JP4551060B2 - Induction hardening method for rod-shaped members - Google Patents

Induction hardening method for rod-shaped members Download PDF

Info

Publication number
JP4551060B2
JP4551060B2 JP2003084119A JP2003084119A JP4551060B2 JP 4551060 B2 JP4551060 B2 JP 4551060B2 JP 2003084119 A JP2003084119 A JP 2003084119A JP 2003084119 A JP2003084119 A JP 2003084119A JP 4551060 B2 JP4551060 B2 JP 4551060B2
Authority
JP
Japan
Prior art keywords
frequency
frequency heating
heating power
rod
hollow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003084119A
Other languages
Japanese (ja)
Other versions
JP2004292853A (en
Inventor
秀明 片沼
浩之 甲斐
隆幸 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Kogyo Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP2003084119A priority Critical patent/JP4551060B2/en
Publication of JP2004292853A publication Critical patent/JP2004292853A/en
Application granted granted Critical
Publication of JP4551060B2 publication Critical patent/JP4551060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、両端に中実軸部を有しかつこれら両端の中実軸部の間に中空パイプ部を有する棒状部材、例えば自動車のCVJ(等速ジョイント:constant velocity joint)部品である一般的なドライブシャフトのような金属材からなる棒状部材の外周面を連続的に高周波焼入するための棒状部材の高周波焼入方法に関する。
【0002】
【従来の技術】
従来、この種の自動車の前記CVJ部品である、一般的なドライシャフト(内部に中空パイプ部がない中実部(中実軸部)のみからなる)20の正面図を図4に示す。このドライブシャフト20の機能は、例えば自動車のエンジンの動力を車輪に伝達するような、インボードジョイントからアウトボードジョイントヘのトルク伝達である。
【0003】
FF(フロントエンジンフロントドライブ)車の場合、前記ドライブシャフト20の長い側では一定回転数にて曲げ振動に起因する共振現象がおこり、車の走行フィーリングを著しく害する。このような共振現象を避ける手法として、従来よりドライブシャフト20にゴムダンパを取付けて共振現象の低減を図ってきたが、近年、曲げ剛性の大きい、図5にその断面図を示すような中空ドライブシャフト21が使用されるようになった。
この中空ドライブシャフト21の製造で一般的に実用化されている方法は、両端の中実軸21a、21aと中空パイプ部21bとを摩擦溶接部分21c、21cにて摩擦溶接により結合し、その後、その外周面を高周波誘導加熱で焼入を行っている。
【0004】
【発明が解決しようとする課題】
しかしながら、長尺の前記中空ドライブシャフト21の外周面の高周波焼入において、硬化層深さを5mmにする場合、周波数が10kHz以下の高周波を用いて、該中空ドライブシャフト21の長さ方向の移動焼入を行っている。
図6の断面図に示すように、長尺の中空ドライブシャフト21では、両端の中実(内部全体が実体であること)部21a、21aと、これら両端の間の中空パイプ部21bがあり、前記中実部21a、21aの硬化層深さを5mmにする合、前記中空パイプ部21bの肉厚が5mmでは、中空パイプ部21bがズブ焼入(肉厚の全てが焼入される焼入)となっていた。
【0005】
高周波焼入において、硬化層深さの境界が、圧縮応力と引張応力の変化点に当たるので、形状が異なる中実部21a、21aと中空パイプ部21bの境に応力の変化点が生じると、図7に示すように焼割れ22が発生し易い。前記中空ドライブシャフト(被焼入部材)21内部の焼割れ22は、該中空ドライブシャフト21を非破壊の状態を維持しながら、磁気探傷及びカラーチェックによる、前記焼割れ22の検査ができないという間題点を生じていた。
【0006】
本発明はかかる点を鑑みなされたもので、その目的は前記問題点を解消し、被焼入部材として、両端に中実軸部を有しかつこれら両端の中実軸部の間に中空パイプ部を有する棒状部材の高周波焼入にあたり、前記中空パイプ部がズブ焼入とならず、かつ中実部と前記中空パイプ部との境に焼割れが生じない前記棒状部材の高周波焼入方法を提案することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するための本発明の構成は、両端に中実軸部を有しかつこれら両端の中実軸部の間に中空パイプ部を有する棒状部材の外周面を高周波焼入するための棒状部材の高周波焼入方法において、前記棒状部材をひとつの高周波加熱コイルにて取り囲まれた領域に通してその長さ方向に移動させながら、前記高周波加熱コイルにより前記棒状部材の外周面を高周波誘導加熱した後に、該外周面を急冷して焼入するに際し、前記高周波加熱コイルに、低い周波数から高い周波数までの複数の周波数の高周波加熱電力を同時に供給して、前記被焼入部材の外周面を高周波誘導加熱し、前記複数の周波数が、異なる2周波数で、かつ1kHzないし400kHzの周波数であり、前記中実軸部に対して第1の低い周波数及び第1の高い周波数の加熱電力を供給する際、前記第1の低い周波数の加熱電力が、前記第1の高い周波数の加熱電力より大きくなっており、前記中空パイプ部に対して第2の低い周波数及び第2の高い周波数の加熱電力を供給する際、前記第2の低い周波数の加熱電力が、前記第2の高い周波数の加熱電力より小さくなっており、かつ、前記第2の低い周波数及び前記第2の高い周波数の加熱電力が、前記第1の低い周波数の加熱電力より小さくなっている。
【0008】
前記複数の周波数の高周波加熱電力による加熱時間が、それぞれ独立して任意に変えられる棒状部材の高周波焼入方法である。
【0009】
前記棒状の被焼入部材の一部(中央部)が、中空である棒状部材の高周波焼入方法である。
【0010】
前記複数の周波数が、異なる2周波数で、かつ1kHzないし400kHzの周波数である棒状部材の高周波焼入方法である。
【0011】
本発明は、棒状部材の高周波焼入方法は、以上のように構成されているので、被焼入部材として、中空パイプ部を有する棒状部材を高周波焼入するにあたり、中実部の外径と、前記中空パイプ部の肉厚が異なる前記棒状部品の外周面側に高周波加熱コイルを配設して、前記高周波加熱コイル又は前記棒状部材の一方又は双方を移動(双方の場合は、互いに逆方向に移動)させながら高周波焼入れする方法において、前記高周波加熱コイルに1以上の周波数(1kHzないし400kHzの周波数)の高周波加熱電力を同時に供給するとともに、その加熱出力の割合(又は配分)を変えることにより、前記棒状部材の外周面からの焼入硬化深さを変えている。特に、前記中空パイプ部の外周面の肉厚に沿った焼入硬化深さとしている。
【0012】
本発明によれば、中空パイプ部を有する棒状部材を高周波焼入するに際し、前記中空パイプ部がズブ焼入とならず、これにより、中実部と前記中空パイプ部との境に焼割れが発生することはない。
【0013】
なお、本発明は、本出願人が先に提案した「高周波誘導加熱における加熱深さ調整方法」(特願2002−154973号にて提案)に関連する技術で、その改良技術である。
【0014】
前記「高周波誘導加熱における加熱深さ調整方法」の技術は、1つの高周波加熱コイルに、低い周波数と高い周波数の2周波の高周波加熱電力を同時に供給して、被加熱体の表面からの加熱深さを任意に調整することを課題とし、その解決手段(方法)は、被加熱体を高周波誘導加熱する際に、前記被加熱体の表面からの加熱深さを調整する方法である。
すなわち、前記被加熱体に使用される1つの高周波加熱コイルに、低い周波数と高い周波数との2周波の高周波加熱電力を同時に供給して、前記被加熱体を高周波誘導加熱するとともに、一方の周波数の高周波電力と他方の周波数の高周波電力との配分を、任意の配分比又は配分比率に変え、又は前記2周波のそれぞれの高周波電力による加熱時間をそれぞれ独立して任意に変えることにより、前記被加熱体の表面からの加熱深さを任意に、又は連続的に調整する方法である。
【0015】
【発明の実施の形態】
以下、図面に基づいて本発明の好適な実施の形態を例示的に詳しく説明する。
図1は、本発明の棒状部材の高周波焼入方法とその高周波焼入装置の一実施の形態を示す図で、一部に中空パイプ部を有するドライブシャフトを、高周波加熱コイルを貫通、移動しながら、高周波焼入する前記高周波焼入装置の説明構成図、図2は、図1による前記ドライブシャフトの移動焼入時の、該ドライブシャフトの長さ方向の各部位における、高周波加熱コイルに高周波加熱電力を供給又は加熱サイクルを示す図、図3は、図2により高周波焼入されたとき、前記ドライブシャフトの外周面に焼入硬化層が形成されるパターンを示す該ドライブシャフトの断面図である。
【0016】
図1において、高周波焼入装置1は、棒状の被焼入部材として、金属材、例えば鋼系材からなる円柱形の、自動車のCVJ(等速ジョイント:constant velocity joint)部品である一般的な前記ドライブシャフトで、一部に中空パイプ部を有する該ドライブシャフト2を、矢印方向に移動させながら、該ドライブシャフト2の外周面2aを高周波移動焼入するものである。
なお、前記ドライブシャフト2は、図5に示す前記ドライブシャフト21と構造的に同等で、両端の中実軸と、中央部の中空パイプ部とを摩擦溶接部分にて摩擦溶接により結合、形成して成るものである。
【0017】
前記高周波焼入装置1は、前記ドライブシャフト2を貫通かつ移動させるひとつの高周波加熱コイル3に対して、2周波高周波電源としての2周波発振機4から、制御装置5によりそれぞれ制御(オン、オフする)される、低い周波数f1と高い周波数f2の2周波の高周波加熱電力を同時に供給する。そして前記ドライブシャフト2の外周部2aの加熱部分2bを、順次ある所定の焼入温度まで加熱した直後に、前記制御装置5の制御により冷却液供給装置6を介して冷却液噴射環6aから、加熱された前記外周面2aに向けて冷却液、例えば冷却水を噴射して急冷し、前記外周面2aの高周波移動焼入を行って焼入硬化層2cを形成させる。前記高周波焼入中、搬送装置7により、前記ドライブシャフト2をその長さ方向の矢印方向に移動させている。
なお、前記制御装置5は、前記2周波発振機4及び前記冷却液供給装置6のほか、前記ドライブシャフト2をその長さ方向に任意の一定速度で移動させる前記搬送装置7をも制御する。
【0018】
前記2周波発振機4は、前記低い周波数f1、例えば3kHzの高周波加熱電力を出力する第1の高周波発振機4aと、前記高い周波数f2、例えば200kHzの高周波加熱電力を出力する第2の高周波発振機4bとからなり、前記制御装置5は、前記第1の高周波電源部4aから高周波加熱電力を出力調整するとともに、該高周波加熱電力を出力する加熱時間を任意に制御(オン、オフする)し、また、前記第2の高周波発振機4bから高周波加熱電力を出力調整するとともに、該高周波加熱電力を出力する加熱時間を任意に制御(オン、オフする)し、さらに、前記第1の高周波発振機4aと第2の高周波発振機4bとを、交互に出力させることもできる。
【0019】
また、前記制御装置5は、前記高周波加熱コイル3とともに独立して巻回される監視コイル8を接続して、前記第1、第2の高周波発振機4a、4bからの前記高周波加熱コイル3へのそれぞれの高周波加熱電力の出力状態を監視しながら、該第1、第2の高周波発振機4a、4bを制御している。
【0020】
また、同時に、前記制御装置5は、前記ドライブシャフト2を加熱する前記高周波加熱コイル3に対して、前記2周波発振機4の前記第1の高周波発振機4aから出力される前記低い周波数f1の高周波電力と、前記第2の高周波発振機4bから出力される前記高い周波数f2の高周波電力との配分割合を、それぞれ任意の配分比又は配分比率(加熱に要する全体高周波電力の、例えば%による配分)に変えたり、又は、前記2周波のそれぞれの高周波加熱電力による加熱時間を、それぞれ独立して任意に変えることにより、前記ドライブシャフト2の外周面2aからの焼入深さを任意に調整したり、又は連続的に調整することができる。
【0021】
また、前記制御装置5は、前記高周波加熱コイル3に対して、前記2周波発振機4から出力される前記低い周波数f1の高周波加熱電力と、前記高い周波数f2の高周波電力との配分割合を、それぞれ任意の配分比又は配分比率に変えると同時に、前記2周波のそれぞれの高周波加熱電力による加熱時間を、それぞれ独立して任意に変えることにより、前記ドライブシャフト2の外周面2aからの焼入深さを任意に調整したり、又は連続的に調整することもできる。
【0022】
次いで、図2に示すように、前記ドライブシャフト2の中実部と中空パイプ部との各部位では、その外周面2aを高周波加熱する周波数f1、f2とその高周波電力の割合(配分比又は配分比率)を変えて前記高周波加熱コイル3に供給した(具体的実施例は後記のとおり)。すなわち、前記中実部では、低い周波数f1で大きい電力とし、前記中空パイプ部では、高い周波数f2と低い周波数f1とにより、前記中実部における大きい電力に比較して小さい電力を同時に供給した。特に、該中空パイプ部の加熱電力は、低い周波数f1の加熱電力を高い周波数f2の加熱電力より少なくした。前記中空パイプ部に高い周波数f2を使用することで、高周波誘導加熱による浸透深さを浅くすることが可能となり、該中空パイプ部のズブ焼入れを回避することができた。
【0023】
本実施の形態により、前記ドライブシャフト2の外周面2aに得られた焼入硬化層3cのパターンは、図3に示すように、前記中実部では、約5mmの焼入硬化層で、前記中空パイプ部では、肉厚内の約3mmの焼入硬化層となった。前記中空パイプ部において、前記高い周波数f2と前記低い周波数f1の加熱電力出力の配分により、さらに目標とする焼入硬化深さにすることが可能である。
本実施の形態により、図3に示すように、前記ドライブシャフト2のその長さ方向の外周面2aに沿った焼入硬化層2cパターンとなることで、前記ドライブシャフト2の内部の焼割れを防止することができた。
【0024】
[実施例]
以下に、本実施の形態にかかる具体的な実施例を以下に示す。
(1)被焼入部材:ドライブシャフト
(a)材質:S40BCM
(b)寸法:中実部外径30mm、中空パイプ部外径40mm(肉厚=5mm)、長さ500mm
(2)高周波誘導加熱条件
1)中実
(a)低い周波数f1=3kHz、加熱電力の出力=120kW(配分割合=100%)、
移動速度(送り速度)=30mm/sec
(b)高い周波数f2=200kHz、加熱電力の出力=0kW(配分割合=0%)、
2)中空パイプ部
(a)低い周波数f1=3kHz、加熱電力の出力=40kW(配分割合=36%)、
移動速度(送り速度)=30mm/sec
(b)高い周波数f2=200kHz、加熱電力の出力=70kW(配分割合=64%)、
移動速度(送り速度)=30mm/sec
【0025】
前記加工条件により、前記ドライブシャフト2に焼入を施したときの、中実部スプライン谷の表面硬さは、Hv700〜720であり、硬化層深さは、5.0〜5.5mmである。肉厚5mmの前記中空パイプ部の表面硬さは、Hv700〜720であり、硬化層深さは、3.0〜3.3mmである。
【0026】
従来の高周波焼入方法では、前記中空パイプ部の表面硬さは、Hv700〜720であり、硬化層深さは、5mmと肉厚全てに焼入れされていたが、本実施の形態によれば、前記中空パイプ部が所定の表面硬さがHv700〜720で、肉厚より狭い硬化層深さとなったことで(すなわち、前記中空パイプ部がズブ焼入とならないことで)、該中空部内側の焼割れを防止することができた。
【0027】
以上のとおり、本発明の一実施の形態について述べたが、本発明は、この実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。例えば、発振機の台数を2台としたが、2台に限定されるものでなく、必要に応じて増やしてもよい。中空パイプ部の加熱において、前記高い周波数f2と前記低い周波数f1の高周波加熱電力を、前記高周波加熱コイル3に同時供給としたが、前記高い周波数f2のみの供給でも可能である。また、前記中実部の高周波加熱において、前記低い周波数f1のみの供給としたが、前記高い周波数f2と前記低い周波数f1との高周波加熱電力の同時供給でも可能である。
【0028】
前記低い周波数f1と前記高い周波数f2の高周波加熱電力を、加熱中、それぞれ一定の値としたが、前記被焼入部材に要求される焼入硬化層深さにより、その電力値を無段階で変化させてもできる。前記中実部及び中空パイプ部を、その長さ方向に連続移動焼入としたが、必要部位だけを焼入する部分焼入でも可能である。
【0029】
【発明の効果】
以上の説明から明らかなように本発明の棒状の被加熱部材の高周波焼入方法及びその装置によれば、前記被焼入部材を貫通かつ移動させる高周波加熱コイルに、低い周波数から高い周波数までの複数の周波数の高周波加熱電力を同時に供給して、前記被焼入部材の外周面を高周波誘導加熱するとともに、それぞれの周波数の高周波電力の割合を、零を含み任意に変えるので、一部に中空パイプ部を有する棒状の被加熱部材の外周面を高周波焼入するに際し、又は高周波焼入装置においては、前記中空パイプ部がズブ焼入とならず、かつ中実部と前記中空パイプ部との境に焼割れが生じないとういう優れた効果を奏する。
【0030】
また、本発明によれば、外径が異なる前記中実部と肉厚が異なる前記中空パイプ部からなる棒状の被加熱部材のそれぞれの外周面を高周波焼入するに際し、単数又は複数の周波数の高周波加熱電力を同時に供給して、前記被焼入部材の外周面を高周波誘導加熱するとともに、それぞれの周波数の高周波電力の割合を零を含み任意に変えることにより、前記棒状の被加熱部材の外周面に沿って任意な焼入硬化深さにすることが可能となり、前記中空パイプ部内側の焼割れをも防止することができる。
【図面の簡単な説明】
【図1】 本発明の棒状部材の高周波焼入方法とその高周波焼入装置の一実施の形態を示す図で、一部に中空パイプ部を有するドライブシャフトを、高周波加熱コイルを貫通、移動しながら、高周波焼入する前記高周波焼入装置の説明構成図である。
【図2】 図1による前記ドライブシャフトの移動焼入時の、該ドライブシャフトの長さ方向の各部位における、高周波加熱コイルに高周波加熱電力の供給又は加熱サイクルを示す図で、横軸は図3に示す前記ドライブシャフトの長さ方向の各部位を示し、縦軸は、等速で移動する前記ドライブシャフトの長さ方向の各部位における、高周波加熱コイルに供給する高周波加熱電力を示す。
【図3】1227168345156_1
図2により高周波焼入されたとき、前記ドライブシャフトの外周面に焼入硬化層が形成されるパターンを示す該ドライブシャフトの断面図である。
【図4】 従来から使用される自動車のCVJ部品で、一般的なドライシャフト(中実部のみからなる)を示す正面図である。
【図5】 従来から使用される自動車のCVJ部品で、中空パイプ部を有する中空ドライブシャフトの断面図である。
【図6】 従来の高周波焼入方法により、中空パイプ部を有する中空ドライブシャフトに形成された焼入硬化層パターンを示す断面図である。
【図7】 従来の高周波焼入方法により、中空パイプ部を有する中空ドライブシャフトに生じた焼割れを示す断面図である。
【符号の説明】
1 高周波焼入装置
2,21 ドライブシャフト(被焼入部材)
2a 外周面
2b 加熱部分
2c 焼入硬化層
3 高周波加熱コイル
4 2周波発振機
4a 第1の高周波発振機(低い周波数f1を出力)
4b 第2の高周波発振機(高い周波数f2を出力)
5 制御装置
6 冷却液供給装置
6a 冷却液噴射環
7 搬送装置
[0001]
BACKGROUND OF THE INVENTION
The present invention is generally a rod-shaped member having a solid shaft portion at both ends and a hollow pipe portion between the solid shaft portions at both ends, for example, a CVJ (constant velocity joint) part of an automobile. The present invention relates to an induction hardening method for a rod-shaped member for continuously induction-hardening an outer peripheral surface of a rod-shaped member made of a metal material such as a drive shaft.
[0002]
[Prior art]
Conventionally, shown is the CVJ components of this type of motor vehicle, the front view of a general drive shaft (made of solid portion only (solid shaft portion medium) no hollow pipe portion therein) 20 in FIG. The function of the drive shaft 20 is to transmit torque from the inboard joint to the outboard joint, for example, to transmit the power of the engine of the automobile to the wheels.
[0003]
In the case of an FF (front engine front drive) vehicle, a resonance phenomenon caused by bending vibration occurs at a constant rotational speed on the long side of the drive shaft 20, and the running feeling of the vehicle is significantly impaired. As a method for avoiding such a resonance phenomenon, a rubber damper has been conventionally attached to the drive shaft 20 to reduce the resonance phenomenon. However, in recent years, a hollow drive shaft having a large bending rigidity and a sectional view thereof as shown in FIG. 21 came to be used.
In general, the hollow drive shaft 21 is manufactured by joining the solid shaft portions 21a, 21a and the hollow pipe portion 21b at both ends by friction welding at the friction welding portions 21c, 21c, and thereafter The outer peripheral surface is quenched by high frequency induction heating.
[0004]
[Problems to be solved by the invention]
However, in the induction hardening of the outer peripheral surface of the long hollow drive shaft 21, when the hardened layer depth is 5 mm, the hollow drive shaft 21 is moved in the length direction using a high frequency of 10 kHz or less. Quenching is performed.
As shown in the sectional view of FIG. 6, the hollow drive shaft 21 of the elongated, solid in both ends (that the entire interior is an entity) shaft portion 21a, and 21a, and the hollow pipe portion 21b between these two ends There, it said solid shaft portion 21a, if the hardened layer depth of 21a in 5 mm, the the thickness of the hollow pipe portion 21b is 5 mm, all hollow pipe portion 21b is dip quenching (thick hardenability Quenching).
[0005]
In induction hardening, since the boundary of the hardened layer depth hits the changing point of compressive stress and tensile stress, when the changing point of stress occurs at the boundary between the solid shaft parts 21a, 21a and the hollow pipe part 21b having different shapes, As shown in FIG. 7, the fire cracks 22 are likely to occur. While the hollow cracks 22 in the hollow drive shaft (hardened member) 21 remain in a non-destructive state, the cracks 22 cannot be inspected by magnetic flaw detection and color check. There was a problem.
[0006]
The present invention has been made in view of such points, and the object thereof is to solve the above-mentioned problems, and as a member to be hardened, there are solid shaft portions at both ends and a hollow pipe between the solid shaft portions at both ends. Induction hardening of a rod-shaped member having a portion, the hollow pipe portion is not submerged, and no induction cracking occurs at the boundary between the solid shaft portion and the hollow pipe portion. Is to propose.
[0007]
[Means for Solving the Problems]
The configuration of the present invention for achieving the above object is for induction-hardening the outer peripheral surface of a rod-shaped member having a solid shaft portion at both ends and having a hollow pipe portion between the solid shaft portions at both ends. In the induction hardening method for the rod-shaped member, the rod-shaped member is moved in the length direction through a region surrounded by one high-frequency heating coil, and the outer circumferential surface of the rod-shaped member is induction-induced by the high-frequency heating coil. When the outer peripheral surface is quenched and quenched after heating, high frequency heating power of a plurality of frequencies from a low frequency to a high frequency is simultaneously supplied to the high frequency heating coil, and the outer peripheral surface of the member to be quenched the high-frequency induction heating, wherein the plurality of frequencies, two different in frequency, and a frequency of from 1 kHz 400kHz, first, lower frequency and a first high frequency relative to said solid shaft portion When supplying heating power, the first low frequency heating power is greater than the first high frequency heating power, and a second low frequency and a second high for the hollow pipe portion. When supplying the heating power of the frequency, the second low frequency heating power is smaller than the second high frequency heating power, and the second low frequency and the second high frequency Is less than the first low frequency heating power.
[0008]
This is a method for induction hardening of a rod-shaped member in which the heating time by the high-frequency heating power of the plurality of frequencies can be arbitrarily changed independently.
[0009]
This is an induction hardening method for a rod-shaped member in which a part (center portion) of the rod-shaped member to be quenched is hollow.
[0010]
In the method of induction hardening of a rod-shaped member, the plurality of frequencies are two different frequencies and a frequency of 1 kHz to 400 kHz.
[0011]
The present invention, induction hardening Irigata method of the rod-like member, which is configured as described above, as an object to be the hardened material, the rod member having a hollow pipe portion Upon for induction hardening, in the outer real axis portion A high-frequency heating coil is disposed on the outer peripheral surface side of the rod-shaped component having a diameter and a thickness different from that of the hollow pipe portion , and one or both of the high-frequency heating coil and the rod-shaped member are moved (in both cases, Oite to how to induction hardening while moving) is allowed in the opposite direction, at the same time it supplies the high-frequency heating power of the high frequency heating coil to one or more frequencies (a frequency of from 1 kHz 400kHz), the ratio of the heating power (or distribution ) Is changed, the quench hardening depth from the outer peripheral surface of the rod-shaped member is changed. In particular, the hardening depth is set along the thickness of the outer peripheral surface of the hollow pipe portion .
[0012]
According to the present invention, when induction-hardening a rod-shaped member having a hollow pipe portion , the hollow pipe portion is not submerged, thereby causing a crack at the boundary between the solid shaft portion and the hollow pipe portion. Will not occur.
[0013]
The present invention is a technique related to the “heating depth adjustment method in high-frequency induction heating” (proposed in Japanese Patent Application No. 2002-154974) previously proposed by the present applicant, and is an improved technique thereof.
[0014]
The technique of the “heating depth adjustment method in high-frequency induction heating” is a technique in which two high-frequency heating powers of a low frequency and a high frequency are simultaneously supplied to one high-frequency heating coil, so that the heating depth from the surface of the object to be heated is increased. The solution (method) is a method of adjusting the heating depth from the surface of the heated body when the heated body is subjected to high frequency induction heating.
That is, two high frequency heating powers of a low frequency and a high frequency are simultaneously supplied to one high frequency heating coil used for the heated body to heat the heated body by high frequency induction, and one frequency The distribution of the high-frequency power of the second frequency and the high-frequency power of the other frequency is changed to an arbitrary distribution ratio or distribution ratio, or the heating time by each of the two high-frequency powers is arbitrarily and independently changed, so In this method, the heating depth from the surface of the heating body is arbitrarily or continuously adjusted.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of a method for induction hardening of a rod-shaped member and an induction hardening apparatus according to the present invention, in which a drive shaft having a hollow pipe part is passed through a high-frequency heating coil. However, FIG. 2 is an explanatory block diagram of the induction hardening apparatus for induction hardening, and FIG. 2 shows a high frequency applied to the induction heating coil in each part of the drive shaft in the longitudinal direction when the drive shaft is moved and quenched according to FIG. FIG. 3 is a diagram showing a heating power supply or a heating cycle, and FIG. 3 is a sectional view of the drive shaft showing a pattern in which a hardened hardened layer is formed on the outer peripheral surface of the drive shaft when induction hardening is performed according to FIG. is there.
[0016]
In FIG. 1, an induction hardening apparatus 1 is a general CVJ (constant velocity joint) part of an automobile, which is a cylindrical member made of a metal material, for example, a steel material, as a rod-like material to be hardened. With the drive shaft, the outer peripheral surface 2a of the drive shaft 2 is induction-hardened by high frequency movement while the drive shaft 2 having a hollow pipe portion in part is moved in the direction of the arrow.
The drive shaft 2 is structurally equivalent to the drive shaft 21 shown in FIG. 5, and a solid shaft portion at both ends and a hollow pipe portion at the center are joined and formed by friction welding at a friction welding portion. It consists of
[0017]
The induction hardening apparatus 1 controls (on and off) a high frequency heating coil 3 that penetrates and moves the drive shaft 2 from a dual frequency oscillator 4 as a dual frequency high frequency power supply by a control device 5. The high frequency heating power of two frequencies of the low frequency f1 and the high frequency f2 is simultaneously supplied. And immediately after heating the heating portion 2b of the outer peripheral portion 2a of the drive shaft 2 to a predetermined quenching temperature, from the coolant injection ring 6a via the coolant supply device 6 under the control of the control device 5, Cooling liquid, for example, cooling water, is jetted toward the heated outer peripheral surface 2a to quench it, and induction hardening is performed on the outer peripheral surface 2a to form a hardened and hardened layer 2c. During the induction hardening, the drive shaft 2 is moved in the direction of the arrow in the length direction by the transfer device 7.
In addition to the dual frequency oscillator 4 and the coolant supply device 6, the control device 5 also controls the transport device 7 that moves the drive shaft 2 at an arbitrary constant speed in its length direction.
[0018]
The two-frequency oscillator 4 includes a first high-frequency oscillator 4a that outputs a high-frequency heating power of the low frequency f1, for example, 3 kHz, and a second high-frequency oscillation that outputs the high-frequency heating power of the high frequency f2, for example, 200 kHz. The control device 5 adjusts the output of the high-frequency heating power from the first high-frequency power supply unit 4a, and arbitrarily controls (turns on and off) the heating time for outputting the high-frequency heating power. Further, the second high frequency oscillator 4b adjusts the output of the high frequency heating power, and arbitrarily controls (turns on and off) the heating time for outputting the high frequency heating power, and further, the first high frequency oscillation It is also possible to alternately output the machine 4a and the second high-frequency oscillator 4b.
[0019]
Further, the control device 5 connects a monitoring coil 8 wound independently together with the high-frequency heating coil 3 to the high-frequency heating coil 3 from the first and second high-frequency oscillators 4a and 4b. The first and second high-frequency oscillators 4a and 4b are controlled while monitoring the output state of each high-frequency heating power.
[0020]
At the same time, the control device 5, with respect to the high frequency heating coil 3 to heat the drive shaft 2, the low have frequency output from the first high-frequency oscillator 4a of the 2-frequency oscillator 4 a high frequency power of f1, the second distribution ratio of the high frequency electric power of the high frequency oscillator 4b the high has frequency f2 output from the entire high-frequency power respectively required for any distribution ratio or the distribution ratio (heating, For example, the quenching depth from the outer peripheral surface 2a of the drive shaft 2 can be changed by changing the heating time by the high frequency heating power of each of the two frequencies independently and arbitrarily. It can be adjusted arbitrarily or continuously.
[0021]
The control device 5, the relative high-frequency heating coil 3, a high-frequency heating power of the low have frequencies f1 output from the dual-frequency oscillator 4, the high frequency power of the not high frequency f2 By changing the distribution ratio to an arbitrary distribution ratio or distribution ratio, and at the same time, independently changing the heating time by the high-frequency heating power of each of the two frequencies from the outer peripheral surface 2a of the drive shaft 2 The quenching depth can be adjusted arbitrarily or continuously.
[0022]
Next, as shown in FIG. 2, in each part of the solid shaft portion and the hollow pipe portion of the drive shaft 2, the frequencies f1 and f2 for heating the outer peripheral surface 2a with high frequency and the ratio of the high frequency power (distribution ratio or The distribution ratio was changed and supplied to the high-frequency heating coil 3 (specific examples are described later). That is, the solid shaft portion supplies a large amount of power at a low frequency f1, and the hollow pipe portion simultaneously supplies a small amount of power compared to the large power at the solid shaft portion by a high frequency f2 and a low frequency f1. did. In particular, the heating power of the hollow pipe portion, was less than the heating power of the higher frequency f2 of the heating power of the low frequency f1. Wherein the use frequency f2 higher in the hollow pipe portion, it is possible to shallow penetration depth by high frequency induction heating, it was possible to avoid the complete quenching of the hollow pipe section.
[0023]
According to the present embodiment, the hardened and hardened layer 3c pattern obtained on the outer peripheral surface 2a of the drive shaft 2 is a hardened and hardened layer of about 5 mm at the solid shaft portion as shown in FIG. In the hollow pipe portion , a hardened and hardened layer having a thickness of about 3 mm was obtained. In the hollow pipe portion , it is possible to achieve a further quench hardening depth by distributing the heating power output of the high frequency f2 and the low frequency f1.
According to the present embodiment, as shown in FIG. 3, the hardened hardened layer 2c pattern along the outer peripheral surface 2a in the length direction of the drive shaft 2 is formed, so that the internal crack of the drive shaft 2 is prevented. Could be prevented.
[0024]
[Example]
Specific examples according to the present embodiment are shown below.
(1) Hardened member: Drive shaft (a) Material: S40BCM
(B) Dimensions: solid shaft outer diameter 30 mm, the hollow pipe portion outer diameter 40 mm (wall thickness = 5 mm), length 500mm
(2) High frequency induction heating conditions 1) Solid shaft part (a) Low frequency f1 = 3 kHz, heating power output = 120 kW (distribution ratio = 100%),
Movement speed (feed speed) = 30mm / sec
(B) High frequency f2 = 200 kHz, heating power output = 0 kW (distribution ratio = 0%),
2) Hollow pipe part (a) Low frequency f1 = 3 kHz, heating power output = 40 kW (distribution ratio = 36%),
Movement speed (feed speed) = 30mm / sec
(B) High frequency f2 = 200 kHz, heating power output = 70 kW (distribution ratio = 64%),
Movement speed (feed speed) = 30mm / sec
[0025]
The surface hardness of the solid shaft spline valley when the drive shaft 2 is quenched according to the processing conditions is Hv 700 to 720, and the hardened layer depth is 5.0 to 5.5 mm. is there. The surface hardness of the hollow pipe portion having a thickness of 5 mm is Hv 700 to 720, and the depth of the hardened layer is 3.0 to 3.3 mm.
[0026]
In the conventional induction hardening method, the surface hardness of the hollow pipe portion is Hv 700 to 720, and the hardened layer depth is 5 mm, which has been quenched to all thicknesses, but according to the present embodiment, The hollow pipe portion has a predetermined surface hardness of Hv 700 to 720 and a hardened layer depth narrower than the wall thickness (that is, the hollow pipe portion does not become hardened) . Burning cracks could be prevented.
[0027]
As described above, one embodiment of the present invention has been described. However, the present invention is not limited to this embodiment, and various modifications and changes can be made based on the technical idea of the present invention. . For example, although the number of oscillators is two, it is not limited to two and may be increased as necessary. In heating the hollow pipe portion , the high-frequency heating power of the high frequency f2 and the low frequency f1 is simultaneously supplied to the high-frequency heating coil 3, but it is also possible to supply only the high frequency f2. Further, in the high-frequency heating of the solid shaft portion, only the low frequency f1 is supplied, but it is also possible to supply high-frequency heating power simultaneously with the high frequency f2 and the low frequency f1.
[0028]
The high-frequency heating power of the low frequency f1 and the high frequency f2 is set to a constant value during heating, but the power value is stepless depending on the quench hardened layer depth required for the member to be hardened. It can be changed. The solid shaft portion and the hollow pipe portion are continuously moved and quenched in the length direction, but partial quenching in which only a necessary portion is quenched is also possible.
[0029]
【The invention's effect】
As is apparent from the above description, according to the induction hardening method and apparatus for a rod-shaped member to be heated according to the present invention, the high-frequency heating coil that penetrates and moves the member to be hardened has a low frequency to a high frequency. supplying a plurality of high-frequency heating power of frequencies simultaneously, the addition to the high frequency induction heating of the outer circumferential surface of the the hardened material, the proportion of high-frequency power of each frequency, so arbitrarily changed include zero, hollow part When induction-quenching the outer peripheral surface of a rod-shaped member to be heated having a pipe part , or in an induction hardening apparatus, the hollow pipe part is not submerged, and the solid shaft part and the hollow pipe part There is an excellent effect that no burning crack occurs at the border of the film.
[0030]
Further, according to the present invention, each of the outer peripheral surface of the rod-shaped member to be heated made of the said in thickness and the actual shaft portion having an outer diameter different different hollow pipe section upon to induction hardening, single number or a plurality of The rod-shaped member to be heated is supplied by simultaneously supplying high-frequency heating power of a frequency, induction-heating the outer peripheral surface of the member to be quenched, and arbitrarily changing the ratio of the high-frequency power of each frequency including zero It becomes possible to make it an arbitrary quenching hardening depth along the outer peripheral surface, and it is possible to prevent quench cracks inside the hollow pipe portion .
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an induction hardening method for a rod-like member and an induction hardening apparatus according to the present invention, wherein a drive shaft having a hollow pipe part in part is passed through and moved through a high-frequency heating coil. However, it is an explanatory block diagram of the induction hardening apparatus for induction hardening.
FIG. 2 is a diagram showing the supply or heating cycle of high-frequency heating power to a high-frequency heating coil at each position in the longitudinal direction of the drive shaft at the time of moving quenching of the drive shaft according to FIG. 3 shows each part in the length direction of the drive shaft, and the vertical axis shows the high-frequency heating power supplied to the high-frequency heating coil in each part in the length direction of the drive shaft moving at a constant speed.
[Figure 3] 1227168345156_1
FIG. 3 is a cross-sectional view of the drive shaft showing a pattern in which a hardened hardened layer is formed on the outer peripheral surface of the drive shaft when induction hardened according to FIG. 2.
[4] In CVJ automotive parts that are conventionally used, is a front view showing a general drive shaft (consisting of only the real axis portion medium).
FIG. 5 is a cross-sectional view of a hollow drive shaft having a hollow pipe portion in a conventional CVJ part of an automobile.
FIG. 6 is a cross-sectional view showing a hardened hardening layer pattern formed on a hollow drive shaft having a hollow pipe portion by a conventional induction hardening method.
FIG. 7 is a cross-sectional view showing quench cracks generated in a hollow drive shaft having a hollow pipe portion by a conventional induction hardening method.
[Explanation of symbols]
1 Induction hardening device 2,21 Drive shaft (hardened member)
2a Outer peripheral surface 2b Heated portion 2c Hardened and hardened layer 3 High frequency heating coil 4 Two frequency oscillator 4a First high frequency oscillator (outputs low frequency f1)
4b Second high-frequency oscillator (outputs high frequency f2)
5 Control Device 6 Coolant Supply Device 6a Coolant Injection Ring 7 Conveyance Device

Claims (2)

両端に中実軸部を有しかつこれら両端の中実軸部の間に中空パイプ部を有する棒状部材の外周面を高周波焼入するための棒状部材の高周波焼入方法において、
前記棒状部材をひとつの高周波加熱コイルにて取り囲まれた領域に通してその長さ方向に移動させながら、前記高周波加熱コイルにより前記棒状部材の外周面を高周波誘導加熱した後に、該外周面を急冷して焼入するに際し、
前記高周波加熱コイルに、低い周波数から高い周波数までの複数の周波数の高周波加熱電力を同時に供給して、前記被焼入部材の外周面を高周波誘導加熱し、
前記複数の周波数が、異なる2周波数で、かつ1kHzないし400kHzの周波数であり、
前記中実軸部に対して第1の低い周波数及び第1の高い周波数の加熱電力を供給する際、前記第1の低い周波数の加熱電力が、前記第1の高い周波数の加熱電力より大きくなっており、
前記中空パイプ部に対して第2の低い周波数及び第2の高い周波数の加熱電力を供給する際、前記第2の低い周波数の加熱電力が、前記第2の高い周波数の加熱電力より小さくなっており、かつ、前記第2の低い周波数及び前記第2の高い周波数の加熱電力が、前記第1の低い周波数の加熱電力より小さくなっていることを特徴とする棒状部材の高周波焼入方法。
In the induction hardening method of the rod-shaped member for induction-hardening the outer peripheral surface of the rod-shaped member having a solid shaft portion at both ends and having a hollow pipe portion between the solid shaft portions at both ends,
While the rod-shaped member is moved in the length direction through a region surrounded by one high-frequency heating coil, the outer circumferential surface of the rod-shaped member is heated by high-frequency induction by the high-frequency heating coil, and then the outer circumferential surface is rapidly cooled. And when quenching,
To the high-frequency heating coil, simultaneously supplying high-frequency heating power of a plurality of frequencies from a low frequency to a high frequency, high-frequency induction heating the outer peripheral surface of the member to be hardened ,
The plurality of frequencies are two different frequencies and a frequency of 1 kHz to 400 kHz;
When supplying the first low frequency heating power and the first high frequency heating power to the solid shaft portion, the first low frequency heating power is larger than the first high frequency heating power. And
When supplying the second low frequency heating power and the second high frequency heating power to the hollow pipe portion, the second low frequency heating power is smaller than the second high frequency heating power. And the second low frequency and second high frequency heating powers are smaller than the first low frequency heating powers .
前記第2の低い周波数及び前記第2の高い周波数の加熱電力が、前記第1の高い周波数の加熱電力より大きくなっていることを特徴とする請求項1に記載の棒状部材の高周波焼入方法。 2. The induction hardening method for a rod-shaped member according to claim 1, wherein the second low frequency heating power and the second high frequency heating power are larger than the first high frequency heating power. .
JP2003084119A 2003-03-26 2003-03-26 Induction hardening method for rod-shaped members Expired - Fee Related JP4551060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084119A JP4551060B2 (en) 2003-03-26 2003-03-26 Induction hardening method for rod-shaped members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084119A JP4551060B2 (en) 2003-03-26 2003-03-26 Induction hardening method for rod-shaped members

Publications (2)

Publication Number Publication Date
JP2004292853A JP2004292853A (en) 2004-10-21
JP4551060B2 true JP4551060B2 (en) 2010-09-22

Family

ID=33399348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084119A Expired - Fee Related JP4551060B2 (en) 2003-03-26 2003-03-26 Induction hardening method for rod-shaped members

Country Status (1)

Country Link
JP (1) JP4551060B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291598B1 (en) * 2004-10-30 2013-08-01 인덕터썸코포레이션 Scan induction heating
US7772530B2 (en) 2004-10-30 2010-08-10 Inductotherm Corp. Induction heat treatment of workpieces
DE102005012783A1 (en) * 2005-03-19 2006-09-21 Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg roll bar
JP4719513B2 (en) * 2005-06-07 2011-07-06 高周波熱錬株式会社 Induction heating control device, induction heating device, and induction heating method
ES2289867B1 (en) * 2005-06-07 2009-01-16 Gh Electrotermia, S.A. CONVERTER WITH SIMULTANEOUS BIFREQUENTIAL OUTPUT FOR INDUCTION HEATING.
JP4926728B2 (en) * 2007-01-15 2012-05-09 高周波熱錬株式会社 Spline shaft, heat treatment method and heat treatment apparatus
JP6438734B2 (en) * 2014-10-29 2018-12-19 高周波熱錬株式会社 Work heating and quenching methods
CN106086335B (en) * 2016-08-26 2017-10-27 应达工业(上海)有限公司 A kind of tapping screw load coil suitable for high speed feeding rotating disk

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162728A (en) * 1984-01-31 1985-08-24 Ishikawajima Harima Heavy Ind Co Ltd Improvement of residual stress of pipe
JPH01301821A (en) * 1988-05-31 1989-12-06 Chubu Electric Power Co Inc Surface heat treatment of long shaft material
JP2002356715A (en) * 2001-05-30 2002-12-13 Denki Kogyo Co Ltd Two-frequency induction heating method, and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162728A (en) * 1984-01-31 1985-08-24 Ishikawajima Harima Heavy Ind Co Ltd Improvement of residual stress of pipe
JPH01301821A (en) * 1988-05-31 1989-12-06 Chubu Electric Power Co Inc Surface heat treatment of long shaft material
JP2002356715A (en) * 2001-05-30 2002-12-13 Denki Kogyo Co Ltd Two-frequency induction heating method, and apparatus therefor

Also Published As

Publication number Publication date
JP2004292853A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4551060B2 (en) Induction hardening method for rod-shaped members
US2556236A (en) Heat-treating method and product
JP2001500790A (en) Beam Welding Method of Hardenable Steel by Short Time Heat Treatment
JP4674932B2 (en) Crawler belt bush, manufacturing method and manufacturing apparatus thereof
JP3932809B2 (en) Low strain quenching equipment and quenching method
EP2620513B1 (en) Automobile part, manufacturing method for same and manufacturing device of same
JP2009019237A (en) Induction hardening apparatus and method for manufacturing member
JP2003183735A5 (en)
JPS63137125A (en) Method for hardening crank shaft
JP2572238B2 (en) Inner and outer peripheral surface hardening method for small bore cylinder
CN111334656B (en) Method for heat treatment using a gradual temperature profile
JP2006002185A (en) Method for heat-treating hollow-power transmission shaft
US3737612A (en) Apparatus for inductively heating valve seats
JP2004536721A (en) Method and apparatus for manufacturing barrel of twin screw extruder
JPH01309927A (en) Method for heat-treating cylindrical wear resistant parts
US20050039829A1 (en) Induction heat treatment method and article treated thereby
JP2004315851A (en) Method and apparatus for induction hardening of rack bar
JP2006002809A (en) Hollow power transmission shaft
JPS6076232A (en) Manufacture of high strength hollow stabilizer
JP6438734B2 (en) Work heating and quenching methods
JPS5940431Y2 (en) Hardening inductor or burner in surface gradual hardening equipment
JPH0679541A (en) Method for forming torque transmitting shaft for induction hardening
RU2082774C1 (en) Crankshaft thermal treatment method
JP2004107685A (en) Method and device for induction-hardening crank shaft
JPS6056204B2 (en) Method for hardening the inner surface of the socket of the outer ring of a constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

R150 Certificate of patent or registration of utility model

Ref document number: 4551060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees