion cracking (IGSCC), stress relaxation method (Induction Heating Stress Improvement, (Hereinafter referred to as IHSI) is performed on a welded joint of a boiling water reactor (BWR) (see, for example, Patent Document 1).

特開2005−226112号公報JP 2005-226112 A

ところで、沸騰水型原子炉(BWR)の水位計装ノズル(ニッケルクロム鉄合金、P−43)と、セーフエンド(オーステナイト系ステンレス鋼、P−8)との溶接継手部は、従来の対象箇所(モリブデン鋼とオーステナイト系ステンレス鋼との溶接継手部など)に比べ、小口径で薄肉であること、および従来と母材の組合せが異なることなどの理由により、IHSIの効果が確認できていなかった。   By the way, the welded joint between the water level instrumentation nozzle (nickel-chromium iron alloy, P-43) of the boiling water reactor (BWR) and the safe end (austenitic stainless steel, P-8) Compared to (welded joints of molybdenum steel and austenitic stainless steel, etc.), the effect of IHSI has not been confirmed due to the small diameter and thin wall thickness, and the combination of the base metal and the conventional one. .

すなわち、従来のIHSIは、大口径で肉厚の管溶接部を対象に実施されてきたが、従来の加熱条件および加熱装置では、水位計測ノズル(P−43+P−8溶接継手)のような小口径、薄肉の管形状に対する応力改善効果が低いとされ、また水位計測ノズル(P−43+P−8溶接継手)に対する施工後の応力改善効果および健全性について確証されていなかったことが問題であった。   That is, the conventional IHSI has been implemented for large-diameter and thick pipe welds, but in conventional heating conditions and heating devices, a small water level measurement nozzle (P-43 + P-8 weld joint) is used. The problem is that the stress improvement effect on the pipe diameter and the thin-walled pipe shape is low, and the stress improvement effect and soundness after construction for the water level measurement nozzle (P-43 + P-8 welded joint) have not been confirmed. .

そこで、本発明の目的は、上記課題を解決し、小口径で薄肉な管の溶接継手部の残留応力を緩和することができる高周波誘導加熱応力緩和法を提供することにある。   Accordingly, an object of the present invention is to provide a high-frequency induction heating stress relaxation method that can solve the above-described problems and can relieve residual stress in a welded joint portion of a thin pipe having a small diameter.

上記目的を達成するために本発明は、小口径かつ薄肉な管の溶接継手部の管内面を水冷しながら管外面側から高周波誘導コイルにて加熱して、上記溶接継手部の内面の残留応力を緩和するための高周波誘導加熱応力緩和法において、上記管の中立半径をR、板厚をtとしたとき、上記高周波誘導加熱の加熱深さSをt/6以上t/2以下に、かつ溶接中心と上記高周波誘導コイル端の距離Dを、数1   In order to achieve the above object, the present invention provides a method for heating a pipe inner surface of a welded joint portion of a small-diameter and thin-walled tube with a high-frequency induction coil from the outer surface of the tube while water-cooling the residual stress on the inner surface of the welded joint portion. In the high frequency induction heating stress relaxation method for relaxing the above, when the neutral radius of the tube is R and the plate thickness is t, the heating depth S of the high frequency induction heating is t / 6 or more and t / 2 or less, and The distance D between the welding center and the end of the high-frequency induction coil is expressed as follows:

Figure 2008019499
Figure 2008019499

以上に設定して、高周波誘導加熱するものである。 The high frequency induction heating is set as described above.

好ましくは、上記管の中立半径Rが33mm以下、板厚tが17mm以下である。   Preferably, the neutral radius R of the pipe is 33 mm or less, and the plate thickness t is 17 mm or less.

好ましくは、上記高周波誘導加熱の最高加熱温度は、上記管の材料をもとに決定されるものである。   Preferably, the maximum heating temperature of the high frequency induction heating is determined based on the material of the tube.

好ましくは、上記溶接された管が、各々異なる材料からなり、それら材料をもとに各々決定された最高加熱温度の内、低いほうの最高加熱温度にて、上記高周波誘導加熱が行われるものである。   Preferably, the welded pipe is made of different materials, and the high frequency induction heating is performed at a lower maximum heating temperature among the maximum heating temperatures determined based on the materials. is there.

上記管が、ニオブ含有量が1%以上3%以下のニッケルクロム鉄合金製鋼管と、炭素含有量が0.02%以下のオーステナイト系ステンレス鋼製鋼管とからなり、上記高周波誘導加熱の最高加熱温度が650℃以下に設定されたものでもよい。   The pipe is composed of a nickel chromium iron alloy steel pipe having a niobium content of 1% to 3% and an austenitic stainless steel pipe having a carbon content of 0.02% or less. The temperature may be set to 650 ° C. or lower.

上記管が、ニオブ含有量が1%未満若しくは3%超のニッケルクロム鉄合金製鋼管と、炭素含有量が0.02%以下のオーステナイト系ステンレス鋼製鋼管とからなり、上記高周波誘導加熱の最高加熱温度が600℃以下に設定されたものでもよい。   The pipe is composed of a nickel chrome iron alloy steel pipe having a niobium content of less than 1% or more than 3% and an austenitic stainless steel pipe having a carbon content of 0.02% or less. The heating temperature may be set to 600 ° C. or lower.

上記管が、ニオブ含有量が1%未満若しくは3%超のニッケルクロム鉄合金製鋼管と、炭素含有量が0.02%超のオーステナイト系ステンレス鋼製鋼管とからなり、上記高周波誘導加熱の最高加熱温度が550℃以下に設定されたものでもよい。   The pipe is composed of a nickel chromium iron alloy steel pipe having a niobium content of less than 1% or more than 3% and an austenitic stainless steel pipe having a carbon content of more than 0.02%. The heating temperature may be set to 550 ° C. or lower.

好ましくは、予め、残留応力を緩和するのに必要とされる内外面の温度差ΔTの関係式である数2を求め、   Preferably, Equation 2 which is a relational expression of the temperature difference ΔT between the inner and outer surfaces required to relieve the residual stress is obtained in advance.

Figure 2008019499
Figure 2008019499

上記高周波誘導加熱時に、管外面の評価点温度を測定することで、管内面温度Tiを数3および数4にて算出し、 When the high frequency induction heating, by measuring the evaluation point temperature of tube outer surface, to calculate the inner surface temperature T i at the number 3 and number 4,

Figure 2008019499
Figure 2008019499

Figure 2008019499
Figure 2008019499

それら測定した評価点のうちの最低温度と算出した管内面温度Tiとの差ΔTが、数2を満たすことを確認するものである。 It is confirmed that the difference ΔT between the lowest temperature of the measured evaluation points and the calculated tube inner surface temperature T i satisfies the following equation (2).

本発明によれば、小口径で薄肉な管の溶接継手部の残留応力を緩和することができるという優れた効果を発揮するものである。   According to this invention, the outstanding effect that the residual stress of the weld joint part of a thin pipe | tube with a small diameter can be relieved is exhibited.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

本実施形態の高周波誘導加熱応力緩和法(以下、IHSIという)は、小口径かつ薄肉の管の溶接継手部を対象とし、例えば、原子炉圧力容器の水位計装ノズルとそのノズルに接合されるセーフエンドとの溶接継手部を対象とする。   The high-frequency induction heating stress relaxation method (hereinafter referred to as IHSI) of the present embodiment targets a welded joint portion of a small-diameter and thin-walled tube, and is bonded to, for example, a water level instrumentation nozzle of a reactor pressure vessel and the nozzle. For welded joints with safe ends.

まず、図1および図2に基づきIHSIが対象とする溶接継手部を説明する。   First, a welded joint part targeted by IHSI will be described with reference to FIGS. 1 and 2.

図1に示すように、原子炉圧力容器1には、その圧力容器1内の冷却水の水位を計測する水位センサ(図示せず)を接続するための水位計装ノズル2が取り付けられる。   As shown in FIG. 1, a water level instrumentation nozzle 2 for connecting a water level sensor (not shown) for measuring the level of cooling water in the pressure vessel 1 is attached to the reactor pressure vessel 1.

図2に示すように、水位計装ノズル2は、圧力容器1から外方に延出する管形状を有し、その先端には、セーフエンド3と呼ばれる管が取り付けられる。   As shown in FIG. 2, the water level instrumentation nozzle 2 has a tube shape extending outward from the pressure vessel 1, and a tube called a safe end 3 is attached to the tip thereof.

より具体的には、水位計装ノズル2は、ニッケルクロム鉄合金(例えば、インコネル(登録商標))からなり、他方、セーフエンド3は、オーステナイト系ステンレス鋼からなり、それらニッケルクロム鉄合金の母材(以下、P−43という)とオーステナイト系ステンレス鋼の母材(以下、P−8という)とは、溶接にて接合される。また、本実施形態では、ニッケルクロム鉄合金の溶接材を加えて溶接が行われる。   More specifically, the water level instrumentation nozzle 2 is made of a nickel chrome iron alloy (for example, Inconel (registered trademark)), while the safe end 3 is made of austenitic stainless steel, and the mother of these nickel chrome iron alloys. A material (hereinafter referred to as P-43) and an austenitic stainless steel base material (hereinafter referred to as P-8) are joined by welding. In the present embodiment, welding is performed by adding a nickel-chromium-iron alloy welding material.

このように、溶接継手部4は、P−43の母材部2と、P−8の母材部3と、それら母材の間に位置するニッケルクロム鉄合金の溶接部5とで構成される。   Thus, the welded joint part 4 is composed of the base material part 2 of P-43, the base material part 3 of P-8, and the welded part 5 of nickel chrome iron alloy positioned between the base materials. The

次に、図3に基づき本実施形態のIHSIを説明する。   Next, IHSI of this embodiment will be described based on FIG.

図3に示すように、IHSIは、溶接継手部4の外周を囲繞するよう高周波誘導コイル(以下、加熱コイルという)6を配置し、その加熱コイル6に高周波加熱電源7から高周波電流を供給して溶接継手部4を管外面側から加熱すると共に、管2、3内に液体(具体的には、水)を流して溶接継手部4の管内面を水冷して行われる。   As shown in FIG. 3, the IHSI arranges a high frequency induction coil (hereinafter referred to as a heating coil) 6 so as to surround the outer periphery of the welded joint portion 4, and supplies a high frequency current from the high frequency heating power source 7 to the heating coil 6. The weld joint 4 is heated from the pipe outer surface side, and a liquid (specifically, water) is allowed to flow through the pipes 2 and 3 to cool the pipe inner surface of the weld joint 4 with water.

これにより、溶接継手部4の外面側が加熱されて膨張しようとするが、その一方で、内面側は水冷され変形しないため、その内面が圧縮されることとなり残留応力(引張応力)が圧縮応力に移行される。   As a result, the outer surface side of the welded joint portion 4 is heated and tends to expand. On the other hand, the inner surface side is water-cooled and does not deform, so that the inner surface is compressed and the residual stress (tensile stress) is changed to compressive stress. Migrated.

本実施形態では、従来に比べて小口径、薄肉の管2、3の溶接継手部4を対象とすることから、従来のIHSI加熱条件(エッセンシャルバリアブル)である最高加熱温度TO(℃)、管内外面の温度差ΔT(℃)、加熱時間τ(sec)、コイル幅L(mm)、溶接線位置(溶接中心)とコイル端との距離D(mm)の各エッセンシャルについて再検討した。ここで、本実施形態の小口径、薄肉の管2、3とは、管2、3の中立半径Rが33mm以下、板厚tが17mm以下のものをいう。 In the present embodiment, the small diameter compared to the conventional, since the target welded joint portion 4 of the thin-walled tube 2, the maximum heating temperature T O (° C.) which is a conventional IHSI heating conditions (essential variable), The essentials of the temperature difference ΔT (° C.) between the inner and outer surfaces of the tube, the heating time τ (sec), the coil width L (mm), and the distance D (mm) between the weld line position (weld center) and the coil end were reviewed. Here, the small-diameter and thin-walled pipes 2 and 3 in this embodiment refer to those having a neutral radius R of 33 mm or less and a plate thickness t of 17 mm or less.

IHSI加熱条件を再検討した結果、表1の加熱条件が得られた。表1に、従来からのIHSI加熱条件と本実施形態のIHSI加熱条件の比較を示す。   As a result of reviewing the IHSI heating conditions, the heating conditions shown in Table 1 were obtained. Table 1 shows a comparison between the conventional IHSI heating conditions and the IHSI heating conditions of the present embodiment.

Figure 2008019499
Figure 2008019499

表1に示すように、本実施形態では、応力緩和の対象部が薄肉であることから、加熱への影響因子として、加熱深さS(mm)を加熱条件として追加した。また、加熱範囲が不十分にならないよう、溶接中心とコイル端の距離D(mm)を新たに設定し直した。   As shown in Table 1, in this embodiment, since the stress relaxation target part is thin, the heating depth S (mm) was added as a heating condition as an influence factor on heating. Moreover, the distance D (mm) between the welding center and the coil end was newly set so that the heating range would not be insufficient.

すなわち、本実施形態では、管2、3の中立半径(管公称厚さの中心における曲率半径)をR(mm)、板厚をt(mm)としたとき、上記高周波誘導加熱の加熱深さSをt/6以上t/2以下に、かつ溶接中心と上記高周波誘導コイル端の距離Dを、数5   That is, in this embodiment, when the neutral radius of the pipes 2 and 3 (the radius of curvature at the center of the nominal thickness of the pipe) is R (mm) and the plate thickness is t (mm), the heating depth of the high frequency induction heating is described above. S is t / 6 or more and t / 2 or less, and the distance D between the welding center and the end of the high-frequency induction coil is

Figure 2008019499
Figure 2008019499

以上に設定して、高周波誘導加熱する(図3参照)。 High frequency induction heating is set as described above (see FIG. 3).

まず、図4に基づき加熱深さSについて説明する。   First, the heating depth S will be described with reference to FIG.

一般に、誘導加熱は、加熱コイル6に誘導電流を流すことにより被加熱物に磁束を発生させ、非常に密度の高い電流(うず電流)を誘導し、これによって被加熱物を加熱させる方法である。   In general, induction heating is a method in which a magnetic flux is generated in an object to be heated by passing an induction current through the heating coil 6 to induce a very high density current (eddy current), thereby heating the object to be heated. .

うず電流は、被加熱物の表面に近いほど強く、内部に行くにつれて指数的に弱くなる。これを表皮効果という。図4は、この表皮効果を示したものである。   The eddy current is stronger as it gets closer to the surface of the object to be heated, and becomes weaker exponentially as it goes inside. This is called the skin effect. FIG. 4 shows this skin effect.

図4は、電流浸透深さS(図4ではσ)と渦電流密度分布との関係を示したものである。   FIG. 4 shows the relationship between the current penetration depth S (σ in FIG. 4) and the eddy current density distribution.

図4から、うず電流が表面における強さの0.368倍に減少した点までの深さを加熱深さSと定義する。その加熱深さSの式を数6に示す。   From FIG. 4, the depth to the point where the eddy current is reduced to 0.368 times the strength at the surface is defined as the heating depth S. The expression of the heating depth S is shown in Equation 6.

Figure 2008019499
Figure 2008019499

以上のように定義された加熱深さSを、本実施形態では、t/6以上t/2以下に設定した。   In the present embodiment, the heating depth S defined as described above is set to t / 6 or more and t / 2 or less.

これは、板厚tの適用範囲が8.5〜17mm(実機水位計装ノズル2の板厚範囲)であること、および使用周波数の範囲を20±10kHz程度に設定することが、加熱時の熱伝達性および加熱装置(高周波加熱電源)の性能の点から現実的であると考えられることによる。   This is because the application range of the plate thickness t is 8.5 to 17 mm (the plate thickness range of the actual water level instrumentation nozzle 2) and the range of the operating frequency is set to about 20 ± 10 kHz. This is because it is considered realistic from the viewpoint of heat transfer performance and performance of the heating device (high-frequency heating power source).

すなわち、加熱深さSがt/2を超え、加熱深さが深くなると、管板厚方向の温度分布が適切な勾配とならないことから、十分な応力改善効果が得られない。一方、加熱深さSがt/6未満であると、表面での加熱となってしまい、前述と同一の理由により、応力改善効果が十分に得られなくなってしまう。   That is, when the heating depth S exceeds t / 2 and the heating depth becomes deep, the temperature distribution in the tube sheet thickness direction does not have an appropriate gradient, so that a sufficient stress improvement effect cannot be obtained. On the other hand, if the heating depth S is less than t / 6, heating is performed on the surface, and for the same reason as described above, the stress improvement effect cannot be obtained sufficiently.

ここで、加熱深さSは、管2、3の材料の固有抵抗と加熱コイル6に付与される周波数とにより決定される。   Here, the heating depth S is determined by the specific resistance of the material of the tubes 2 and 3 and the frequency applied to the heating coil 6.

図5および図6に基づき、加熱コイル6に付与する周波数fと加熱深さSの関係について説明する。   Based on FIGS. 5 and 6, the relationship between the frequency f applied to the heating coil 6 and the heating depth S will be described.

図5に、インコネル(登録商標)(P−43)およびオーステナイト系ステンレス鋼(P−8)の各周波数による加熱深さSの計算結果を示す。   In FIG. 5, the calculation result of the heating depth S by each frequency of Inconel (trademark) (P-43) and austenitic stainless steel (P-8) is shown.

図5より、インコネル(登録商標)とステンレス鋼では、加熱深さSに差異はなく、現状で一般に使用される周波数(f=20kHz)では、加熱深さSは約4mm、周波数設定範囲(f=20±10kHz)では、加熱深さSは3〜5.5mm程度になると言える。   From FIG. 5, there is no difference in the heating depth S between Inconel (registered trademark) and stainless steel, and the heating depth S is about 4 mm and the frequency setting range (f = 20 ± 10 kHz), it can be said that the heating depth S is about 3 to 5.5 mm.

図5の結果をもとに、周波数fと、板厚tを加熱深さSで割った商t/Sとの関係を求めると図6のようになる。   FIG. 6 shows the relationship between the frequency f and the quotient t / S obtained by dividing the plate thickness t by the heating depth S based on the result of FIG.

図6より、板厚tが8.5mmの場合、周波数fが10kHzではt/Sが2.25を下回り、IHSI施工時の外面加熱、内面冷却を行う際に、板厚方向への適切な温度勾配が得られないと考えられることから、周波数fを20kHz以上に設定する必要がある。   From FIG. 6, when the plate thickness t is 8.5 mm, t / S is less than 2.25 when the frequency f is 10 kHz, and when the outer surface heating and the inner surface cooling are performed at the time of IHSI construction, Since it is considered that a temperature gradient cannot be obtained, it is necessary to set the frequency f to 20 kHz or more.

また、図6より、いずれの板厚tでもt/Sは、最大6を超えない。これは水位計装ノズル2については、使用する周波数fは30kHzを最大とすることが妥当であることを示している。   Further, from FIG. 6, t / S does not exceed 6 at the maximum at any plate thickness t. This indicates that it is reasonable for the water level instrumentation nozzle 2 to maximize the frequency f used at 30 kHz.

次に、図7に基づき溶接中心からコイル端までの距離Dについて説明する。   Next, the distance D from the welding center to the coil end will be described with reference to FIG.

図7に、事前確認試験の内外面温度計測の結果を示す。試験体には外径φ76.5mm、板厚13.5t(mm)の管を用いた。加熱コイル6は、コイル幅Lが100mmのものを使用しており、水位計装ノズル2のIHSIの規定値(例えば、飯田他、「高周波誘導加熱による応力緩和法に関する指針(SCC対策工法)TNS−G2804−1985」、社団法人火力原子力発電技術協会、原子力発電技術委員会参照)である数7を満足するようになっている。   In FIG. 7, the result of the internal / external surface temperature measurement of a prior confirmation test is shown. A tube having an outer diameter of 76.5 mm and a plate thickness of 13.5 t (mm) was used as the test body. The heating coil 6 has a coil width L of 100 mm, and the IHSI specified value of the water level instrumentation nozzle 2 (for example, Iida et al., “Guidelines for stress relaxation method by high frequency induction heating (SCC countermeasure method) TNS -G2804-1985 ", thermal power generation technology association of Japan, and nuclear power generation technology committee)).

Figure 2008019499
Figure 2008019499

一般に、加熱コイル6は、コイル端に行くほどコイル密度が疎になることから、エネルギー密度が小さくなる。特に水位計装ノズル2の場合は、適用する板厚tが薄いことからIHSI時の内面冷却水の冷却効果が大きく、コイル端ほど温度降下しやすい。   In general, the heating coil 6 has a lower energy density because the coil density decreases toward the coil end. In particular, in the case of the water level instrumentation nozzle 2, since the plate thickness t to be applied is thin, the cooling effect of the inner surface cooling water at the time of IHSI is large, and the temperature tends to drop toward the coil end.

以上の理由により、加熱範囲を十分に確保する観点から、溶接中心からコイル端までの距離Dは、コイル幅Lの1/2(数5参照)とした。すなわち、管2、3の溶接中心と、加熱コイル6の軸方向の中心とを一致させて、加熱コイル6を配置する。   For the above reasons, from the viewpoint of ensuring a sufficient heating range, the distance D from the welding center to the coil end is set to 1/2 of the coil width L (see Equation 5). That is, the heating coil 6 is arranged such that the welding center of the pipes 2 and 3 and the axial center of the heating coil 6 coincide with each other.

次に、図8から図10に、本実施形態のIHSI加熱条件で施工した試験体A02(管径φ59×板厚17t(mm))、B02(管径φ67×板厚8.5t(mm))、C05(管径φ78×板厚14.4t(mm))の軸方向および周方向の残留応力計測結果を示す。   Next, in FIG. 8 to FIG. 10, specimens A02 (tube diameter φ59 × plate thickness 17 t (mm)) and B02 (tube diameter φ67 × plate thickness 8.5 t (mm)) constructed under the IHSI heating conditions of this embodiment are shown. ), C05 (tube diameter φ78 × plate thickness 14.4 t (mm)) in the axial and circumferential residual stress measurement results are shown.

図8から図10より、いずれの試験体も溶接継手部4における内面の応力は、大部分が圧縮応力(すなわち、残留応力が0以下)となり、IGSCCの発生因子である溶接継手部4の引張応力が圧縮応力に移行し、応力改善効果が確認された。   From FIG. 8 to FIG. 10, the stress on the inner surface of the welded joint portion 4 in any of the specimens is mostly compressive stress (that is, the residual stress is 0 or less), and the tensile strength of the welded joint portion 4 that is a factor causing IGSCC. The stress shifted to compressive stress, confirming the stress improvement effect.

また、オーステナイト系ステンレス鋼側(セーフエンド3側)だけでなく、溶接部5およびインコネル母材側(水位計装ノズル2側)においても、応力改善効果がみられた。   Moreover, the stress improvement effect was seen not only on the austenitic stainless steel side (safe end 3 side) but also on the welded part 5 and the Inconel base metal side (water level instrumentation nozzle 2 side).

このように本実施形態では、加熱深さSをt/6以上t/2以下、溶接中心からコイル端までの距離Dを数5以上とすることで、小口径、薄肉な管でも、残留応力を緩和することができる。   As described above, in this embodiment, by setting the heating depth S to t / 6 or more and t / 2 or less and the distance D from the welding center to the coil end to be several 5 or more, even with a small diameter and thin tube, residual stress can be obtained. Can be relaxed.

次に、高周波誘導加熱の最高加熱温度TOについて説明する。 Next, the maximum heating temperature T O for high frequency induction heating will be described.

表1に戻り、本実施形態では、高周波誘導加熱の最高加熱温度TOが、管2、3の材料(材質)をもとに決定され、さらに、溶接された管2、3が、各々異なる材料からなり、それら材料をもとに各々決定された最高加熱温度TOの内、低いほうの最高加熱温度TOにて、上記高周波誘導加熱が行われる。 Returning to Table 1, in the present embodiment, the maximum heating temperature T O of the high frequency induction heating is determined based on the material (material) of the pipes 2 and 3, and the welded pipes 2 and 3 are different from each other. of a material, of the maximum heating temperature T O, which are respectively determined based on these materials, at the maximum heating temperature T O of the lower more, the high frequency induction heating is performed.

具体的には、管2、3が、ニオブ含有量が1%以上3%以下のニッケルクロム鉄合金製鋼管2と、炭素含有量が0.02%以下のオーステナイト系ステンレス鋼製鋼管3とからなるときは、高周波誘導加熱の最高加熱温度TOが650℃以下に設定される。 Specifically, the pipes 2 and 3 are composed of a nickel-chromium iron alloy steel pipe 2 having a niobium content of 1% to 3% and an austenitic stainless steel pipe 3 having a carbon content of 0.02% or less. In this case, the maximum heating temperature T O for high frequency induction heating is set to 650 ° C. or lower.

管2、3が、ニオブ含有量が1%未満若しくは3%超のニッケルクロム鉄合金製鋼管2と、炭素含有量が0.02%以下のオーステナイト系ステンレス鋼製鋼管3とからなるときは、高周波誘導加熱の最高加熱温度TOが600℃以下に設定される。 When the pipes 2 and 3 are composed of a nickel chromium iron alloy steel pipe 2 having a niobium content of less than 1% or more than 3% and an austenitic stainless steel pipe 3 having a carbon content of 0.02% or less, The maximum heating temperature T O for high frequency induction heating is set to 600 ° C. or lower.

管2、3が、ニオブ含有量が1%未満若しくは3%超のニッケルクロム鉄合金製鋼管2と、炭素含有量が0.02%超のオーステナイト系ステンレス鋼製鋼管3とからなるときは、高周波誘導加熱の最高加熱温度TOが550℃以下に設定される。 When the pipes 2 and 3 are composed of a nickel chromium iron alloy steel pipe 2 having a niobium content of less than 1% or more than 3% and an austenitic stainless steel pipe 3 having a carbon content of more than 0.02%, The maximum heating temperature T O for high frequency induction heating is set to 550 ° C. or lower.

このように、高周波誘導加熱の最高加熱温度TOを、管2、3の材料をもとに決定することで、管2、3の劣化を抑制でき、溶接継手部4の健全性を保つことができる。 Thus, by determining the maximum heating temperature T O of the high frequency induction heating based on the material of the pipes 2 and 3, deterioration of the pipes 2 and 3 can be suppressed, and the soundness of the welded joint part 4 can be maintained. Can do.

以上から、本実施形態のIHSIは、水位計測ノズル2(P−43+P−8溶接継手部4)に対するIGSCC予防保全対策として有効であることが分かった。   From the above, it was found that the IHSI of this embodiment is effective as an IGSCC preventive maintenance measure for the water level measurement nozzle 2 (P-43 + P-8 weld joint 4).

また、高周波誘導加熱後の母材部に健全性確認の目的で機械試験を実施し、規定値を満足していることを確認した。機械試験の結果、本実施形態の加熱条件は、継手性能に悪影響を及ぼさないことが分かった。   In addition, a mechanical test was performed on the base metal part after high frequency induction heating for the purpose of soundness confirmation, and it was confirmed that the specified value was satisfied. As a result of the mechanical test, it was found that the heating conditions of this embodiment do not adversely affect the joint performance.

次に、本実施形態のIHSIでは、高周波誘導加熱時に管内外面の温度差ΔTを求めることで、IHSI施工の効果を確認するようにしている。   Next, in the IHSI of the present embodiment, the effect of IHSI construction is confirmed by obtaining the temperature difference ΔT between the inner and outer surfaces of the pipe during high-frequency induction heating.

すなわち、予め、残留応力を緩和するのに必要とされる内外面の温度差ΔTの関係式である数8を求め、   That is, in advance, Equation 8 which is a relational expression of the temperature difference ΔT between the inner and outer surfaces required to relieve the residual stress is obtained,

Figure 2008019499
Figure 2008019499

上記高周波誘導加熱時に、評価点温度を計測することで、管内面温度Tiを数9および数10にて算出し、 By measuring the evaluation point temperature at the time of the high frequency induction heating, the tube inner surface temperature T i is calculated by Equation 9 and Equation 10,

Figure 2008019499
Figure 2008019499

Figure 2008019499
Figure 2008019499

それら測定した評価点のうちの最低温度と算出した管内面温度Tiとの差ΔTが、数8を満たすことを確認するようにしている。 It is confirmed that the difference ΔT between the lowest temperature of the measured evaluation points and the calculated tube inner surface temperature T i satisfies Expression 8.

ここで、IHSI加熱条件の1つである内外面の温度差ΔTを確認するには、管内面温度Tiを算出する必要があるが、小口径、薄肉な管2、3の場合、従来からの管内面温度Tiの計算方法では、試験による内面温度実測値との差が大きい。そこで、本実施形態では、管内面温度Tiの計算式を再検討し、数9および数10を得た。 Here, in order to confirm the temperature difference ΔT between the inner and outer surfaces, which is one of the IHSI heating conditions, it is necessary to calculate the tube inner surface temperature T i , but in the case of small diameter, thin tubes 2 and 3, conventionally, in the inner surface temperature T i calculation method, a large difference between the inner surface temperature measured value by the test. Therefore, in this embodiment, the calculation formulas for the tube inner surface temperature T i are reviewed, and Equations 9 and 10 are obtained.

それら数9および数10の計算値と、管内面温度の実測値とを比較検討した結果を図11から図13に基づき説明する。   The results of comparing the calculated values of Equations 9 and 10 with the measured values of the tube inner surface temperature will be described with reference to FIGS.

図11から図13は、数11で与えられるAを、管内外面の温度Ti、TOおよび冷却水温度TWの実測値と、数9および数10の計算値とから各々算出して示したものである。 FIGS. 11 to 13 show A given by Eq. 11 calculated from the measured values of the pipe inner and outer surface temperatures T i and T O and the cooling water temperature T W and the calculated values of Eqs. 9 and 10. It is a thing.

Figure 2008019499
Figure 2008019499

図11から図13によると、板厚tが8.5mm以上14.4mm以下の場合は、数9を用いた計算値が実測値を包絡しており、板厚tが14.4mmより厚く17mm以下の場合は、数10を用いた計算値が実測値を包絡している。   According to FIGS. 11 to 13, when the plate thickness t is 8.5 mm or more and 14.4 mm or less, the calculated value using Equation 9 envelops the actual measurement value, and the plate thickness t is thicker than 14.4 mm and 17 mm. In the following cases, the calculated value using Equation 10 envelops the actual measurement value.

このことから、板厚tの違いにより数9、数10を使い分けることで、管内面温度Tiの計算値を適切に評価できることが確認された。 From this, it was confirmed that the calculated value of the tube inner surface temperature T i can be appropriately evaluated by properly using Equations 9 and 10 depending on the difference in the plate thickness t.

ここで、従来からの管内面温度Tiの計算式を数12に示す。 Here, a conventional formula for calculating the tube inner surface temperature T i is shown in Formula 12.

Figure 2008019499
Figure 2008019499

数10と数12は板厚tの条件を除き同一であるので、本実施形態では、従来からのIHSI工法で使用されていた管内面温度Tiの計算式(数10)に数9を追加し、板厚tにより数9、数10を使い分けるようにしていると言える。 Since the number 10 to the number 12 is the same except for the conditions of the thickness t, in the present embodiment, adding the number 9 in the formula of the inner surface temperature T i that were used in IHSI method from conventional (number 10) In addition, it can be said that the equations 9 and 10 are properly used depending on the thickness t.

このように、管内面温度Tiの計算式として、板厚tの違いにより、数9、数10を使い分けることで、管内面温度Tiを適切に評価できる。 Thus, as a calculation formula for the tube surface temperature T i, the difference in thickness t, the number 9, by selectively using the number 10, can be appropriately evaluated a luminal surface temperature T i.

その結果、IHSI施工後に、応力改善効果を確実に確認することができる。   As a result, the stress improvement effect can be reliably confirmed after the IHSI construction.

なお、本発明は、上述の実施形態に限定されず、様々な変形例や応用例が考えられるものである。   In addition, this invention is not limited to the above-mentioned embodiment, Various modifications and application examples can be considered.

図1は、本発明に係る一実施形態による高周波誘導加熱応力緩和法が対象とする水位計装ノズルが設けられた原子炉圧力容器を示す。FIG. 1 shows a reactor pressure vessel provided with a water level instrumentation nozzle targeted by a high frequency induction heating stress relaxation method according to an embodiment of the present invention. 図2は、本実施形態の溶接継手部を示す。FIG. 2 shows the welded joint portion of the present embodiment. 図3は、本実施形態の溶接継手部と高周波誘導加熱コイルとを示す。FIG. 3 shows the welded joint portion and the high-frequency induction heating coil of this embodiment. 図4は、誘導加熱の加熱深さを説明するための図である。FIG. 4 is a diagram for explaining the heating depth of induction heating. 図5は、加熱深さと周波数の関係を説明するための図である。FIG. 5 is a diagram for explaining the relationship between the heating depth and the frequency. 図6は、板厚を加熱深さで割った商と、周波数の関係を説明するための図である。FIG. 6 is a diagram for explaining the relationship between the quotient obtained by dividing the plate thickness by the heating depth and the frequency. 図7は、高周波誘導加熱時の管軸方向における外面温度の分布を説明するための図である。FIG. 7 is a diagram for explaining the distribution of the outer surface temperature in the tube axis direction during high-frequency induction heating. 図8は、本実施形態の高周波誘導加熱応力緩和法を施工後における管の残留応力計測結果の一例を示す。FIG. 8 shows an example of the residual stress measurement result of the pipe after the high frequency induction heating stress relaxation method of this embodiment is applied. 図9は、本実施形態の高周波誘導加熱応力緩和法を施工後における管の残留応力計測結果の一例を示す。FIG. 9 shows an example of the residual stress measurement result of the pipe after the high frequency induction heating stress relaxation method of this embodiment is applied. 図10は、本実施形態の高周波誘導加熱応力緩和法を施工後における管の残留応力計測結果の一例を示す。FIG. 10 shows an example of the residual stress measurement result of the pipe after the high frequency induction heating stress relaxation method of this embodiment is applied. 図11は、本実施形態における水位計装ノズル温度の計測結果と計算結果との関係を説明するための図である。FIG. 11 is a diagram for explaining the relationship between the measurement result of the water level instrumentation nozzle temperature and the calculation result in the present embodiment. 図12は、本実施形態における水位計装ノズル温度の計測結果と計算結果との関係を説明するための図である。FIG. 12 is a diagram for explaining the relationship between the measurement result of the water level instrumentation nozzle temperature and the calculation result in the present embodiment. 図13は、本実施形態における水位計装ノズル温度の計測結果と計算結果との関係を説明するための図である。FIG. 13 is a diagram for explaining the relationship between the measurement result of the water level instrumentation nozzle temperature and the calculation result in the present embodiment.

符号の説明Explanation of symbols

2、3 管
4 溶接継手部
6 高周波誘導コイル
R 中立半径
t 板厚
D 溶接中心と上記高周波誘導コイル端の距離
2, 3 Pipe 4 Welded joint 6 High frequency induction coil R Neutral radius t Thickness D Distance between the welding center and the end of the high frequency induction coil

Claims (8)

小口径かつ薄肉な管の溶接継手部の管内面を水冷しながら管外面側から高周波誘導コイルにて加熱して、上記溶接継手部の内面の残留応力を緩和するための高周波誘導加熱応力緩和法において、
上記管の中立半径をR、板厚をtとしたとき、
上記高周波誘導加熱の加熱深さSをt/6以上t/2以下に、
かつ溶接中心と上記高周波誘導コイル端の距離Dを、数1
Figure 2008019499
以上に設定して、高周波誘導加熱することを特徴とする高周波誘導加熱応力緩和法。
A high-frequency induction heating stress relaxation method to relieve residual stress on the inner surface of the welded joint by heating the inner surface of the welded joint of a small-diameter and thin-walled tube with a high-frequency induction coil from the outer surface of the tube while cooling with water In
When the neutral radius of the pipe is R and the thickness is t,
The heating depth S of the high frequency induction heating is set to t / 6 or more and t / 2 or less,
And the distance D between the welding center and the end of the high frequency induction coil is given by
Figure 2008019499
A high-frequency induction heating stress relaxation method characterized by performing high-frequency induction heating in the above manner.
上記管の中立半径Rが33mm以下、板厚tが17mm以下である請求項1記載の高周波誘導加熱応力緩和法。   The high frequency induction heating stress relaxation method according to claim 1, wherein the tube has a neutral radius R of 33 mm or less and a plate thickness t of 17 mm or less. 上記高周波誘導加熱の最高加熱温度は、上記管の材料をもとに決定される請求項1または2記載の高周波誘導加熱応力緩和法。   The high frequency induction heating stress relaxation method according to claim 1 or 2, wherein a maximum heating temperature of the high frequency induction heating is determined based on a material of the pipe. 上記溶接された管が、各々異なる材料からなり、それら材料をもとに各々決定された最高加熱温度の内、低いほうの最高加熱温度にて、上記高周波誘導加熱が行われる請求項3記載の高周波誘導加熱応力緩和法。   4. The high frequency induction heating according to claim 3, wherein the welded pipes are made of different materials, and the high frequency induction heating is performed at a lower maximum heating temperature among the maximum heating temperatures respectively determined based on the materials. High frequency induction heating stress relaxation method. 上記管が、ニオブ含有量が1%以上3%以下のニッケルクロム鉄合金製鋼管と、炭素含有量が0.02%以下のオーステナイト系ステンレス鋼製鋼管とからなり、上記高周波誘導加熱の最高加熱温度が650℃以下に設定された請求項1から4いずれかに記載の高周波誘導加熱応力緩和法。   The pipe is composed of a nickel chromium iron alloy steel pipe having a niobium content of 1% to 3% and an austenitic stainless steel pipe having a carbon content of 0.02% or less. The high frequency induction heating stress relaxation method according to any one of claims 1 to 4, wherein the temperature is set to 650 ° C or lower. 上記管が、ニオブ含有量が1%未満若しくは3%超のニッケルクロム鉄合金製鋼管と、炭素含有量が0.02%以下のオーステナイト系ステンレス鋼製鋼管とからなり、上記高周波誘導加熱の最高加熱温度が600℃以下に設定された請求項1から4いずれかに記載の高周波誘導加熱応力緩和法。   The pipe is composed of a nickel chrome iron alloy steel pipe having a niobium content of less than 1% or more than 3% and an austenitic stainless steel pipe having a carbon content of 0.02% or less. The high frequency induction heating stress relaxation method according to any one of claims 1 to 4, wherein the heating temperature is set to 600 ° C or lower. 上記管が、ニオブ含有量が1%未満若しくは3%超のニッケルクロム鉄合金製鋼管と、炭素含有量が0.02%超のオーステナイト系ステンレス鋼製鋼管とからなり、上記高周波誘導加熱の最高加熱温度が550℃以下に設定された請求項1から4いずれかに記載の高周波誘導加熱応力緩和法。   The pipe is composed of a nickel chromium iron alloy steel pipe having a niobium content of less than 1% or more than 3% and an austenitic stainless steel pipe having a carbon content of more than 0.02%. The high frequency induction heating stress relaxation method according to any one of claims 1 to 4, wherein the heating temperature is set to 550 ° C or lower. 予め、残留応力を緩和するのに必要とされる内外面の温度差ΔTの関係式である数2を求め、
Figure 2008019499
上記高周波誘導加熱時に、管外面の評価点温度を測定することで、管内面温度Tiを数3および数4にて算出し、
Figure 2008019499
Figure 2008019499
それら測定した評価点のうちの最低温度と算出した管内面温度Tiとの差ΔTが、数2を満たすことを確認する請求項1から7いずれかに記載の高周波誘導加熱応力緩和法。
In advance, Equation 2 which is a relational expression of the temperature difference ΔT between the inner and outer surfaces required to relieve the residual stress is obtained,
Figure 2008019499
When the high frequency induction heating, by measuring the evaluation point temperature of tube outer surface, to calculate the inner surface temperature T i at the number 3 and number 4,
Figure 2008019499
Figure 2008019499
The high-frequency induction heating stress relaxation method according to any one of claims 1 to 7, wherein a difference ΔT between the lowest temperature among the measured evaluation points and the calculated tube inner surface temperature T i satisfies Equation (2).
JP2006194641A 2006-07-14 2006-07-14 High frequency induction heating stress relaxation method Active JP4254817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006194641A JP4254817B2 (en) 2006-07-14 2006-07-14 High frequency induction heating stress relaxation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006194641A JP4254817B2 (en) 2006-07-14 2006-07-14 High frequency induction heating stress relaxation method

Publications (2)

Publication Number Publication Date
JP2008019499A true JP2008019499A (en) 2008-01-31
JP4254817B2 JP4254817B2 (en) 2009-04-15

Family

ID=39075679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006194641A Active JP4254817B2 (en) 2006-07-14 2006-07-14 High frequency induction heating stress relaxation method

Country Status (1)

Country Link
JP (1) JP4254817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899698A (en) * 2014-02-04 2016-08-24 新日铁住金株式会社 Steel pipe
CN113444970A (en) * 2021-06-22 2021-09-28 上海神洲阳光特种钢管有限公司 Stretch-resistant stainless steel capillary tube and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439794A (en) * 2014-12-03 2015-03-25 青岛海越机电科技有限公司 Cylindrical circumference induction heating mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899698A (en) * 2014-02-04 2016-08-24 新日铁住金株式会社 Steel pipe
CN113444970A (en) * 2021-06-22 2021-09-28 上海神洲阳光特种钢管有限公司 Stretch-resistant stainless steel capillary tube and preparation method thereof

Also Published As

Publication number Publication date
JP4254817B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
Yaghi et al. Finite element simulation of residual stresses induced by the dissimilar welding of a P92 steel pipe with weld metal IN625
Ravisankar et al. Influence of welding speed and power on residual stress during gas tungsten arc welding (GTAW) of thin sections with constant heat input: A study using numerical simulation and experimental validation
Rathod et al. Mechanical properties variations and comparative analysis of dissimilar metal pipe welds in pressure vessel system of nuclear plants
Kapayeva et al. Remaining life assessment for boiler tubes affected by combined effect of wall thinning and overheating
JP4254817B2 (en) High frequency induction heating stress relaxation method
Wu et al. Influence of extra coarse grains on the creep properties of 9 percent CrMoV (P91) steel weldment
Shen et al. Generation of compressive residual stress at the root of tube-to-tubesheet welded joints in a heat exchanger
Lee et al. Numerical and experimental investigation into effect of temperature field on sensitization of AISI 304 in butt welds fabricated by gas tungsten arc welding
Skouras et al. Residual stress measurements in a P92 steel-In625 superalloy metal weldment in the as-welded and after post weld heat treated conditions
Soanes et al. Optimising residual stresses at a repair in a steam header to tubeplate weld
Saha et al. Failure of a secondary superheater tube in a 140-MW thermal power plant
Solonin et al. Cr–Ni alloys for fusion reactors
Saengsai et al. Fretting fatigue behavior of SUS304 stainless steel under pressurized hot water
JP5672818B2 (en) High frequency induction heating residual stress improvement method
Miao et al. Microstructure and failure analysis of TP347H/T91 dissimilar steel welded piping
Eisazadeh et al. Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld
Rogalski et al. Determination of t8/5 cooling times for underwater local dry welding of steel
Wang et al. Study on residual stress in socket weld by numerical simulation and experiment
Nebhnani et al. Failure of a martensitic stainless steel pipe weld in a fossil fuel power plant
Wang et al. Prediction of residual stress distributions in welded sections of P92 pipes with small diameter and thick wall based on 3D finite element simulation
Strader et al. Stress-relief cracking in simulated-coarse-grained heat affected zone of a creep-resistant steel
Tanner et al. Cross-weld creep comparison of power plant steels CrMoV, P91 and P92
Sanyal et al. Assessment of axial cracking of a steam generator tube
Xu et al. A study on the mechanical stress relieving and safety assessment without post-weld heat treatment
Yang et al. Estimates of mechanical properties and residual stress of narrow gap weld for leak-before-break application to nuclear piping

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4254817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250